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Abstract 
We summarize the equations that have been derived in 

the past three years to evaluate the short sample field, 
stresses and forces, and the magnetic energy in 
superconducting quadrupoles and dipoles. We present the 
equations, which are based on simplified sector coils and 
on empirical corrective factors. The agreement with 
realistic coil lay-outs and the validity limits of this 
approach are discussed. 

INTRODUCTION 
During the conceptual phase of design of an accelerator 

or of part of it, it can be useful to have equations 
providing the expected level of field, coil width, stress 
and stored energy in an accelerator magnet using a given 
technology. In this paper we summarize the results of 
several works that have been carried out along this 
direction in the past years [1-5]. With respect to previous 
works [6,7] we focus ourselves on a sector coil rather than 
on a cosθ or cos2θ lay-out.  

These equations are usually precise within 10% in a 
rather wide validity range, and can be used for a fast 
exploration of different solutions without the need of 
going for the complete magnet design. A relevant spin-off 
of these equations is also that they provide a benchmark 
for judging the efficiency of a coil design. 

In the first section we present the usual linear fit for the 
Nb-Ti critical surface, and a novel hyperbolic fit for the 
Nb3Sn that, contrary to the Summer law, allows to derive 
explicit equations for the short sample quantities. In the 
second section we derive the short sample field, gradient 
and current for dipoles and quadrupoles. We then give an 
estimate of the stress, and finally of the magnetic energy.  

CRITICAL SURFACES 
Nb-Ti critical surface is usually described by the Fitz-

Webb [8] fit 
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A linear fit 
( )Bbc(B)j csc, −= ,                          (2) 

corresponding to a pinning force parabolic in B, is 
accurate within a few percent in most of the range which 
is currently used in superconducting magnets (5 T to 9 T 
at 4.2 K, 6 T to 12 T at 1.9 K, see Fig. 1). Typical values 
of the fitting constants are b=10 T at 4.2 K, 13 T at 1.9 K, 
and c=6×108 A/(Tm2). The linear fit has the advantage of 
providing explicit solutions to the short sample field and 
current, which are given by the intersection of the 
loadline with the critical surface. 

Nb3Sn critical surface is usually described by the 
Kramer [9] fit 
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which corresponds to the Fietz-Webb fit with α=0.5 and 
β=2. An hyperbolic fit  
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works well (within a few percent) in the interesting region 
for superconducting accelerator magnets, namely in the 
range of 8-17 T. see Fig. 1. Typical values of the fitting 
constants for a high current density conductor carrying 
3000 A/mm2 at 4.2 K and 12 T are b=21 T at 4.2 K, 23 T 
at 1.9 K, and c=4×109 A/m2. The hyperbolic fit 
corresponds to a linear pinning force 

( )BbcBBj csc −=)(, .                       (5) 
Also in this case, the hyperbolic fit has the advantage of 
providing explicit solutions to the short sample values for 
current and fields. 
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Fig. 1 Critical surface of Nb-Ti and Nb3Sn according to 
Fitz-Webb and Kramer fit (markers) and linear and 
hyperbolic fits (solid lines). 
 

In the following we will use sector coil models, where 
the coil is made up of insulated cables; therefore we have 
to rely on the usual definition of engineering current 
density 
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⎟
⎠
⎞

⎜
⎝
⎛ −= 1)(

B
bcBjc κ ,                        (7) 

where the filling factor κ takes into account of the dilution 
of the superconductor present in the insulated coil. This is 
mainly given by the Cu/non-Cu ratio, plus the voids in the 
cable, and the contribution of the insulation. The factor κ 
ranges in between 0.25 to 0.35 in most of the cables used 
in accelerator magnets. 



COIL LAY-OUTS AND EQUIVALENT 
WIDTH 

Throughout the paper, all the equations will be derived 
for a lay-out based on a simple sector coil, in most cases 
of 60° angular width for a dipole (30° for a quadrupole). 
Indeed, the coil lay-outs feature several sectors and 
possibly several layers, with wedges to optimize field 
quality (see Fig. 2, left). In order to be able to apply our 
results to a generic coil made up of blocks and layers, we 
convert the total surface of the coil A to an equivalent 
width according to the equation 
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where r is the aperture radius. The equivalent coil width is 
the width of the coil assuming that all the cables would 
fill a 60° sector of radial width weq (30° for a quadrupole), 
see Fig. 2. All lengths are given in meters. 
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Fig. 2 Coil cross-section of the LHC dipole (one quarter, 
left side) and equivalent coil with the same area and inner 
radius (one quarter, right side). 

SHORT SAMPLE FIELD AND GRADIENT 

Dipoles 
According to the approach developed in [1], the short 

sample field in T for a Nb-Ti dipole is given by 
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where the constants values are γ0=6.63×10-7 Tm/A and 
a=0.04. The short sample current in A/m2 is given by 
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In the Nb3Sn case one has 
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where the values of the constant γ0 and a are the same as 
for Eq. (9), whereas b and c are the parameters of the 
Nb3Sn hyperbolic fit (4).  
The above equations rely on an empirical fit of the ratio λ 
between peak field and central field 

r
wa+=1λ ,                                (13) 

which has been derived for a sector coil. The fitting value 
a=0.04  implies that for a coil width equal to the aperture 
radius, the field in the coil is 4% larger than the central 
field. This estimate is valid for weq/r>0.15. For very thin 
coils or very large apertures, giving rise to a relevant 
difference between peak field in the coil and central field, 
the estimate is not applicable. 
The above estimates are valid for the coil without grading 
and without iron. Iron has the main effect of allowing to 
get the same field with a lower current density; this effect 
can be estimated according to the standard formulas [1]. 
Moreover, iron has some impact on the short sample field. 
This effect becomes small (a few percent) for weq/r>0.5. 
Graded coil mainly allow to reach the same field with less 
coil. They also allow a larger short sample; for accelerator 
magnets a gain of up to 5% has been obtained [1]. 

Quadrupoles 
According to the approach developed in [2], the short 

sample gradient for a Nb-Ti quadrupole is given by 
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(14) 
where the constants values are γ0=6.63×10-7 Tm/A as for 
the dipoles, and a-1=0.04 and a1=0.11. The short sample 
current in (A/m2) is given by 
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In the Nb3Sn case one has 

⎟⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜

⎝

⎛

−+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
++

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

∼

−

11

1log1

4
2

1log

011

0

cr
r

w
r

w
a

w
ra

br
w

c
G

eqeq

eq

eq

ss

κγ

γκ

    (16) 

⎟⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜

⎝

⎛

−+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
++

∼

−

11
1log1

4
2

011

0

cr
r

w
r

w
a

w
ra

bcj
eqeq

eq

ss

κγ

γκ                     

(17) 
where the values of the constant γ0 and a1, a-1 are the 
same as for Eq. (14), and b and c are the parameters of the 
Nb3Sn hyperbolic fit (4).  
The above equations rely on an empirical fit of the ratio λ 
between peak field and gradient times aperture 
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which has been derived for a sector coil. The fitting value 
a1=0.04 and  a-1=0.11 implies that for a coil width equal 
to the aperture radius, the field in the coil is 15% larger 
than the central field. As in the dipole case, the estimate is 
valid for weq/r>0.15. For very large coils weq/r>1 the 
sector coil estimate can be pessimist, i.e. one can find 
other lay-outs where λ does not diverge (see [2] for more 
details). 
The above equations neglect both iron and grading. 
Analysis of several lay-outs has shown that graded coils 
can give short sample gradient up to 10% larger than what 
given in (14) and (16). For the iron influence, one can 
apply the same considerations made for the dipoles.  

FORCES AND STRESSES 

Dipoles 
According to the approach developed in [3], the stress 

in the midplane for a dipole made up of a sector coil is 
estimated by 
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where the variable ρ spans over the coil midplane, i.e. 
from r to r+weq. The expression accounts for the usual 
part dependent on the square of the current, plus a 
geometric part which is the argument of the Max 
function. To get the stress in short sample conditions one 
has to substitute the expressions (10) for Nb-Ti and (12) 
for Nb3Sn. The equation is derived by keeping the first 
order terms of the expression for a 60° sector coil. In 
general, coil lay-outs with a relevant difference between 
the angular width of the first and the second layer feature 
a larger stress. The equation is derived for a coil without 
iron and without grading. 

Quadrupoles 
A similar method has been developed in [4], thus 

leading to the estimate of the forces in the midplane of a 
quadrupole 
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Also in this case, the variable ρ spans over the coil 
midplane, i.e. from r to r+weq, and the expression 
accounts for a part dependent on the square of the current 
and a geometric part. To get the stress in short sample 
conditions one has to substitute the expressions (14) for 
Nb-Ti and (16) for Nb3Sn. The same considerations given 
for the dipoles apply to the quadrupole case.  

MAGNETIC ENERGY 

Quadrupoles 
According to [5], the magnetic energy in a quadrupole 

of aperture radius r and equivalent coil width w, with a 
current density j is given by 
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    (21) 
This expression is independent of the conductor type, 
which only affects j. The current density at short sample 
can be computed using the estimates (12) or (14). The 
equation is derived for an ironless case with no grading. It 
is based on a Fourier analysis of the current density, 
keeping the first harmonics, i.e. the cos2θ component. For 
graded coils one can apply the corrective term 
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where g is the grading, i.e. the ratio between the current 
densities in the two layers, Ag is the area of the graded 
coil, A the total area of the coil, and d=1.16 is a fitting 
constant.  In presence of unsaturated iron, the energy is 
enhanced by the following factor 
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 (42) 
where t=weq/r, and ri is the iron radius. The equation (21) 
with the two corrective factors (22) and (23) allow 
estimating the magnetic energy (and the inductance) with 
a precision of the order of 10% (calculations done on a set 
of lay-outs found in the literature, see [7]). 

SUMMARY OF PARAMETERS AND 
CONSTANTS 

The set of equations given in the previous sections 
include constants and parameters. We give a summary of 
the notations to ease the reader in their implementation. 

Magnet parameters: aperture radius r, in meters. 
Coil parameters:  
• Area A: surface of the coil in m2. 
• Equivalent width weq, in meters, defined according 

to Eq. (8) as the width of the coil which has the 
same area A of a 60° (30° for quadrupoles) sector. 

• Graded area Ag: surface of the graded coil in m2 
(only for magnetic energy). 

• Iron radius ri. in meters (only for magnetic energy 
equations). 

Cable parameters:  
• Filling ratio κ. It is the fraction of non-Cu present 

in the area of the insulated coil. 
• Grading g: ratio between current density in the 

outer and in the inner layer (only for magnetic 
energy equations). 

Superconductor parameters: 
• c: is related to the slope of the critical surface, 

c=6×108 A/(Tm2) for the Nb-Ti and  c=4×109 A/m2 
for the Nb3Sn. Please note that units are different 
for the two materials. 



• b: extrapolation of the critical field, in T, according 
to the fit, b=10 or 13 T at 4.2 or 1.9 K for Nb-Ti, 
b=21 or 23 T at 4.2 or 1.9 K for Nb3Sn 

Constants: 
• γ0=6.63×10-7 Tm/A is a constant related to the field 

given by a sector coil through an integration of 
Biot-Savart equations 

• a, a-1, a1 are constants used for the empirical fitting 
of the ratio peak field/central field (or gradient 
times aperture for quadrupoles). For dipoles 
a=0.04, for quadrupoles a-1=0.04 and a1=0.11. 

• d=1.16 is a constant derived in the empirical fitting 
to take into account for the effect of grading in 
magnetic energy (only for magnetic energy 
equations). 

• μ0=4 π 10-7 is the permeability constant. 

CONCLUSION 
In this paper we summarized equations giving an 

estimate of the short sample current, field and gradient, 
midplane stress and magnetic energy in superconducting 
dipoles and quadrupoles. The equations are based on 
sector coils and make use of a semi-analytical approach. 
Empirical fittings are used in some case as well as 

corrective factors to include grading and iron. The 
validity limits are outlined.  

These equations can be used both for a fast exploration 
of the parameter space in the phase of a conceptual 
design, or for benchmarking realistic coil lay-outs based 
on Rutherford cables. 
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