
Development of Wind & React Bi-2212 Accelerator Magnet Technology

A. Godeke, D. Cheng, D.R. Dietderich, H. Felice, C.R. Hannaford, S.O. Prestemon, and G. Sabbi

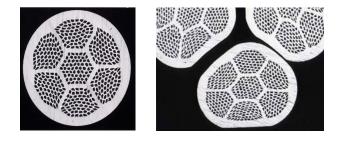
Lawrence Berkeley National Laboratory

WAMSDO Workshop CERN, May 19-23, 2008

LAWRENCE BERKELEY NATIONAL LABORATORY

Bi-2212 Program Motivation & Goals

HD1 & HD2 operate close to the limits of Nb₃Sn


<u>R&D plan to approach a 20 T dipole field:</u>

- Fine-tune Nb₃Sn performance to its full potential
- Introduce design features for high-field coil inserts
- Develop Bi-2212 W&R Technology:
- Cabling parameters and winding procedures
- Heat treatment of large thermal masses
- Optimization of HT (temperature, oxygen flow)
- Chemical compatibility (insulation, structure)

Progress to date:

- Established work plan and collaborations
- Investigated design and materials issues
- Fabrication/test of first HTS wind-and-react coils

Cable fabrication

Bi-2212 Coil Winding

Technology Challenges for Bi-2212

	1			
Material	NbTi	Nb ₃ Sn	Bi-2212	
Dipole Limit	10-11 T	16-17 T	Stress limited	
Reaction	Ductile	~675ºC in Air/Vacuum	~890°C in O ₂ (±2°C)	
Wire axial compression	N/A	Reversible	Irreversible?	
Cable transverse stress	N/A	< 200 MPa	60 MPa?	
Insulation	Polymide	S/E Glass	Ceramic	
Construction	G-10, stainless	Bronze, Stainless	Super alloy	
Quench propagation	>20m/s	~20 m/s	0.1 m/s?	

R&D Issues and Plans

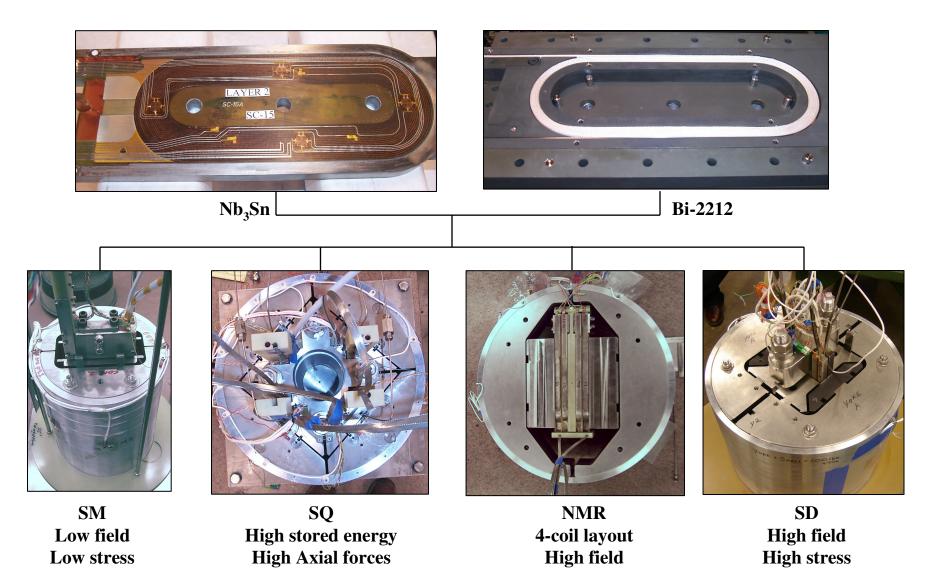
Material studies:

- Support vendors on conductor/material development
- Investigate insulations, coil and structural materials
- Rutherford cable fabrication, characterization, and testing

Coil technology development:

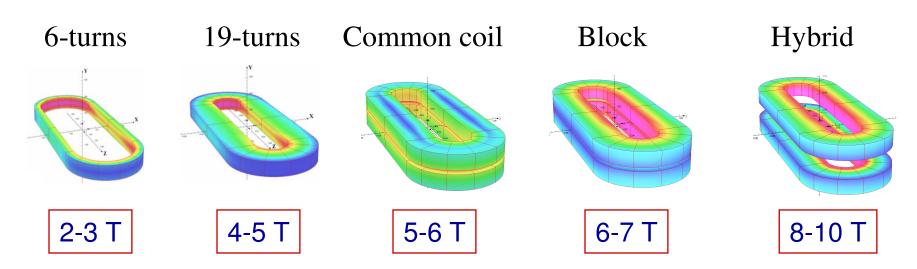
- Fabrication procedures and tooling
- Heat treatment optimization
- Coil instrumentation

Mechanical and magnetic performance:


• Investigate various field / force conditions

Quench protection:

- Quench detection and propagation
- Protection analysis and system design



Sub-scale Coils and Structures

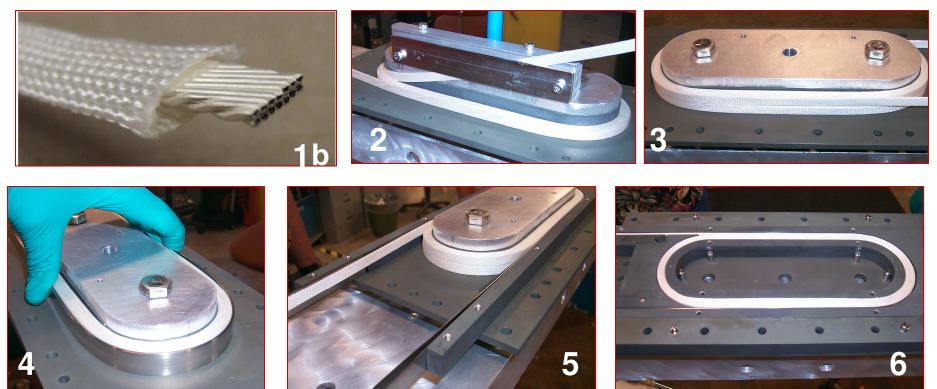
Test Configurations

WIND-AND-REACT BI-2212 SUBSCALE COIL TEST CONFIGURATIONS

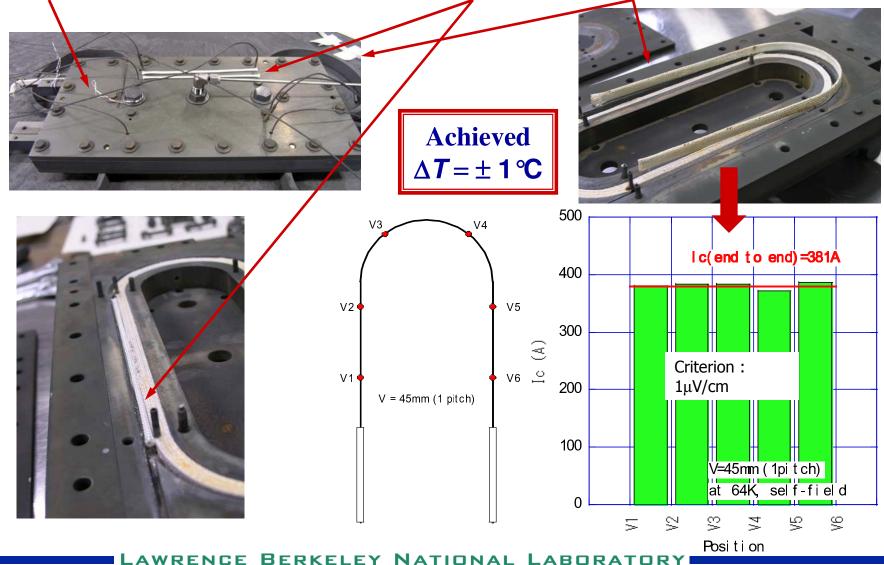
Layout	Turns	$\mu_0 H$ [T]	I_{ss} [A]	<i>L</i> [mH]	P_x [MPa]	P_y [MPa]	P_z [MPa]
Bi-2212 stand alone	2 imes 6	2.6	6213	0.036	1.1	0	1.9
Bi-2212 stand alone	2 imes 19	4.9	5179	0.25	9.7	0	9.4
Bi-2212 common coil ^a	2 imes 19	5.8	4948	0.28	27	7.5	15
Bi–2212 dipole ^a	2 imes 19	6.6	4777	1.2	1.6	14	3.2
$1 \times$ Bi–2212 / $2 \times$ Nb ₃ Sn hybrid dipole ^{ab}	2×19 (Bi-2212)	8.5	4595	2.4	34	0	20
	$2 \times 20 \; (\times 2 \; \text{Nb}_3\text{Sn})$						
$1 \times$ Bi–2212 / $2 \times$ Nb ₃ Sn hybrid dipole ^{ac}	2×19 (Bi-2212)	9.9	4486 (Bi-2212)				
	$2 \times 20 \; (\times 2 \; \text{Nb}_3\text{Sn})$		6112 (Nb ₃ Sn)				

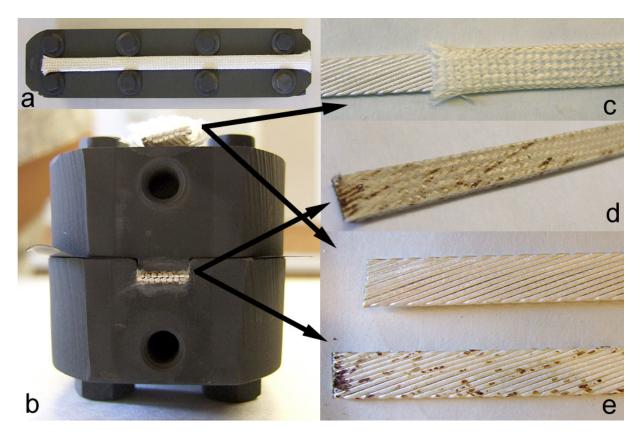
^a With an iron insert inside the Bi-2212 subscale island

^b Bi-2212 and Nb₃Sn in series connected and Bi-2212 limited

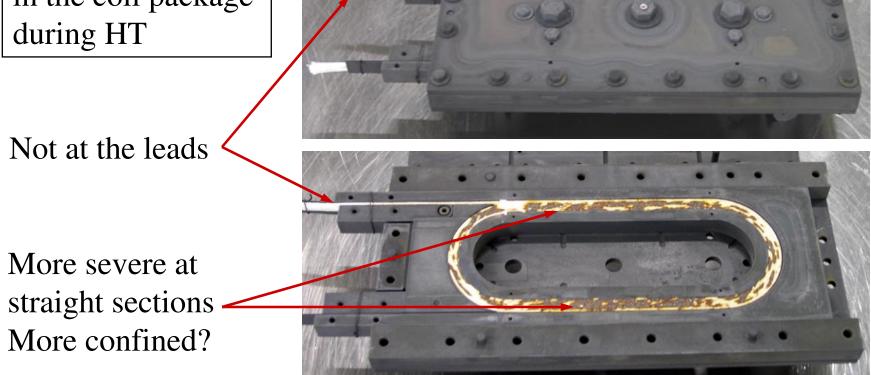

c Bi-2212 and Nb₃Sn driven independently

Sub-scale Coil Manufacture


- Remove sizing on alumina-silica sleeve
- Fabricate and insulate cable
- Wind coil on INCONEL alloy 600 island
- Enclose with Alloy 600 heat treatment package
- Ship to wire manufacturer for heat treatment



Dummy coil, and dummy coil with wires and cable sections



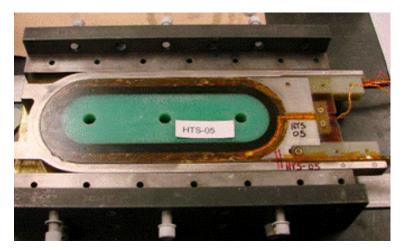
Load structure to simulate winding pack with single cable

Clear difference found between free and confined condition Note: no gas flow is provided by the clamping fixture

Leakage is *absent* in HT optimizations and insulated free wires and cables OST wire (SC-04) exhibited less leakage, but HT cycle needs verification

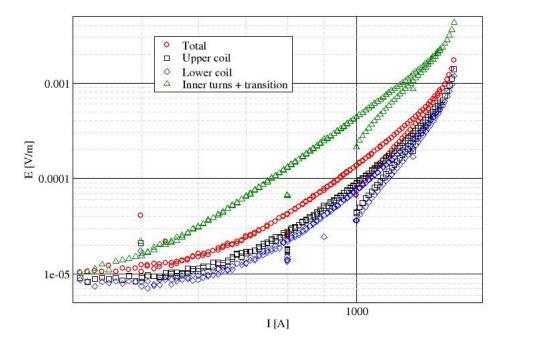
Origin of Bi-2212 Leakage

- Non-confined wires and cables exhibit no leakage
- Confined winding pack exhibits leakage candidate causes:
 —Mechanical
 - Cable expansion during heat treatment
 - Ag-alloy expansion larger than INCONEL alloy 600
 - Both are presently not accounted for
 - —Oxygen environment in package (too little lowers melt T)
 - Remaining sizing \rightarrow Oxygen depletion through burn-off
 - 0.4 gram sizing on 7 m insulated cable
 - Organic sizing: assume 50% H and 50% C plus O2 → H2O&CO2
 - Requires about 1.2 gram O2 \rightarrow 2 L/h (1 atm, 300K)
 - No remaining sizing \rightarrow insufficient O2 flow
 - -Chemical compatibility: ok in unconstrained state; need further verification in confined state where components are in closer contact
 - —Other?


HTS Sub-scale Coil Series

Coil ID	Cable	Insulation	Sizing	Confinement
HTS-SC01	Ag dummy SCC	Pure SiO ₂	Present	Full
HTS-SC02	Ag dummy OST	Pure SiO ₂	Present	Full
HTS-SC03	Untwisted SCC	Al ₂ O ₃ /SiO ₂	Present	Full
HTS-SC04	Untwisted OST	Al ₂ O ₃ /SiO ₂	Present	Full
HTS-SC05	Twisted SCC	Al ₂ O ₃ /SiO ₂	600°C/1hr	Full
HTS-SC07	Twisted SCC	Al ₂ O ₃ /SiO ₂	825°C/4hr	Low (X&Y)
HTS-SC09	Twisted SCC	Al ₂ O ₃ /SiO ₂	825°C/4hr	Low (X)
HTS-SC11	Twisted SCC	AI_2O_3/SiO_2	825°C/4hr	Low (Y)

Sub-scale Coil Testing


- Significant leakage observed in coils
- Coils are nevertheless not shorted
- Proceed to testing and further analysis
- Develop capabilities (V-taps, leads)
- Vacuum impregnation of coil
- Test coil at 4.2K

- Testing performed in short-sample test facility
- Simpler, faster setup than main magnet test facility
- 200MHz data acquisition for (short) window about trigger signal
- Triggered by quench detection signal
- Quench detection via differential voltage across coil "halves"
- Allows good signal to noise (eliminates PS fluctuations)
- Quench signal shuts down power supply; no additional protection

First Coil Test Results (HTS-05)

Clean, reproducible and reversible V-I transition
Low N-value (~6)
Thermal "runaway" occurs slowly - no actual quench generated

- Transition occurs at much lower current than witness sample suggested
- $I_c \sim 800$ A, expecting several kA
- Comparison based on 65K witness sample test results scaled to 4.2K
- No leakage observed on witness sample
- Next steps: test of coil #4 (OST) and #7-9-11 (SCC)

Acknowledgement

The Applied Superconductivity Center Mational High Magnetic Field Laboratory Fiolida State University

- Bi-2212 wire design and fabrication
- Definition of the R&D plan
- Heat Treatment optimization (coil #1)
- Heat treatment of coil #3, #5, #7, #9, #11
- Strand and cable Ic measurements
- Chemical compatibility studies
- Investigations of the causes of leakage
- Bi-2212 wire design and fabrication
- Heat Treatment optimization (coil #2)
- Heat treatment of coil #4
- Chemical compatibility studies
- Heat treatment cycle optimization
- Conductor and materials studies
- Chemical compatibility studies

Cable optimization and fabrication using both OST and Showa strands

- Builds on LBNL experience from production of Showa SMES cable
- 8 subscale coils manufactured using different conductor and confinement
- Short sample HT tests also performed simulating coil environment Investigated and selected insulation (Al2O3/SiO2, 80 µm thickness)
 - Chemically compatible if not confined in Inconel package

Coils exhibit leakage

- Due to confinement? Mechanical and/or Oxygen related?
- Chemical might also still be an issue inside a package
- Based on experience so far, we think leakage problem is solvable

Coil testing setup operational, first test on HTS coil performed Reduced Jc performance when compared to measured witness samples \Rightarrow leakage likely contributor

Can protect small coils – noise level low, stored energy small