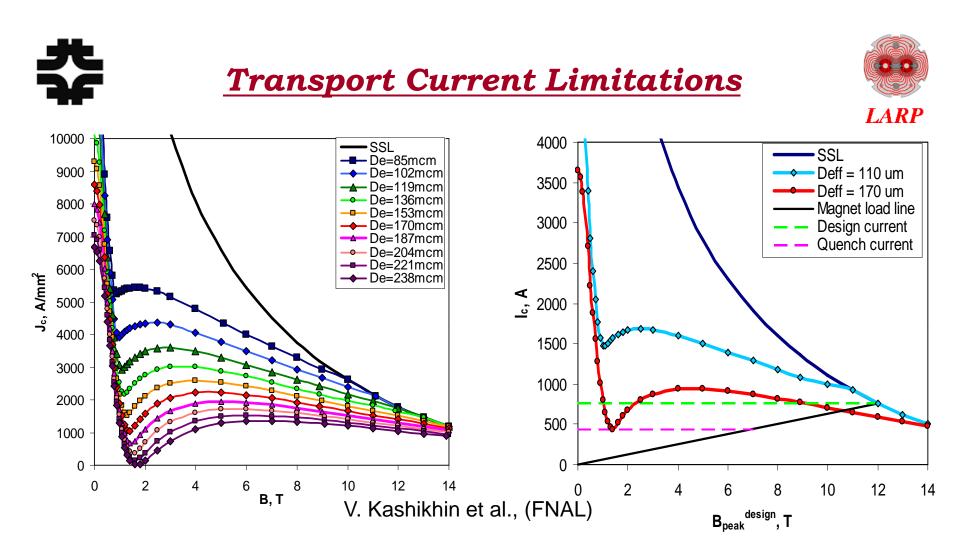
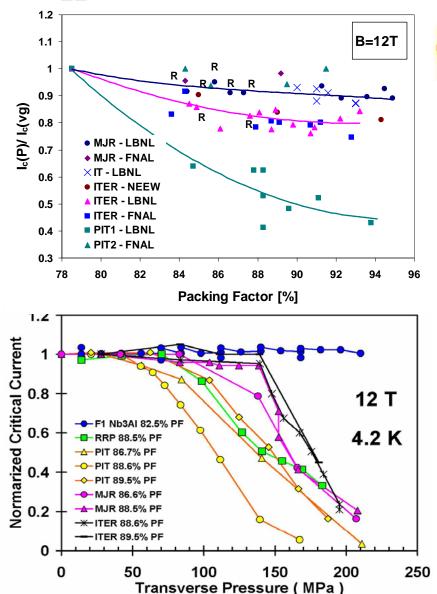

Nb3Sn Accelerator Magnet and Superconductor R&D at Fermilab


Alexander Zlobin Fermilab

Introduction

- Nb3Sn accelerator magnets at Fermilab since 1998.
- Strategic goal technology for a new generation accelerator magnets with operation fields >10 T, large temperature margin and efficient coils for different applications.
- Short term goal new IR quadrupoles for the planned LHC luminosity upgrades.
- Unique infrastructure for magnet and material R&D at Fermilab.
- * Main R&D directions
 - o Strands and cable
 - o **Coils**
 - o Mechanical structures
 - o~ Performance and reproducibility demonstration
 - o Technology scale up
 - o Long-term performance and operation margins


- For strands with large Deff and high Jc (~Jc·Deff) the maximum transport current at low B can be smaller than at high B
- Effect on magnet performance => limit operation field range See also M. Sumption and B. Bordini (WAMSDO'2008).

WAMSDO2008, May 19-23, 2008Nb3Sn Accelerator Magnet and Superconductor R&D at FermilabA. Zlobin4

Nb3Sn Rutherford Cable

PIT, MJR and RRP cables were developed and studied

Issues:

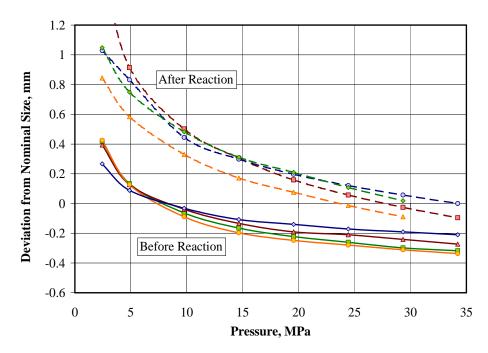
- Sub-element deformation, breakage and merging =>local increase of Deff, Ic and RRR degradation
- Strand sintering during reacting=>low non-uniform interstrand contact resistance
- High sensitivity to transverse

See also A. Godeke et al. and T. Collings (WAMSDO'2008).

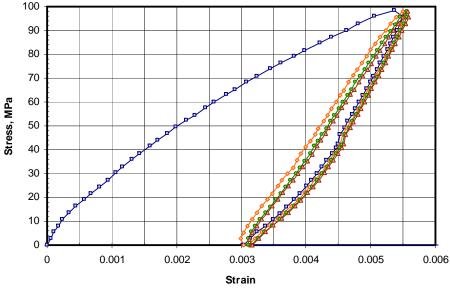
Nb3Sn Coil Technology

- Nb3Sn is brittle material
- Coil fabrication technology
 - o W&R method
 - o high-temperature insulations
 - o metallic coil components
 - coil winding and curing with ceramic binder
 - horizontal coil vacuum impregnation with epoxy

* 1-m long coil production


- o 20 dipole coils (FNAL)
- 29 quadrupole coils (LARP: FNAL+LBNL)
- o good size reproducibility
- fabrication time comparable with NbTi technology

Coil handling and transportation


Nb3Sn Coil Properties

Conductor expansion during reaction

- * coil longitudinal extrusion
- * controlled azimuthal gap to minimize elongation

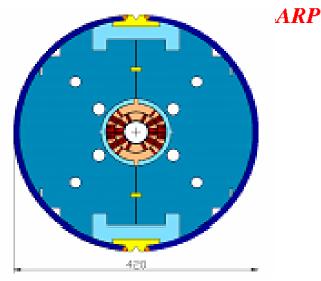
Coil plasticity

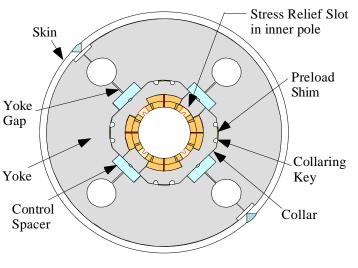
- * coil size measurement at low pressure
- * new approach to coil prestress based on plastic model

WAMSDO2008, May 19-23, 2008Nb3Sn Accelerator Magnet and Superconductor R&D at FermilabA. Zlobin7

<u>Mechanical Structures</u>

***** Two structures


- Spacer/yoke with Al clamps /12-mm
 SS shell structure dipole
- SS collar/yoke/12 mm SS shell structure - quadrupole


Issues

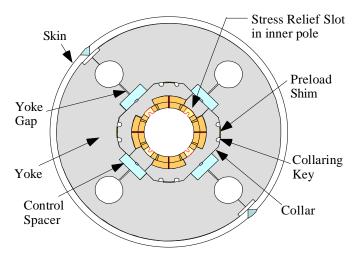
- safe coil pre-stress up to high stress (~150 MPa)
- o radial and axial coil support
- o precise geometry and alignment

Specific issues

- o dipole structure coil bending during
 horizontal preload
- Quadrupole structure partial coil compression during collaring, collaryoke interference

Short Model Parameters

Nb₃Sn dipole models (HFDA):


- o High-J_c 1-mm Nb₃Sn strand
- o 27-28 strand cable
- o 2-layer coil
- o 43.5-mm diameter bore
- Maximum field ~11 T at 4.5 K

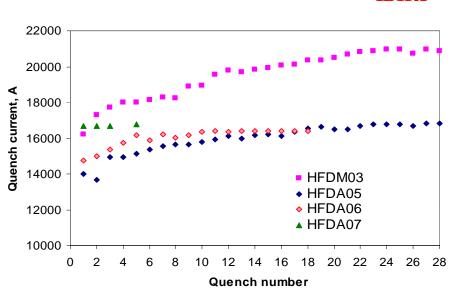

Magnetic mirror (HFDM):

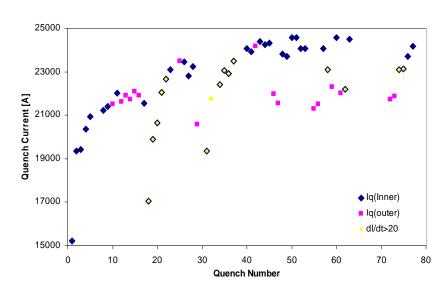
- o Same mechanical structure
- o Advanced instrumentation
- o Shorter turnaround time
- o Lower cost

LARP Technology quadrupole (TQC):

- o High-J_c 0.7-mm Nb₃Sn strand
- o 27 strand cable
- o 2-layer coil
- o 90-mm diameter bore
- o Gmax~230/250 T/m at 4.5/1.9 K
- o Bmax~12-13 T
- Structure comparison
 - o Similar forces and size

WAMSDO2008, May 19-23, 2008Nb3Sn Accelerator Magnet and Superconductor R&D at FermilabA. Zlobin

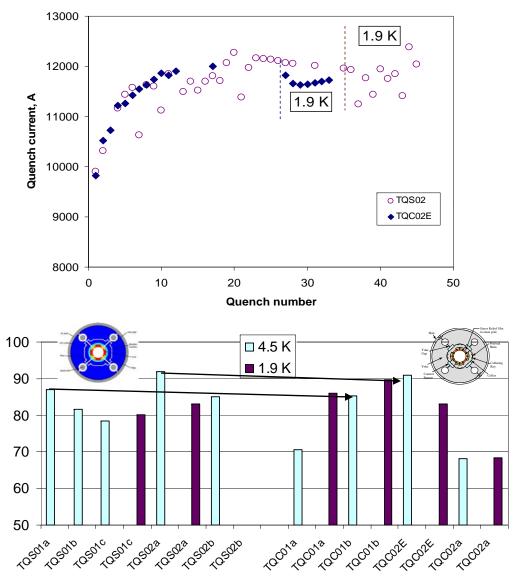



Dipole Model Quench Performance

6 1-m long dipole and 6 mirror models were fabricated and tested

- Models with 1-mm MJR-54/61 strand => flux jump limitations.
- Models with 1-mm PIT-196 strand reached 9.4 T @4.5K and ~10.2 T @2.2K (100% of PIT strand SSL with transverse pressure correction)
 - o Coil re-assembly, training memory
- Dipole mirror model with 1-mm RRP 108/127 strand, reached ~11.4 T at 4.5 K (97% of SSL)
 - o Some instabilities at ~21kA
- Robust mechanical structure
- General features
 - **o** Training starts at ~80% of SSL
 - o Quite long training

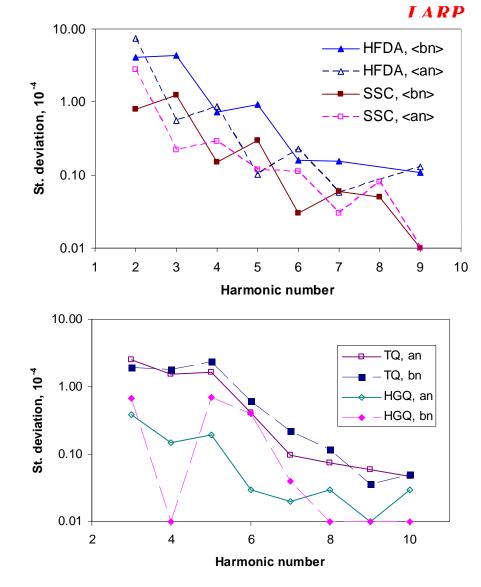
TQC Quench Performance



* 4 TQC models

- o MJR 54/61 low Jc strand
- o RRP 54/61 high-Jc strand

Performance


- o Gmax~200 T/m
 - MJR models at 1.9 K
 - RRP models at 4.5 K
- Quite long training (similar to dipole models)
- * TQC and TQS comparison:
 - ~10% or higher degradation at 4.5K
 - flux jumps in models made of high-Jc RRP strands
 - Same fraction of SSL in case of coil exchange (!)
- Sound mechanical structure
- Possibility of Nb3Sn coil collaring was demonstrated

<u>Field Quality</u>

- 6 HFDA models vs. first 6
 40-mm SSC dipole models
- * 4 Nb3Sn TQ (TQC and TQS) models vs. NbTi HGQ models.
- Geometrical harmonics are still larger in Nb3Sn models <= new technology</p>
- The geometry and alignment of Nb3Sn magnets need to be improved

12

60

40

20

0

-20

-40

-60

-80

0

HFDA02 HFDA03

HFDA04

HFDA05

HFDA06
 HFDA07

20

30

40

Current ramp rate, A/s

10

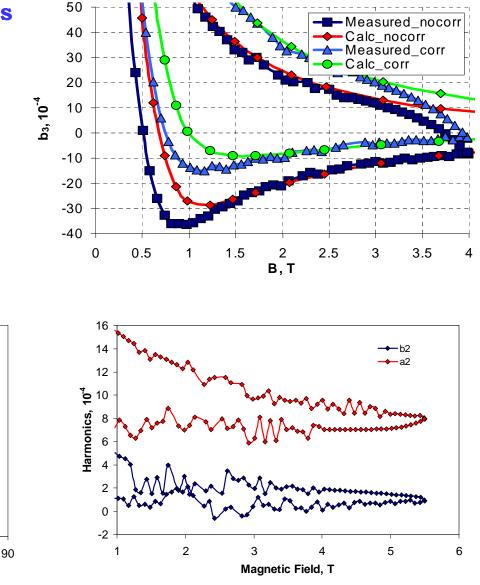
Δb₃, 10⁻⁴

Coil Magnetization Effects

The persistent current effect is Iarge but reproducible

Cored cable

50


60

70

80

- Smaller Deff and/or passive correction
- flux jumps in low order
 harmonics in dipole models
 => smaller Deff
- Large value and variations of the eddy current components

=> Ra control with a SS core

22000 20000 18000 16000

~90% of SSL at 4.5 K

Long coils

- o survived the fabrication process
- o expected quench performance

Nb3Sn Technology Scale Up

11

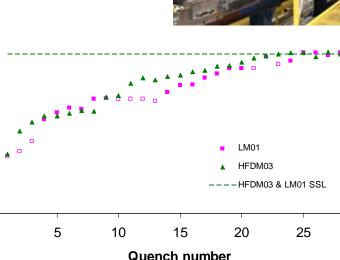
10 F

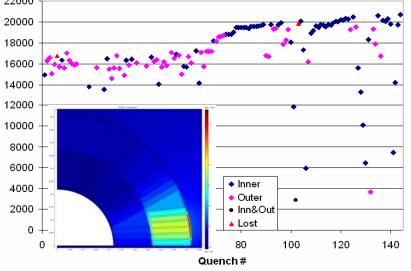
9

8

7

0


Maximum field,

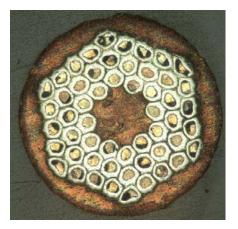

Ð

Goals:

- o Long coil fabrication, handling, magnet assembly and testing
- o Infrastructure for LARP and future LHC upgrade project
- ✤ 2-m long PIT cos-theta coil (June) 2007)
 - o 1-m and 2-m long PIT mirror models reached their SSL
- ✤ 4-m long RRP-108/127 cos-theta coil (December 2007-January 2008)
 - o Flux jumps at I~16kA in outer layer (suppressed with heater)
 - o training was not finished, Imax

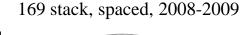
14

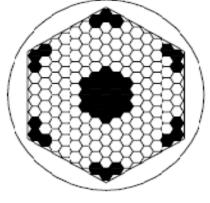
30


Goal - more stable high-Jc Nb3Sn strand to improve magnet quench performance and field quality

Directions:

- Increase sub-element number without losing Jc, RRR
 - o stability
- Sub-element number and layout optimization
 - o reduce SE deformation and damage
 - o increase Cu/nonCu ratio

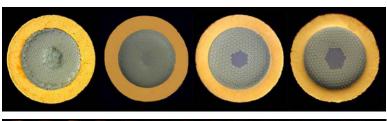


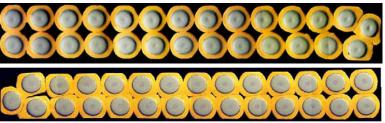

127 stack, 2005-2006

127 stack, spaced, 2007

WAMSDO2008, May 19-23, 2008

Nb3Sn Accelerator Magnet and Superconductor R&D at FermilabA. Zlobin15


Nb3Al Strand and Cable (with NIMS)



LARP

- Conductor for high-field/high stress magnets
- Progress in Japan with Nb3Al strand technology (NIMS)
 - o Four strand generations F1-F4
 - o Copper stabilizer electroplating
- Cable development and test (FNAL)
 - $o\;$ Low and high compaction cables
 - $\rm o~$ No Ic degradation up to 230 MPa
- * Racetrack coils
 - o SR-04 (F1) tested in 2006
 - o SR-05 (F3) not tested
 - o SR-06 (F4) test in June 2008
- Next steps
 - o Japan-US-CERN collaboration

see K. Sasaki et al., (WAMSDO'2008)

Sood progress in Nb3Sn accelerator magnet R&D

- o robust coil W&R technology
- o robust mechanical structures
- The possibilities and present limitations of quench performance and accelerator field quality in Nb₃Sn dipoles and quadrupoles were demonstrated
 - o performance improvement is possible
 - o model magnet R&D need to continue
- * The first results of Nb3Sn accelerator magnet technology scale up are quite encouraging
 - o more work ahead
- The optimization and use of more stable high-Jc RRP strand is critical for magnet performance improvement
- Long-term performance and operation margins have yet to be demonstrated