ELECTROMECHANICAL BEHAVIOUR OF PIT Nb₃Sn CONDUCTORS FOR NED B. Seeber - University of Geneva - Institute of Applied Physics #### **ACKNOWLEDGEMENT** - A. Ferreira - F. Buta - C. Senatore - R. Flükiger - T. Boutboul - L. Oberli - C. Scheuerlein - L. Rossi **University of Geneva** **CERN - AT/MCS** #### **OUTLINE** - Characteristics of studied PIT conductors - Distribution of the critical temperature T_c - Critical current vs. axial tensile strain, B - Critical current vs. transverse compressive loads, B - Projected area vs. real area - Conclusions ## Nb₃Sn PIT WIRE (SMI-EAS) #207 and #215 Ø 1.25 mm Filament Ø ~ 50 μm Filaments = 288 Twist pitch = 20 mm **Cu/non-Cu ~ 1.22** # T_c DISTRIBUTION (Courtesy of C. Senatore) ## I_c vs. axial tensile strain, B # I_c vs. axial tensile strain, B ## #215 - I_c vs. axial tensile strain, B # #215 - Irreversibility limit ϵ_{irr} ## #215 - Kramer upper critical field B_{c2}(4.2K) # #215 - I_c vs. transverse compressive loads # #215 - I_c vs. transverse compressive loads # #215 - Kramer B_{c2} ## Reproducibility of I_c # #215 - Irreversibility of I_c ## PIT vs. Bronze route Nb₃Sn ## PIT vs. Bronze route Nb₃Sn ### **PROJECTED AREA** #### #215 - Deformation after heat treatment at RT (Courtesy of T. Boutboul) ## #215 - I_c vs. transverse compressive stress #### CONCLUSIONS #### PIT under tensile strain: - similar to bronze route - however smaller ϵ_{m} and ϵ_{irr} #### PIT under transverse compressive load: - I_c degradation vs. field similar to bronze route - I_c decreases faster with applied force - Ic irrreversibility is higher #### Projected area underestimate stress