Saturation physics with an ALICE-like detector at FHC

Some numbers and ideas – a discussion-starter

Marco van Leeuwen, Nikhef

Observables for gluon density

This talk: focus on saturation of gluon density

Observables that are sensitive to the gluon density:

- Direct gamma
 - LO: $qg \rightarrow \gamma q$
- Drell-Yan
 - NLO: $qg \rightarrow l^+l^- q$ (tiny xsec)
- J/ψ
 - LO: $gg \rightarrow cc$
 - Kinematics uncertain; hadronisation likely plays a role
- Di-jet/di-hadron production
 - No parton selectivity; $gg \rightarrow gg/qq$ dominates at 'low' p_T

ALICE central barrel capabilities

Tracking + PID over $|\eta|$ <0.9, full azimuth

Designed for $dN/d\eta < 8000$

Tracking $p_T < 100 \text{ GeV/}c$

(current state; may improve; limited by B field, fake rates)

ALICE forward capabilities: muon arm

Muon arm: 2.5 < η < 4.0 Focus on quarkonia (J/ ψ , ψ ', Υ) Upgrade: MFT for HF secondary vertices + ψ '

A Forward Calorimeter: FOCAL

(under discussion in ALICE)

Solid Edge Academic Copy

2-body kinematics: some numbers

direct- γ , Compton (LO)

light hadron

For gluon density, need Q^2 and x_2 :

$$x_2 = \frac{p_T}{\sqrt{s}} \left(e^{-\eta_3} + e^{-\eta_4} \right)$$

Final state parton $p_T \sim Q$ η of final state partons Photon is a parton Di-hadron, γ -hadron: additional constraint on x

Some numbers

π^0 production, γ/π ratio

Di-hadron correlations I

Central **Minimum Bias** $p+p \rightarrow \pi^0 \pi^0 + X, \sqrt{s} = 200 \text{ GeV}$ d+Au $\rightarrow \pi^{o}\pi^{o}$ +X, \sqrt{s} = 200 GeV, 2000< ΣQ_{BBC} <40 Uncorrected Coincidence Probability (radian') Probability (radian') 0.0125 0.0125 0.0125 0.0125 $p_{TL}>2$ GeV/c, 1 GeV/c< $p_{TS}< p_{TL}$ cidence $p_{TL}>2 \text{ GeV/c}, 1 \text{ GeV/c}< p_{TS}< p_{TL}$ 0.03 Motivation: $<\eta_1>=3.2, <\eta_s>=3.1$ $<\eta_1>=3.1, <\eta_s>=3.2$ CGC: no 2-2 scattering: multi-gluon recoil 0.02 Logo 0.015 Also: di-hadron 0.0075 Peaks 0.01 0.005 Peaks constrains x 48 ± 0.02 0.005 1.75 ± 0.21 0.41 ± 0.01 0.0025 range 0.68 ± 0.0 eliminarv Preliminary 5 Δω Δω

Observation at RHIC: recoil yield broadened, suppressed Only in central events

 η =3, p_T = 1-2 GeV

 η =0 at LHC should be equivalent

Di-hadron correlations II

At LHC: enhancement of per-trigger yield Opposite of expectations from RHIC!

Speculation: can this be seen in 100 TeV pp collisions (high mult?)

Experimental considerations for forward measurements

Larger energy: larger y_{beam}; go to even larger y? 14 TeV: y_{beam} = 9.61 100 TeV: y_{beam} = 11.6

- Experimental challenges:
 - Large energy/p_T
 - Special mag fields for tracking
 - · Less problematic for calorimeters (angle)
 - Large particle density
 - Mostly challenging for calorimeters
 - Small angle:
 - Need conical beam pipe for y >~ 5.5
 - y=5.3 is 1cm/m, factor 100: beam pipe 1mm path length 10cm !

η = 4-5 is a practical limit;

If we want to go higher; need good motivation+preparation

Multiplicity in PbPb

Summary

- ALICE central barrel tracking:
 - $|\eta| < 0.9$ includes PID, $p_T < 100$ GeV
 - Can probably handle PbPb @ 40 TeV
- Forward 1: Muon arm
 - quarkonia+open heavy flavour
 - $-2.5 < \eta < 4$
- Foward 2: FOCAL (under discussion)
 - γ + π^0 (jets, J/ $\psi \rightarrow e^+e^-$)
 - $-3.2 < \eta < 5.3$

With FHC, reach $x \sim 10^{-6}$ at y=4

Extra slides

Reminder: how to probe gluon density

Deep-Inelastic Scattering (DIS) Classical PDF method Not sensitive to gluons at LO Gluons from NLO/evolution

Photon production

in hadronic collisions:

Sensitive to gluons at LO

direct-γ, Compton (LO)

Virtual photon production: Drell-Yan

direct- γ , Compton (LO)

x ranges; $2 \rightarrow 2$ kinematics

For gluon density, need Q^2 and x_2 :

$$x_2 = \frac{p_T}{\sqrt{s}} \left(e^{-\eta_3} + e^{-\eta_4} \right)$$

Final state parton $p_T \sim Q$ η of final state partons

Photon is a parton

x sensitivity pion vs gamma

PYTHIA simulations

Forward γ much more selective than π^0

 γ - π^0 correlations provide additional constraints

Pythia = LO + radiation NLO effects under study – expect small effect for *isolated* photons

LHC vs RHIC

LHC: $x \sim 10^{-4} - 10^{-5}$ accessible, with $p_T \sim Q \sim 3-4$ GeV

x ranges for p+A

C. Salgado (ed) et al, arXiv:1105.3919

π^0 - π^0 correlations: x sensitivity

However: still a long tail to large x From fragmentation+underlying event