

Development of High Current Nb₃Sn Rutherford Cables for NED and LARP

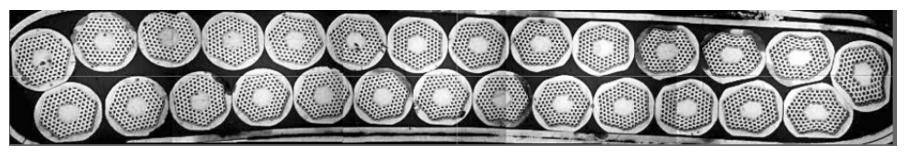
D.R. Dietderich, <u>A. Godeke</u>, N.L. Liggins, and H.C. Higley

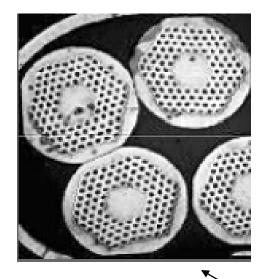
WAMSDO, May 2008

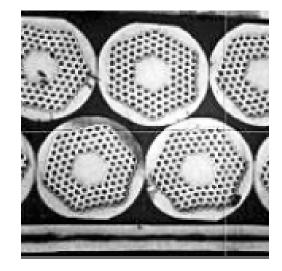
May 21, 2008 WAMSDO, CERN

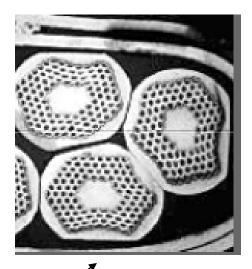
Outline

- Rutherford cables
- Cabling objective:
 - Damage free strand
 - Mechanically stable for winding a magnet
- Review cabling history for LBNL
 - Dipole D-20 (13.5/14.5T)
 - Recent rectangular cable fabrication for LBNL magnets
 - RD-3 series (14.7 T)
 - HD-1 series (16 T)
- Cables for LARP Technology Quadrupoles (TQ)
- Proto-type cables for Next European Dipole (NED)

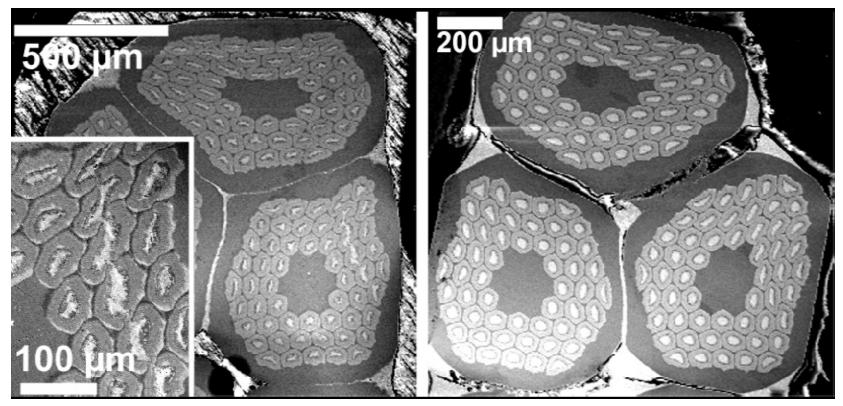

60 Strand Machine for Fabricating Rutherford Cables






Typical Rutherford Cable

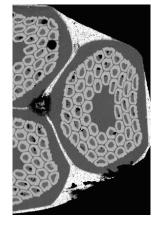
Cable 961

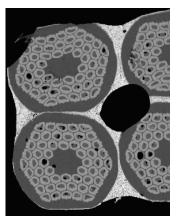

Edge deformations are important

Good and bad cable edge deformation

• Bad

• Good




Main difference is different width of the cable

Managing edge deformation

Decoupling of Thickness & Width as opposed to Packing Factor

Design for this strand configuration at edge of cable

NOT this strand Configuration

0.8 mm strand diameter 40 Strand cable Cable Area = 24.40 mm² 87% Packing Factor Problem with Packing Factor Two Cables have equal area but are NOT the same Bad t Good 2 Cables: Same compaction or

Packing Factor

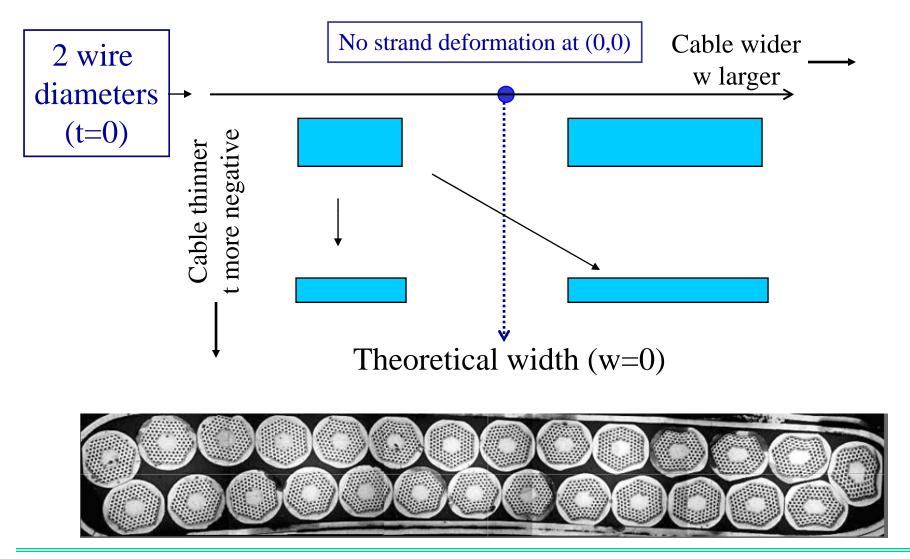
17.4 mm x 1.400 mm =
$$24.4 \text{ mm}^2$$

17.0 mm x 1.435 mm = 24.4 mm^2

0.4 is mm half a strand diameter This difference can be fatal

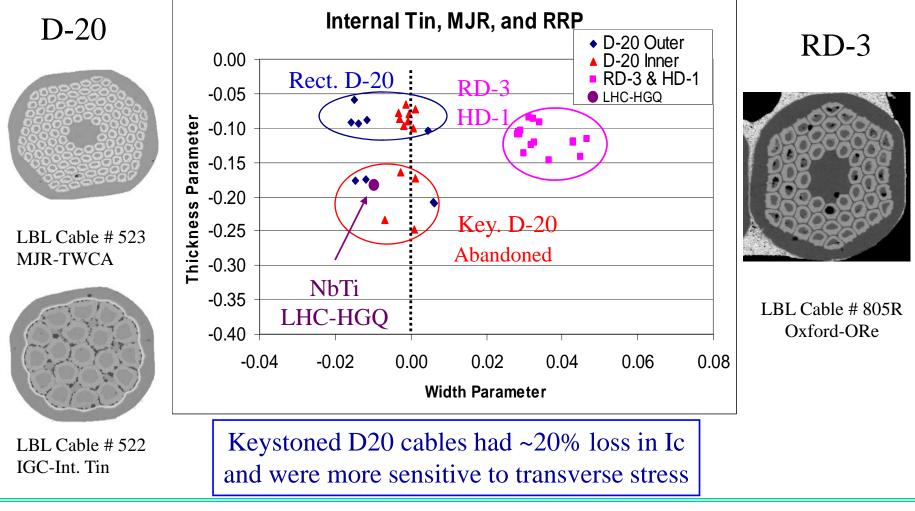
May 21, 2008 WAMSDO, CERN

- Thickness deformation t (~strain)
 t = (cable thickness/2x strand diameter) -1
- Width deformation w (~strain)
 w = (cable width theoretical width)/(th. width)

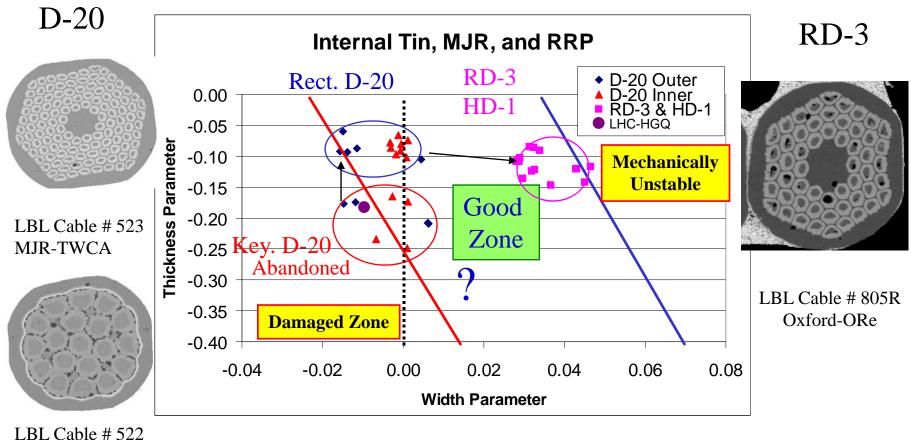

Theoretical width =
$$\frac{Nd}{2\cos(PA)} + 0.72d!$$

PA = Cable pitch angle

(factor 0.72 d not included in plots in this presentation)



Rutherford Cable Parameter Space

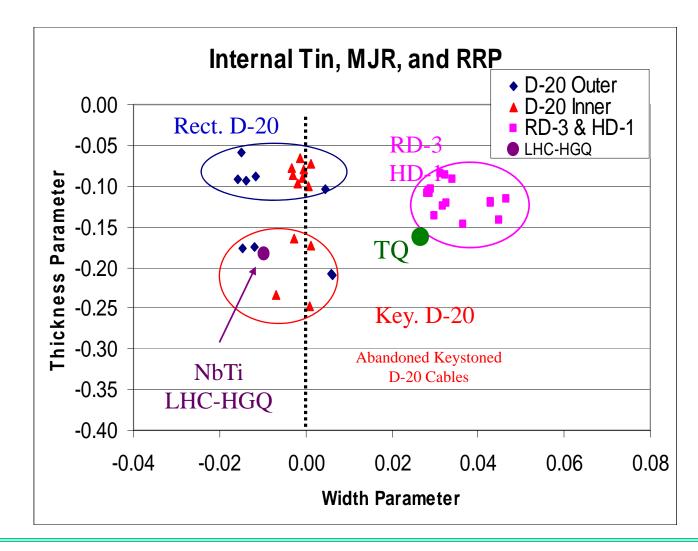


D-20 is Cosine Theta Dipole (14.7T), RD-3 is Racetrack Dipole, and HD-1 is High Field Dipole (16T)

D-20 is Cosine Theta Dipole (14.7T), RD-3 is Racetrack Dipole, and HD-1 is High Field Dipole (16T)

LBL Cable # 522 IGC-Int. Tin

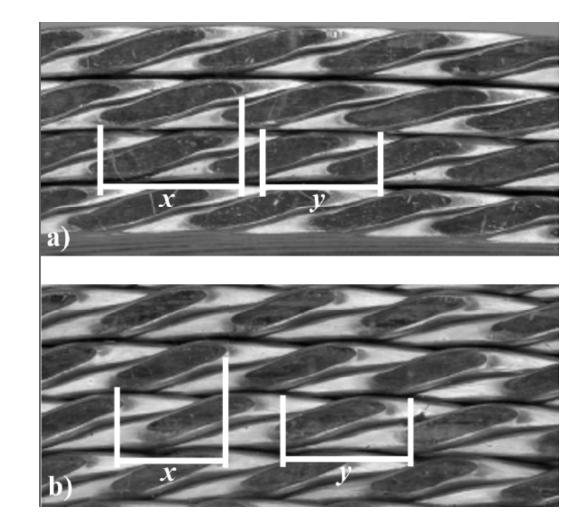
Technology Quad (TQ) – Cable Specifications & Production


• Spec

• Made

Parameters	Units	TQ Cable	Tolerance
Strands in cable	No.	27	NA
Strand diameter	mm	0.7	+/- 0.002
Width	mm	<u>10.077 max.</u>	+0.000, -0.100
Thickness	mm	1.26	+/- 0.010
Keystone angle	deg.	1.0	+/- 0.10

Cable No.	Billet No.	Strand Dia. (mm)	Thick. (mm)	Width (mm)	P.L. (mm)	K.A. (deg.)
928R	205, 206, & 208	0.703	1.264	10.056	78.0	1.05
933R	8220	0.703	1.267	10.042	78.7	1.09
939R	8220	0.703	1.262	9.993	80.5	1.04
940R	8647	0.704	1.264	10.026	80.5	0.98
946R	8781	0.705	1.266	10.062	79.5	1.00

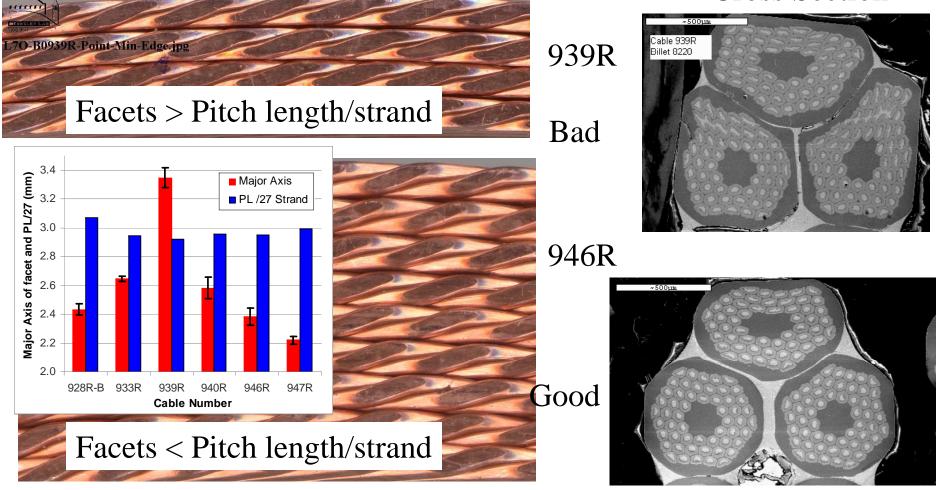


Facet size as online probe

Bad

 Facet length (x) should be less than Pitch Length/strand (y)
 Minor axis

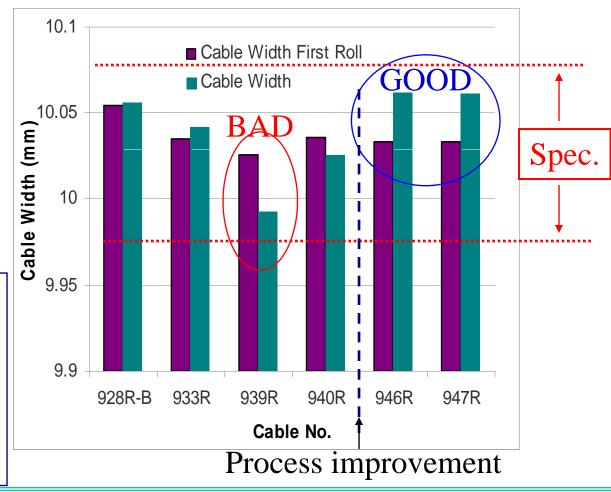
Good


May 21, 2008 WAMSDO, CERN

Thin edge of cables as online probe

Facets at cable edge

SEM Images of Cross Section


May 21, 2008 WAMSDO, CERN

TQ cable widths after re-rolling

- Do NOT re-roll cable to a smaller width Re-rolling after anneal is used to provide final shape
 - Fabrication (first rolling)
 - Anneal cable
 200C for 4-6 h
 - Re-roll (second rolling) final cable

After cable 940R the processing was changed From one set of rolls To 2 sets of rolls, One for the fabrication and one for re-rolling ~ 50 micrometer wider

Summary of Critical and Stability Currents for TQ Cables

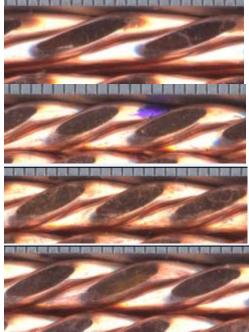
- All cables but 939R:
 - Reduced $J_c(12T, 4.2K)$ by about 0-3%
 - Reduced stability current (I_s) by ~10%
- Cable 939R (bad example with sheared sub-elements):
 - Reduced J_c (12T,4.2K) by about ~5% (Only)
 - Reduced stability current (I_s) by ~50% (RRR loss?)
- Concern Past Jc measurements on cables with edge damage has shown them to be more sensitive to transverse stress.

NED Cable Parameters

No. of Strands =	40		W	/idth > =	26.91	6999	
Strand DIA. =	1.25	Cable MID Thk. =		2.5	-uu-		
Pitch Angle =	16						
CALC Compacted Cable			Pitch I	ength =	181.398		
		PF @ Max Width =			0.7591		
			PF @	Min Width =	0.78539816		
Module: [B]		COMP	ACTED				
Module: [B]	INPUT B	COMP	_				
Module: [B] Cable Width Max. =	INPUT B 26.91	COMP	_		MIN.	MID	MAJ.
			_			MID	MAJ.
Cable Width Max. =	26.91		_	CABLE			MAJ. 2.37833

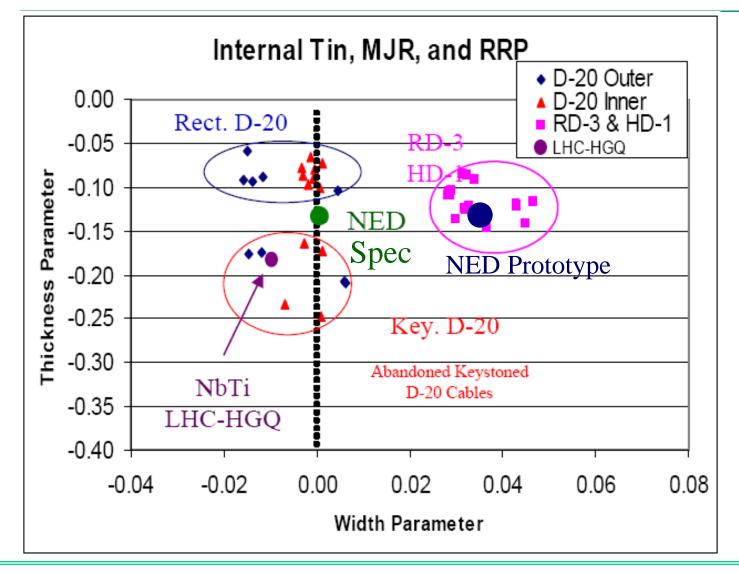
• LBNL Cable-CALC

- Should increase the width from 26 mm to 26.9 mm.
- Note: Removal of 1 strand is only 2.5% Ic reduction but provides significantly more width margin

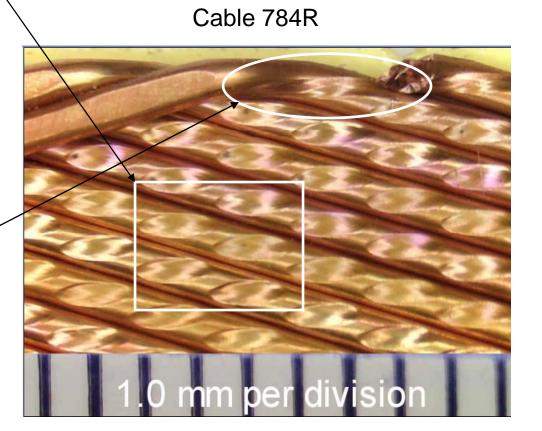


- LBNL cabling machine was pushed to its limits due to the:
 - Large strand diameter
 - High stiffness of the strand
- Higher tension on the strands should make the cabling process easier.
 - It should permit fabrication of cables with a lower pitch angle (~16°)
 - Plus reduce the gaps between strands

NED cable edge facet summary Four short prototype cable sections made

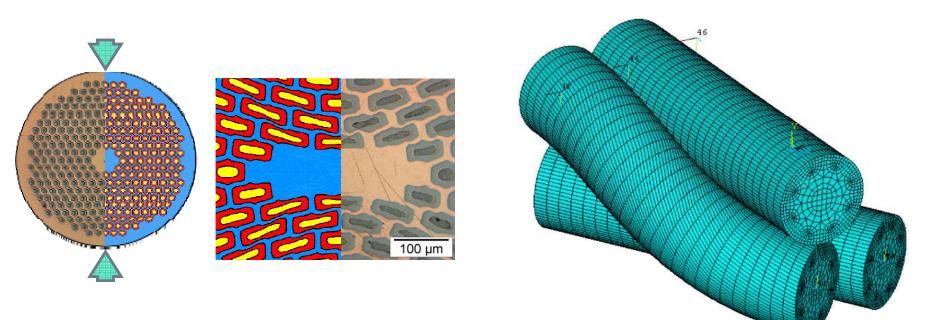

		<u>Iort prot</u>	$\mathbf{\overline{\mathbf{U}}}$	ype c		
	Facet Length mm	Pitch Length mm	Fac	et/Pitch		able Pitch ength mm
965-A-Min	4.26	4.76		0.89		190.7
965-A-Maj	4.11	4.83		0.85		193.1
965-C-Min	3.17	3.76		0.84		150.5
965-C-Maj	3.45	3.76		0.92		150.5
965-D-Min	3.34	3.74		0.89		149.6
965-D-Maj	3.65	3.79		0.96		151.5
-						
965-E-Min	3.33	3.75	1	0.89		150.1
965-E-Maj	3.57	3.77		0.95	7	150.9
					/	

- Facet/Pitch on the minor edge are similar
 - Section C has the smallest ratio
 - Section C has 4-8% Ic reduction (T. Boutboul, EUCAS-07)


NED spec and prototype

Strand deformation inside a cable

- Dimples at strand cross over points (box)
 - Deformation not uniform along a strand
 - Making cables thinner has shown no significant impact on performance
 - Perhaps cables can be made thinner
- Strand deformation as it goes from the top of cable to bottom (oval)
 - Limits cable performance
- Need 3D modeling to understand strand deformation at the cable edge


May 21, 2008 WAMSDO, CERN

Modeling 2D and 3D

2D Strand Modeling

3D Modeling of Strand

• S. Farinon, Presented at CHATS-AS 2006

Marco La China

- The facet size on the edge of the cable provides a direct measure of the amount of strand deformation.
 - Indicates the amount of sub-element distortion inside the strand.
- This work shows that a nearly damage-free mechanically-stable cable can be produced from:
 - MJR and RRP strands with reduction of only 0-3% J_c (12T,4.2K).
 - PIT strand with reduction of 4-8% Jc (12, 4.2K)
- Cabling damage (i.e. sheared sub-elements) had minimal effect on J_c but it has a <u>significant</u> impact on strand stability.
 - The stability current (Is) drops by ~50% in a strand with only a ~5% drop in Jc at 12T and 4.2K