
Best Practices

Joaquim Rocha | joaquim.rocha@cern.ch

IT-DSS-TD

January 24, 2014

About yours truly

Contributor to/Author of many Open Source projects
Member of the GNOME Foundation
Former member of Igalia and Red Hat
Currently at the Data Storage Services group at CERN
http://www.joaquimrocha.com

Joaquim Rocha Git: Best Practices

“I’m an egotistical bastard, so I name all my projects after
myself. First Linux, now git"

Linus Torvalds

What’s git

Distributed Version Control System (DVCS)

Initially written in C by Linus Torvalds

Replacement for BitKeeper in Linux kernel development

Widely used nowadays, both for new and old projects

Joaquim Rocha Git: Best Practices

What’s git

It’s the sandbox

Joaquim Rocha Git: Best Practices

Holds the new changes to be committed

Joaquim Rocha Git: Best Practices

Points to the current commit

Joaquim Rocha Git: Best Practices

Working Tree with Changes

Joaquim Rocha Git: Best Practices

Joaquim Rocha Git: Best Practices

Index with Changes

Joaquim Rocha Git: Best Practices

Typical beginners’ workflow with git:

1 git clone URL or git init .

2 Do stuff...
3 git add --all or git add FILE

4 git commit -m “Update" [or another bad description]
5 git push

Joaquim Rocha Git: Best Practices

Best Practices

Adding Files

Joaquim Rocha Git: Best Practices

Adding Files

Do NOT:
git add *

git add .

git add --all

git add -u .
... and unless you’re adding a new (unknown to index) file:
git add FILE_PATH

Joaquim Rocha Git: Best Practices

Adding Files

Please Do:

git add --patch

Joaquim Rocha Git: Best Practices

Adding Files

git add --patch or git add -p

asks you which chunks of code should be added and how!
means you review your code before adding it!
helps you create atomic commits!

Joaquim Rocha Git: Best Practices

Adding Files: Example

[...]

if (delegateAuthLibPath)
loadDelegateAuthLib(delegateAuthLibPath);

+
+ fprintf(stderr, "WHY THE HELL DOESN’T THIS WORK!!");
}

AuthChangeFsUid::~AuthChangeFsUid()
Stage this hunk \[y,n,q,a,d,/,j,J,g,e,?\]?

Joaquim Rocha Git: Best Practices

Committing

Joaquim Rocha Git: Best Practices

Committing

Do atomic commits!
Write useful, descriptive commit messages!
Don’t be afraid of committing (you’ll see why later)!

Joaquim Rocha Git: Best Practices

Atomic Commits

Sherlock was investigating why the new version
of his team’s software didn’t work...

Atomic Commits

He quickly looked at his favorite git UI (which uses git log
--oneline log) for clues...

1d60cd2 Update for 1.5.0
817ee03 Innocent stuff...
8341828 Innocent stuff #1...
afee627 Innocent stuff #2...
d4c29b7 Innocent stuff #3...
c3bdb6d Innocent stuff #4...
a3e8c35 Innocent stuff #5...
fd9f14b Innocent stuff #6...
da8a2cf Innocent stuff #7...
c2debc0 Innocent stuff #8...
283293c Innocent stuff #9...
...

Joaquim Rocha Git: Best Practices

Atomic Commits

Not finding anything suspicious in the log, Sherlock starts a
bisect in order to find the problem!

With all the compiling and testing, he spends hours in the bisect
before finding the culprit:

1d60cd2 Update for 1.5.0

Joaquim Rocha Git: Best Practices

Atomic Commits

Sherlock finds out the commit has more to it than meets the
eye...

commit 1d60cd23c6597f1d11288644691b582bd531e704
Author: Moriarty <moriarty.indeed@evil-r-us.co.uk>
Date: Thu Jun 6 18:06:06 2013 +0100

Update for 1.5.0

Evil stuff because I can!
More evil stuff because I can!
...

Joaquim Rocha Git: Best Practices

Always write atomic
commits!

Write useful commit
messages

Joaquim Rocha Git: Best Practices

Write useful commit messages

A good commit message:

Imperative tense summary, <= 50 chars

When necessary, more details can come here, until 72 chars
each line.
A reference to a bug tracker issue can be added as well:

http://bugtracker.earth/issue/1985

Joaquim Rocha Git: Best Practices

Write useful commit messages

Bad
fixes a crash

Awful
fix

Good
Fix crash when performing update

The issue was being caused when the Updater was called
and a network connection that had been used before
is no longer available.

https://sherlocksbugtracker.co.uk/issue/1985

Joaquim Rocha Git: Best Practices

Know How to Use
References

Joaquim Rocha Git: Best Practices

Know How to Use References

Specific References:

The current commit: HEAD
A hash from some commit, e.g.:
d3a7c852d2c789f791b11091894cc71387e562e9
Also works with just a prefix: d3a7c85
A branch, e.g.: master, newfeature
A tag, e.g.: release0.9

Joaquim Rocha Git: Best Practices

Know How to Use References

Relative References:

Referring to previous commits:

Commit 1 position before: ref~1 or ref^
Commit 5 position before: ref~5 or ref^^^^^
E.g. a branch’s parent commit: newfeature^

Referring to different parents:

1st parent of a commit: ref^1
2nd parent of a commit: ref^2
Nth parent of a commit: ref^N

Joaquim Rocha Git: Best Practices

Use git bisect to track
issues

Joaquim Rocha Git: Best Practices

Use git bisect to track issues

git bisect helps finding a commit that introduced a bug by
making a binary search

$ git bisect start
$ git bisect bad
$ git bisect good HEAD~10
... [check until finding the culprit]
$ git bisect reset
... [fix it]

Joaquim Rocha Git: Best Practices

git reset

Joaquim Rocha Git: Best Practices

git reset

Want to undo adding a file (after git add FILE_PATH)?

git reset FILE_PATH

The file is now in the Working Tree (only) again
Index moved back

Joaquim Rocha Git: Best Practices

git reset

Want to undo the previous commit?

git reset HEADˆ

The changes are now only in the Working Tree (you have
to add them again before committing)
HEAD and Index moved back one step

Joaquim Rocha Git: Best Practices

git reset

Want to undo the previous commit but keep it ready to commit?

git reset -soft HEADˆ

The changes are now in the Index (ready to be committed)
HEAD moved back one step

Joaquim Rocha Git: Best Practices

git reset

Want to delete the previous commit?

git reset -hard HEADˆ

It’s as if the previous commit didn’t happen
HEAD, Index and Working Tree move back one step

Joaquim Rocha Git: Best Practices

git reflog

Joaquim Rocha Git: Best Practices

git reflog

Sometimes things don’t go as expected! E.g.:

...
$ git commit -m "Very important commit"
...
$ git reset --hard HEAD^
$ git log --oneline
e897f7f Other things...
61be62b Other things #1...
...
$ NOOOOOOOOOOOOO
bash: NOOOOOOOOOOOOO: command not found...

Joaquim Rocha Git: Best Practices

git reflog

Luckily, git reflog comes to rescue!

$ git reflog
e897f7f HEAD@{0}: reset: moving to HEAD^
ca33ef2 HEAD@{1}: commit: Very important commit
e897f7f HEAD@{2}: checkout: moving from master
to importantfeature
...

$ git rebase ca33ef2
$ git log --oneline
ca33ef2 Very important commit
e897f7f Other things...
61be62b Other things #1...
...

Joaquim Rocha Git: Best Practices

Branches

Joaquim Rocha Git: Best Practices

Branches

A branch is simply a pointer to a commit!
(unlike other VCS which copied directories...)

Joaquim Rocha Git: Best Practices

Branches

Create a new branch:
git branch <new-branch> [<start-point>]

Delete a branch:
git branch -d|-D <branch>

Rename a branch:
git branch -m <old-name> <new-name>

List branches:
git branch [-r|-a]

Move into (checkout) a branch:
git checkout <branch>

Create a branch and check it out:
git checkout -b <branch>

Joaquim Rocha Git: Best Practices

Rebase a branch

Joaquim Rocha Git: Best Practices

Merge two branches

Joaquim Rocha Git: Best Practices

Branches

Pro tip:

Use one branch per feature/bug (contained development)
Only merge with master after you’re done
Remember to rebase your feature branch before merging it
to master
Specify the origin and branch when pushing (might avoid
mistakes)
A good use of branches should prevent the need of git
cherry-pick

Joaquim Rocha Git: Best Practices

Branches

Proposed workflow:

... [we’re on master]
$ git checkout -b newfeature
... [make changes]
$ git commit -m "New feature"
$ git rebase master
$ git checkout master
$ git merge newfeature
$ git push origin master

If push fails:

$ git pull --rebase

Joaquim Rocha Git: Best Practices

Working with Remote Branches

List remote branches:

$ git branch -r
remotes/origin/HEAD -> origin/master
remotes/origin/master
remotes/origin/newfeature
remotes/origin/newfeature2
remotes/origin/newfeature3

Joaquim Rocha Git: Best Practices

Branches

Push a branch to origin:

$ git checkout newfeature
$ git push origin newfeature

Joaquim Rocha Git: Best Practices

Branches

Delete a remote branch in origin:

$ git push origin :newfeature

Joaquim Rocha Git: Best Practices

Branches

Replace a remote branch in origin:

$ git push origin +otherfeature:newfeature

It’s not advisable to replace branches you share with other
people (it “breaks” other people’s branch)

Joaquim Rocha Git: Best Practices

git rebase --interactive

Joaquim Rocha Git: Best Practices

git rebase --interactive

git rebase --interactive is a great tool that allows to:

Meld commits together
Remove commits
Edit commits (it stops the rebase and allows to amend a
commit)
Reorder commits

Joaquim Rocha Git: Best Practices

git rebase --interactive

$ git rebase -i HEAD~5

pick d3a7c85 New changes
pick b538761 Other changes
pick 61be62b Some nice new changes
pick e897f7f Update for release 0.9.2
pick ca33ef2 Commit that should have been in the release

Rebase 8d9b5a1..ca33ef2 onto 8d9b5a1
#
Commands:
p, pick = use commit
r, reword = use commit, but edit the commit message
e, edit = use commit, but stop for amending
s, squash = use commit, but meld into previous commit

Joaquim Rocha Git: Best Practices

git rebase --interactive

pick d3a7c85 New changes
squash b538761 Other changes
pick 61be62b Some nice new changes
pick ca33ef2 Commit that should have been in the release
pick e897f7f Update for release 0.9.2

Rebase 8d9b5a1..ca33ef2 onto 8d9b5a1
#
Commands:
p, pick = use commit
r, reword = use commit, but edit the commit message
e, edit = use commit, but stop for amending
s, squash = use commit, but meld into previous commit

Joaquim Rocha Git: Best Practices

Name your stash

Joaquim Rocha Git: Best Practices

Name your stash

git stash is great for storing changes away temporarily

Use git stash save “Description of changes"
so it’s easy to keep track of what’s what!

Joaquim Rocha Git: Best Practices

Use repos for different
modules

Joaquim Rocha Git: Best Practices

Use repos for different modules

Sometimes modules shouldn’t be in the same repo

A base + plugins project should live in different repos
e.g.: GStreamer

Joaquim Rocha Git: Best Practices

Do NOT add every single
file

Joaquim Rocha Git: Best Practices

Do NOT add every single file

Binary files, distro packages (rpms, debs) and other
auto-generated files should not be included in the repo!
Upload them somewhere else, a repo should be for source
code.

Joaquim Rocha Git: Best Practices

Don’t break others’ repos

Joaquim Rocha Git: Best Practices

Don’t break others’ repos

Make sure that you do not change history in main branches
(shared with other people)!

Be careful when resetting and rebasing
Do not force a push to a shared branch

Joaquim Rocha Git: Best Practices

Pull and rebase

Joaquim Rocha Git: Best Practices

Pull and rebase

Use git pull --rebase in order to avoid merges from
upstream commits.

Joaquim Rocha Git: Best Practices

Other (Pro) Tips

Use git hooks to enforce standards

Git hooks can be used to e.g.:

make sure the source honors a certain coding style
force a commit message to include a bug tracker reference
etc.

Joaquim Rocha Git: Best Practices

git clean

Be careful with git clean!

git clean -xdf will really delete things, no reflog, no
nothing!
Always dry-run first!
$ git clean -nxdf

Joaquim Rocha Git: Best Practices

Use command aliases and auto-completion

Use git aliases and auto-completion for extra productivity:

git config --global alias.ci ’commit’

git config --global alias.co ’checkout’

git config --global alias.st ’status’

Auto-completion:
http://code-worrier.com/blog/autocomplete-git/

Joaquim Rocha Git: Best Practices

Show your HEAD in shell’s prompt

Change your shell’s prompt to show your git branch:
http://code-worrier.com/blog/git-branch-in-bash-prompt/

[17:42][~/presentations/git-best-practices(master)]$

Joaquim Rocha Git: Best Practices

Do NOT copy/paste diffs

Create patches by using git format-patch

Patches of the last 2 commits:
$ git format-patch HEAD~2
0001-Some-nice-changes.patch
0002-Some-other-nice-changes.patch

You can even send them by email from git using git
send-email!

Joaquim Rocha Git: Best Practices

See what your tree looks like

Having a global picture of your tree is important!

Use git lola:
git config --global alias.lola "log --graph --decorate

--pretty=oneline --abbrev-commit --all"

... or use tig for an interactive CLI viewer

... or use or a graphical tool like gitg

Joaquim Rocha Git: Best Practices

Thank you!

Git’s logo, CC by Jason Long
Linus Torvalds picture, CC by The Linux Foundation
Kid picture, CC by Juhan Sonin
Monkey picture, CC by Scott Monty
Slides and diagrams based in
Git: The Stupid Content Tracker by Mario Sánchez Prada

Joaquim Rocha Git: Best Practices

	About the Author
	Introduction
	What's git

	Best Practices
	Adding Files
	Committing
	Write useful commit messages
	Know How to Use References
	Use git bisect to track issues
	git reset
	git reflog
	Branches
	git rebase --interactive
	Name your stash
	Use repos for different modules
	Do NOT add every single file
	Don't break others' repos
	Pull and rebase

	Other (Pro) Tips
	Use git hooks to enforce standards
	git clean
	Use command aliases and auto-completion
	Show your HEAD in shell's prompt
	Do NOT copy/paste diffs
	See what your tree looks like

	Credits

