Magnets for Linacs WAMSDO'08 more exactly: <u>A Survey of Interesting Superconducting</u> Magnets for Linacs The Technical, R&D Challenges they pose **Linear Colliders** Low Energy Linacs

Michael Tartaglia Fermilab

Introduction

There are MANY LINACS around the world

Too many to cover comprehensively in a short talk (also beyond my level of breadth and depth) [see refs: LINAC96,...,04,06,(08)]

Superconducting Magnets used only if needed In general, they are *NOT*, even in ScRF LINACS (e.g., SNS)

'Usual' Magnet Parameters (strength, field quality)

are not exceptionally challenging

Focus on recent areas, where I have had some involvement

The International Linear Collider

Requires a broad spectrum of Sc Magnet Types across six diverse accelerator systems

> Examples which may be found in other LINAC systems

Challenges are representative of those faced elsewhere

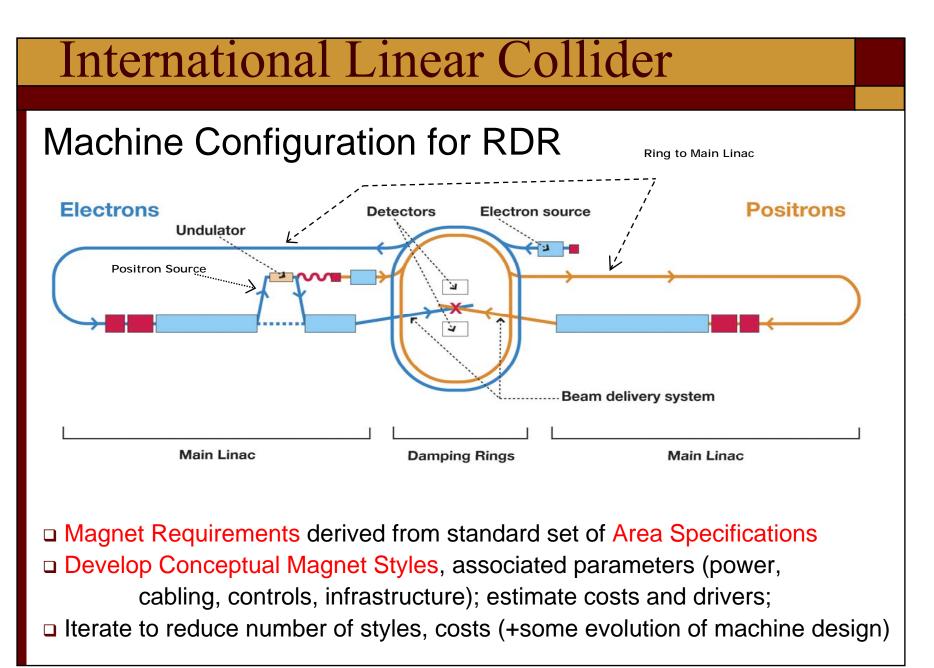
Introduction

Low Energy LINACs

High Intensity sources
leveraged by / pushing ScRF developments
new / upgrades to facilities
Sc Solenoid Focusing offers a compact alternative to
use of conventional Quads in Front End

International Linear Collider

Machine Overview


Baseline Conceptual Design (Dec. 2005)

Reference Design (Feb. 2007)

Report (RDR) and Cost Estimate for 250 GeV e- x 250 GeV e+

- International Team (Scientists/Engineers/Designers/Support Staff)
- *Leadership in each geographic region* (Americas, Europe, Asia)
- Area Systems (e+ / e- sources, DR, RTML, Main Linac, BDS)
- Global Systems (Commissioning, Operations & Reliability, Controls, Cryogenics, Conventional Facilities & Siting, Installation)
- Technical Systems [**R**.**J**.**]** (Vacuum, Magnets, Cryomodule, Cavity,
 - RF Power, Instrumentation, Dumps/Collimators, Accelerator Physics)

This is a challenging machine: A long train of small, intense, closely spaced bunches are created, quickly damped to very small cross sections, transported long distances during acceleration, then focused to nanometer size and brought into collisions at small crossing angle.

International Linear Collider

General Issues for All Magnets

Alignment with respect to beam path

Focusing elements must preserve beam size (esp. after Damping Rings) Offsets from beam axis must be adjusted by correction (steering) Sub- µm accuracy achieved w/ mechanical movers in BDS

Stability

Geometry – stable mechanical core for stable magnetic center Field stability/reproducibility Over time (& thermal cycles for sc magnets)

With respect to changes in current/field

Reliability

MTBF for magnets $\geq 10^7$ hrs !

Meeting reliability requirements must be a key component of design approach R&D program/'lifetime' studies required

Stray Field

Magnetic elements near ScRF cavities must meet stray field limits at cavity ${<}1~\mu T$ (warm) and ${<}10~\mu T$ (cold)

<u>Cost</u>

Design must be cost efficient while meeting lattice and reliability requirements <u>FIELD QUALITY</u> is not a driver in most areas (exc: DR, BDS) [single pass collider]

WAMSDO 2008

ILC Sc Magnets

Superconducting Magnet Overview

Approx. 13000 Magnets (135 styles) Total in ILC Reference Design

2318 Superconducting Magnets

> About 60% are Corrector Coils packaged with/near main coil

□1680 in the Main Linac

> Quad, Steering Dipoles BPM

Centered in every 3rd ScRF Cryomodule

Damping Rings

Superconducting Wigglers damp e⁻, e⁺ by synch radiation

Positron Source

Superconducting Undulators in e⁻ linac create energetic photons

ILC Sc Magnets

Superconducting Magnet Overview
 Superconducting Solenoids

- For positron capture
- For spin rotation in the RTML
- Some large aperture magnets
 - Could be conventional: Optimize Capital vs Operating Cost
- Beam Delivery System
 - > Some of the most challenging Sc Magnets at IR Final Focus
 - Strong Gradients with Corrector Coils
 - Tight space, field quality constraints
 - Detector Interface issues
 - Radiation and Disrupted Beam

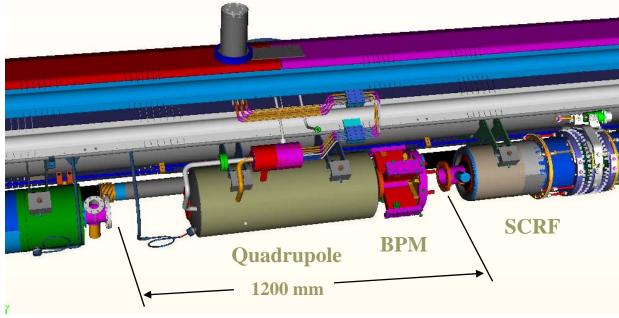
ILC Main Linac

Main Linac Quadrupole Package (MQ,VD,HD,BPM)

□ Location: center of every 3rd Cryomodule (~6m length)

- super-clean beam tube for super-c rf
- > quad + BPM center alignment (<.3 mm, warm -> cold)


Separate cryostat considered as alt. design (easier for magnets)

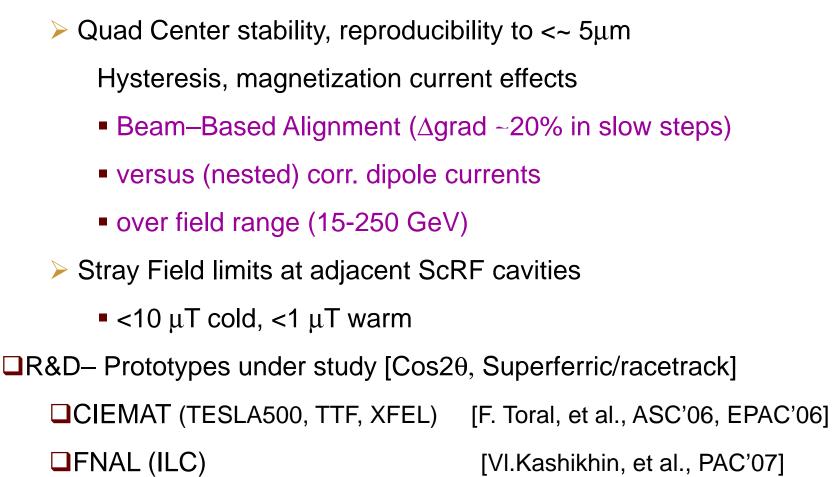

2K operation:

small Heat Load

Beam Size in ML:

 $\pmb{\sigma}x\sim ~9~\mu m$

ILC Main Linac


Main Linac Quadrupole Package

Specifications	RDR ILC	Tesla500
Integrated gradient, T/m	36	35
Aperture, mm	78	90
Effective length, mm	666	588
Peak gradient, T/m	54	60
Field non-linearity at 5 mm radius, %	0.05	.4 (30mm)
Dipole trim coils	Vertical+Horizontal	V+H
Trim coils integrated strength, T-m	0.075	.085
Quadrupole strength adjustment for BBA, %	-20	
Magnetic center stability at BBA, µm	5	
Liquid Helium temperature, K	2	2
Quantity required	560	

□ Small Beams, Large Aperture: Field quality is not an issue, but need to be on axis

Main Linac Quadrupole Package Challenges

ILC Main Linac

Main Linac Quadrupole Prototypes □ CIEMAT Cos2θ model (2005): meas'g center stability @SLAC now

□ Superferric design: (250Gev Linac OK; Front End @ 500GeV)

- Simpler racetrack coils should yield lower cost
- Many turns of fine NbTi strand (low current, low PL heating)
 - need high packing factor: strand stress, potential shorts;
 - high inductance; iron saturation
- Magnetic Measurements show

Quad Field quality is OK, but TF varied with Dipole currents

Quad, Dipole TF affected by hysteresis at low current

Option: separate Quad and Corrector Dipoles

Eliminate some hysteresis effects due to persistent currents

WAMSDO 2008

ILC Main Linac

Main Linac Quadrupole Prototypes Fermilab Design is similar

- >1st model is complete, preparing to start test early June 2008
- > TQ model tests: can measure Quad center to $<1\mu$ m (<90sec)

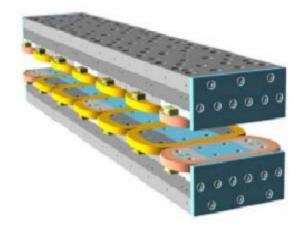
Coil connection blocks:

Racetracks include turns for quad and dipoles

Soft Iron End shields capture stray field

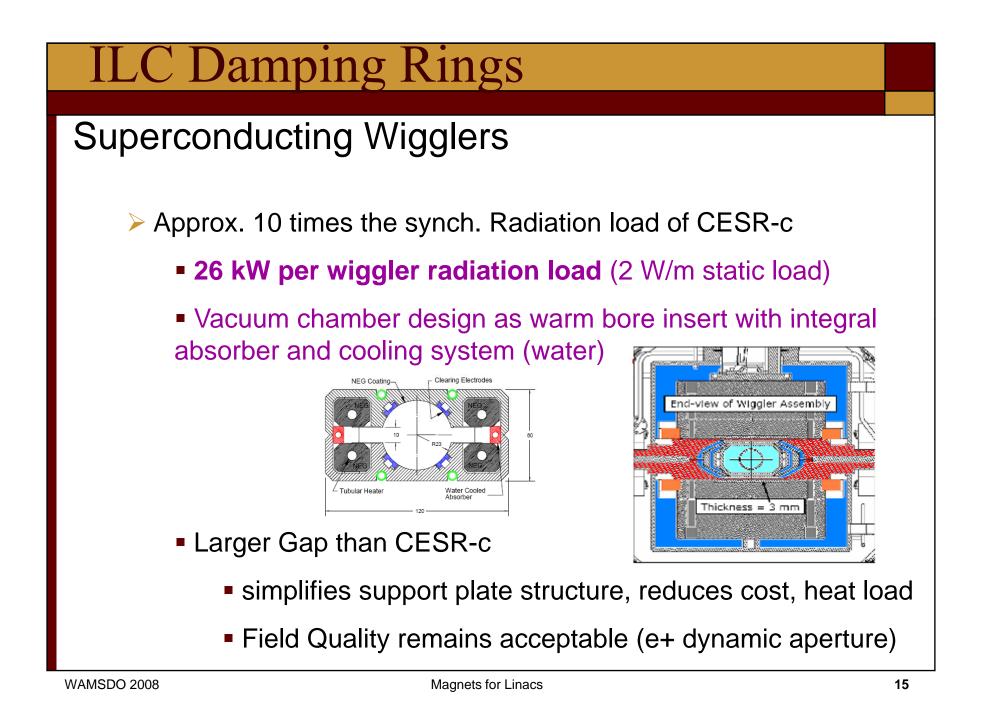
WAMSDO 2008

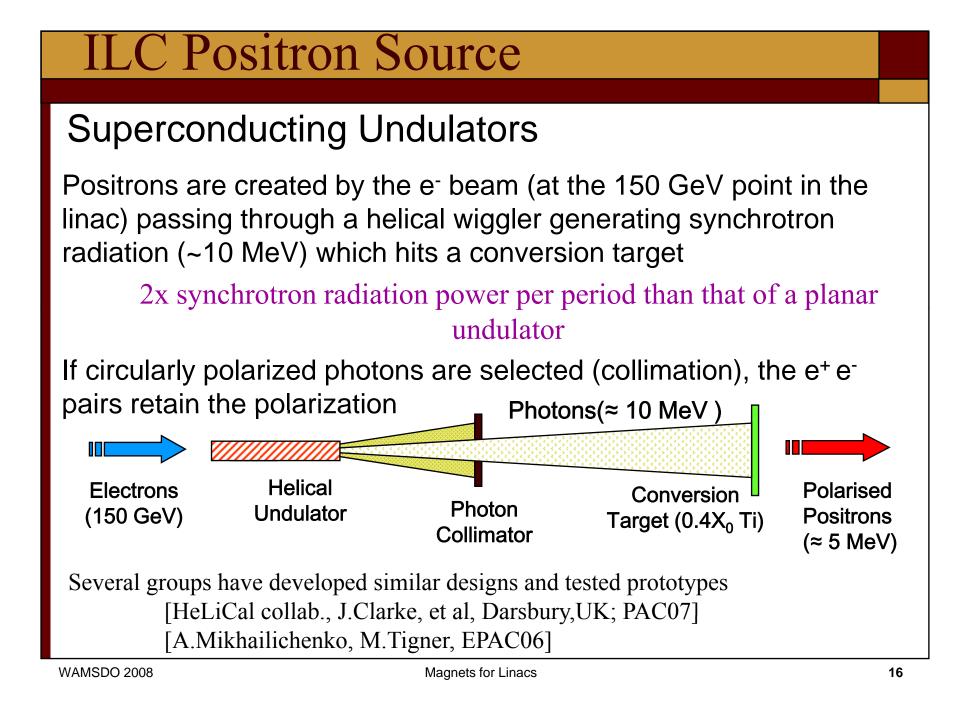
ILC Damping Rings


Superconducting Wigglers

□ Fast Damping of the beams to small emittances

- \geq Positron emittance reduction by 10⁵ in 200ms
- Need 200 m of high field, short period wigglers per DR


Based on CESR-c Wiggler,	but longer
--------------------------	------------


Peak Field	1.95 T
Number of Poles	12
Length	1.68 m
Period	0.32 m
Pole Width	23.8 cm
Gap Height	8.6 cm
dB/B0 at x=10mm	6.0 x 10-4
Coil Current	141 A
Conductor	NbTi
Temperature	4.5 K

Superferric modular, shimmed racetrack pole pieces

WAMSDO 2008

ILC Positron Source

Parameters for 4m Undulator Module

On axis field	0.86 T	
Peak to peak variation	<1%	
Period	11.5 mm	
Nominal Current	~250 A (80% of short sample)	
SC wire	NbTi 0.4mm dia., SC:Cu ratio 0.9:1	
Winding Cross Section	7 wires wide x 8 high (16mm ²)	
Number of magnets per module	2 (powered separately for tests)	
Length of magnetic field	2 x 1.74 m	
Number of modules req'd	42	

Undulator Period and required strength need superconducting solution

ILC Positron Source

Cold Copper Bore 314 20 periods of double-helix Inner diameter 5.85 mm 12 Cryopumped vacuum **Double Helical Coil** 4mm x 4mm winding Soft Iron yoke (mech support; 10% field increase) 2 undulators per 4.2 K He cryostat module

500mm long prototype (\sim 1/3 length) completed; expect additional test results soon

Sc BDS Magnets

BDS Beamlines must (be capable of 1 Tev, w/add'l magnets)

measure and correct ML beams (emittance, skew; polarization)

- collimate and reduce (γ, e, μ) halos
 - demagnify beams to required size (*14x, *3.5y) (*1

(*15x,*5y)

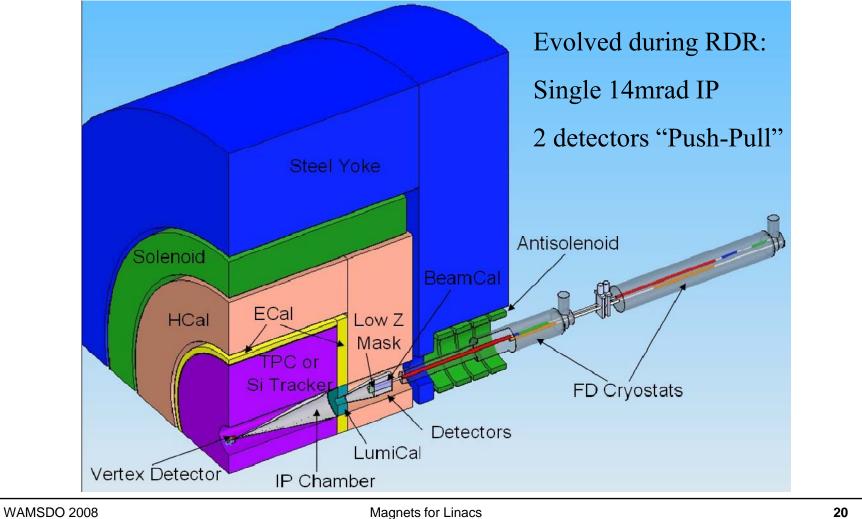
3TeV CLIC:

- extract disrupted beams w/big angle-,energy- spread to a dump
- compensate for the detector magnet

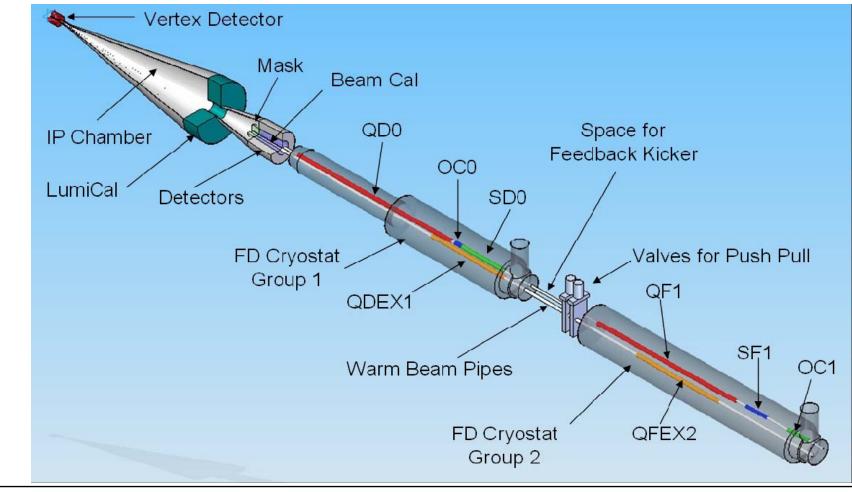
Baseline 14mrad crossing angle BDS design & Sc Magnet solutions
 [A.Seryi, et al., PAC07; B.Parker, et al., PAC07)

Alt. head-on schemes under study [O.Napoly, et al. PAC'07]

- Detector hermeticity, no crab cavity beam rotation
- Incoming/Outgoing beams share innermost magnets


 \checkmark

 \checkmark


 \checkmark

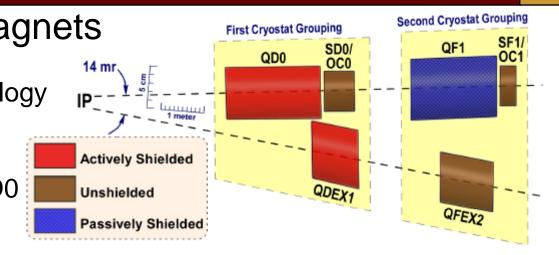
 \checkmark

Final Focus IR Magnets

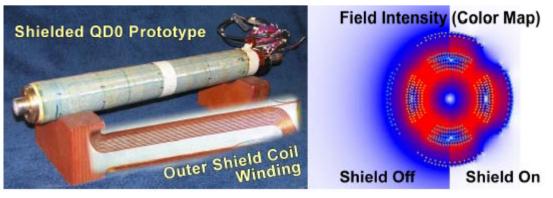
Final Focus IR Magnets

WAMSDO 2008

Final Focus IR Magnets


BNL Direct-Wind technology

QD0 inner/outer


Anti-solenoid coils in QD0

Cryostat

Operate at 2K

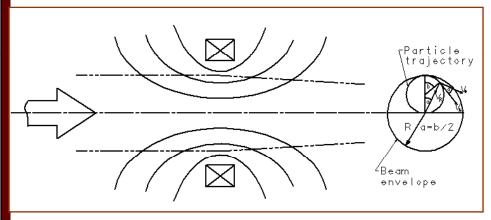
FIGURE 2.7-5. Schematic layout of magnets in the IR.

Detector Integrated Dipole

Windings at outer radius of detector solenoid compensate for vertical deflection of beam passing through solenoid at 14mrad

Final Focus IR Magnets

Strong Focusing Doublet (BDS design for up to 1 TeV)


> Intrudes into detector; "push-pull" complication

CLIC:(43,1)nm 450T/m

- IP size (x=640, y=6) nm needs extraordinary stability
- Cancellation of stray field nearby (can't affect disrupted beam)
- detector solenoid cancellation coils (force neutral)
- steering and sextupole (local chromatic) correctors needed
- "Tail-Folding" Doublets of Superferric octupoles upstream of FF nonlin. Optics to clear halo but not affect core beam
 > design for high gradient, but avoid pole saturation
 > implementation with a clever winding scheme, low cost
 > use cryocooler

Low Energy Linacs

Focusing by Solenoids <u>Motivation</u>: lower rate of emittance growth in transport channels in comparison with quadrupoles

Radial component of a fringe field combined with asymmetric particle rotation (Bush theorem) provides radial component of the particle velocity; hence the focusing effect in **short lenses**

2. Rotation in the longitudinal field results in different azimuthal position of the particles after the lens.

Focusing length:
$$f = R \cdot \frac{\beta c}{v_R} = 4 \frac{m^2}{q^2} \beta^2 c^2 \cdot \frac{1}{B_c^2 L_{eff}} = \frac{8 \cdot \frac{m}{q} \cdot T(eV)}{B_c^2 L_{eff}}$$

Limitation: low energy

[Ref: I. Terechkine]

WAMSDO 2008

Low Energy Linacs

Superconducting Magnets for Front End Linacs

>HINS (High Intensity Neutrino Source) R&D project

- H⁻ acceleration to 60 MeV at 27mA (1ms @ 10Hz)
- Multiple ScRF cavities driven by single RF source
- High Speed (ns) Beam Chopping @2.5MeV
- Beam Tests in FY2011

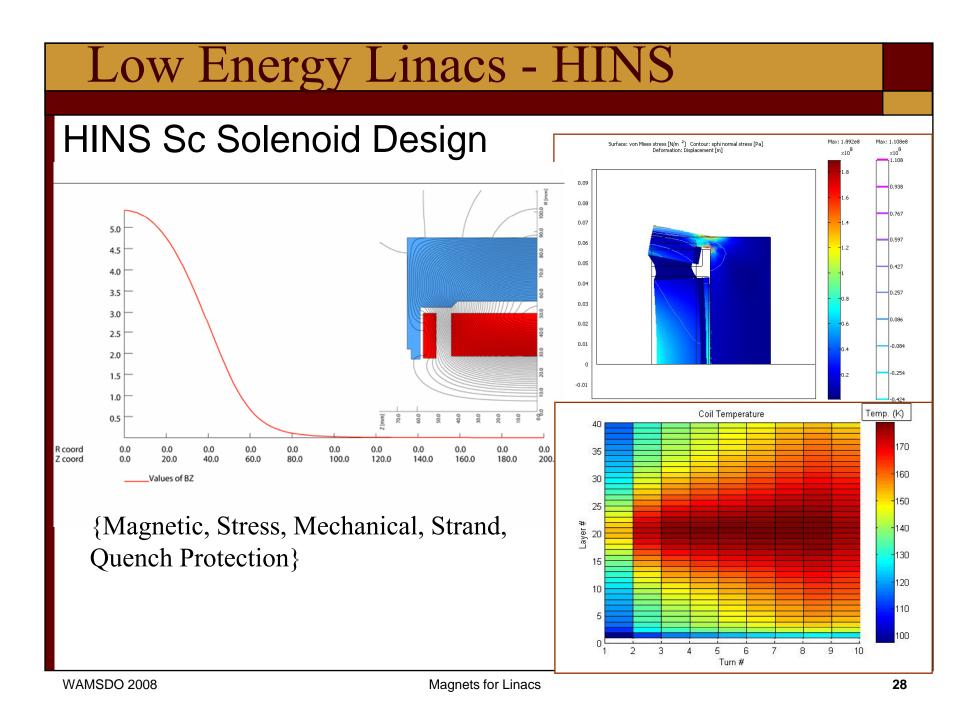
Similar Efforts Elsewhere (RIB facilities) >ISAC-II TRIUMF RIB [M.Marchetto, et al., PAC07]

Operating

>RIA/FRIB

[M.Johnson, et al., PAC05]

R&D Sc Solenoid and Quad in ScRF cryomodule


8	GeV	H- 1	Linac L	attice	Front 1 325M		ILC Style 1300MHz
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
	Ion Source	RFQ	МЕВТ	RT-CHSR	SSR1	SSR2	TSR
Eout	50 keV	2.5 MeV	2.5 MeV	10 MeV	30 MeV	120 MeV	~600 MeV
Zout	0.7 m	3.7 m	5.7 m	15.8 m	31 m	61 m	188m
Cavities			2 buncher cavities and fast beam chopper	16 copper CH-spoke cavities	18 single-spoke SC β=0.2 cavities	33 single- spoke SC β=0.4 cavities	66 triple- spoke SC β=0.6 cavities
Gradient					10 MV/m	10 MV/m	10 MV/m
Focusing			3 SC solenoids	16 SC solenoids	18 SC solenoids	18 SC solenoids	66 SC quads
Cryomodul	es				2	3	11

HINS Sc Solenoid Requirements

NbTi Sc Solenoids for focusing below, Sc Quads above 120MeV Quad Design: ~Short version of ILC ML Quad

	MEBT/RT CH	SSR-1	SSR-2
Number of solenoids in the section	19 (3 + 16)	18 (9 x 2)	6
<u>Parameter</u>			
Bore diameter	20 mm	30 mm	30 mm
Bore type	warm	cold	cold
Field Integral FI = $\int B^2 dl (T^2 cm)$	180	300	500
Margin	30%	30%	30%
Leff (cm) @ Bm	< 10 cm		
Field extension	< 2*Leff	Sharp edges	Sharp edges
Cryostat type	Stand alone	Integrated	Integrated
Cold mass length (mm)	130	219	294

Variations: MC length, BC and Corr.Dipole strand, width, radii

HINS Sc Magnet R&D

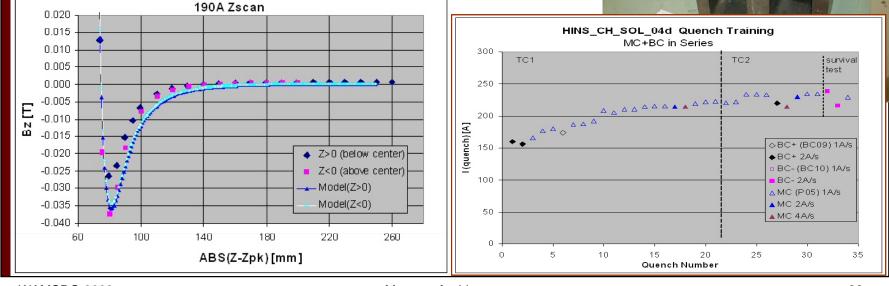
Solenoid Challenges:

Limited Slot length in lattice: must be strong, compact lenses 0.8mm NbTi strand; high packing factor approx. 8T peak field at quench current Intense Source: Magnets need operating margin (design ~30%) Stray field requirements: Bucking Coils cancel axial field at ends narrow w/ <0.6mm strand; internal stress issues soft iron yoke to capture stray flux magnetic shielding to <10mT at adjacent ScRF cavities Nested steering corrector dipoles: increase solenoid radius good field quality (10%) needed at large R x single layer coil Tight installation alignment tolerances in SSR sections: 9 solenoids and cavities in cryomodule (clean, no bore) center position correct to ~ 0.1mm (300K... 4K) Quench Protection: BC temperature and voltage development CH have proven to be robust, self-protecting SSR-2 section is strongest lens; most difficult

HINS Sc Solenoid Status

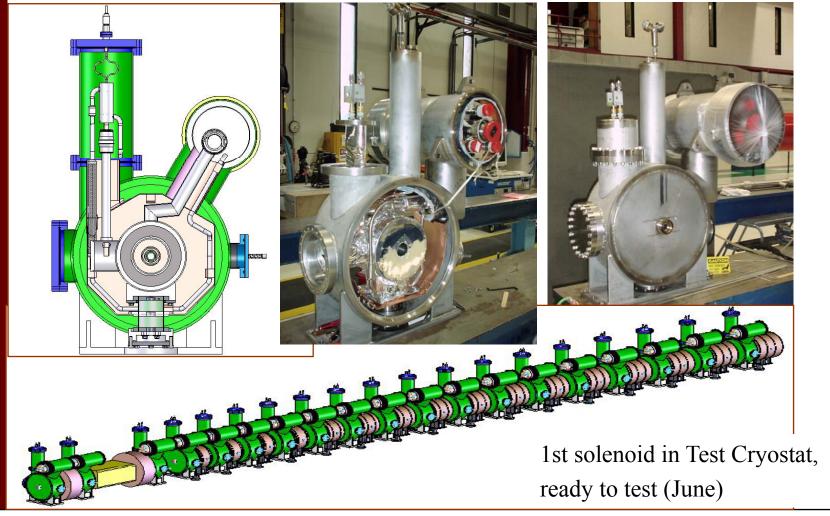
HINS_SS1_SOL_01

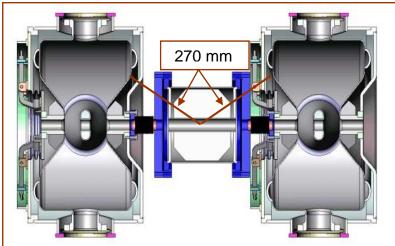
RT-CH solenoid R&D complete (6 models);


1st SSR-1 prototype tested

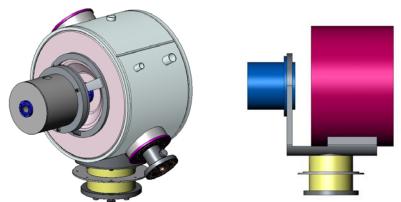
Excellent agreement with

performance predictions (Iq,B)

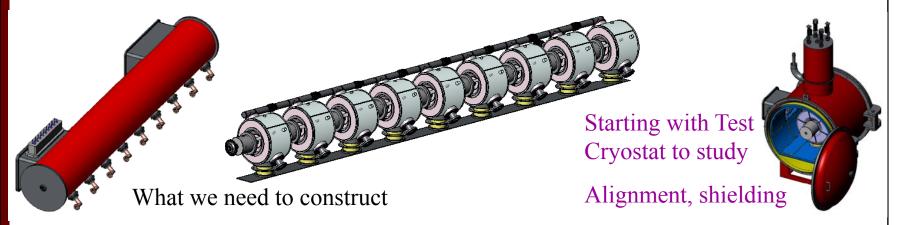

Industrial Production begun, testing soon


WAMSDO 2008

HINS CH Linac Section, Cryostatted Solenoids



WAMSDO 2008


HINS SS-1 Linac Section, Solenoids Cryostatted w/ Cavities

Solenoid with shield between SS cavities

Early conceptual support concepts; cavity position tolerances more relaxed (.5mm vs .1mm) – moving to separate supports

WAMSDO 2008

Magnets for LINACS

Summary

Sc Magnets are necessary for satisfying the requirements in many areas of the High Energy, High Intensity International Linear Collider.

They also provide flexibility in solving some interesting challenges that arise in response to particular machine demands.

Technical challenges span the gamut of areas in magnet design: Strength, Field Quality, Operating Margin, Alignment, Mechanical and Magnetic Axis Stability, Stray Field Limits, Reliability, Cost, Machine-Detector Interfaces.

Innovative solutions have been devised (and continue to evolve) and prototype model development/testing is advanced.

Much work remains to complete integrated system designs