An Overview of Neutrino Physics

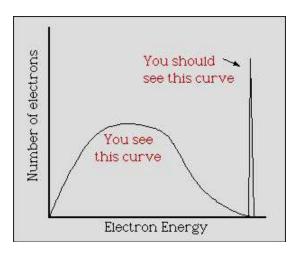
Srubabati Goswami

Physical Research Laboratory, Ahmedabad, India

- History and Introduction
- Neutrinos in the Standard Model
- Neutrino mass and Mixing
- Neutrino Oscillation

A brief history of the neutrino

In 1914 Chadwick discovered that the electron energy spectrum in Nuclear β decay is continuous :²¹⁰₈₃Bi → ²¹⁰₈₄Po + e[−]



- But conservation of energy momentum \implies electron energy $\approx m_X c^2 m_Y c^2 \rightarrow \text{a fixed value}$
- Energy conservation may be violated ?
- 1930, Wolfgang Pauli proposed the existence of an electrically neutral particle, which he called neutron, as a desparate remedy to save the energy conservation principle

A brief history of the neutrino

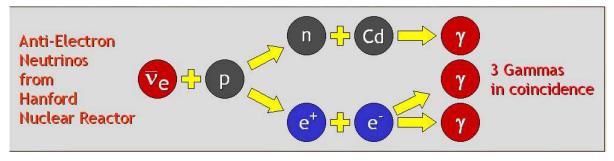
- Neutron was discovered in 1932 by Chadwick
- The name Neutrino (the little neutral one) was given by Fermi in 1933
- In 1934 Fermi gave a theory for explain β decay weak interactions
- Neutrinos are weakly interacting
- Their mass is much smaller than the electron mass may be massless
- They do not carry any electric charge
- They are fermions with spin 1/2.
- Extremely difficult to detect them experimentally

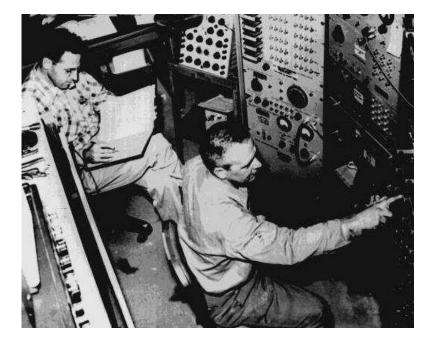
" I have postulated something which can never be detected — Pauli"

The Ghost Riders

• Experimental Discovery of ν_e by Reines and Cowans in 1956

25 years after it was postulated !!





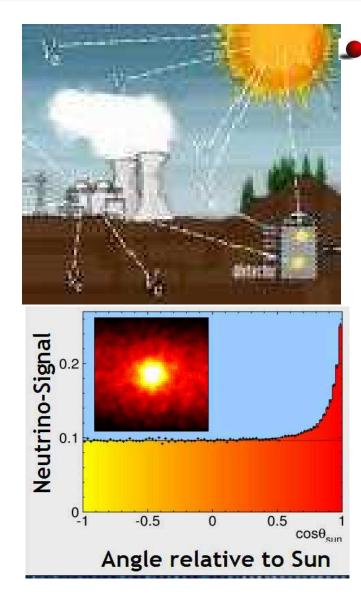
- Clyde Cowan (1919-1974)
- Fred Reines (1918 1998)
- Nobel Prize to F. Reines in 1995

More than one type of Neutrinos

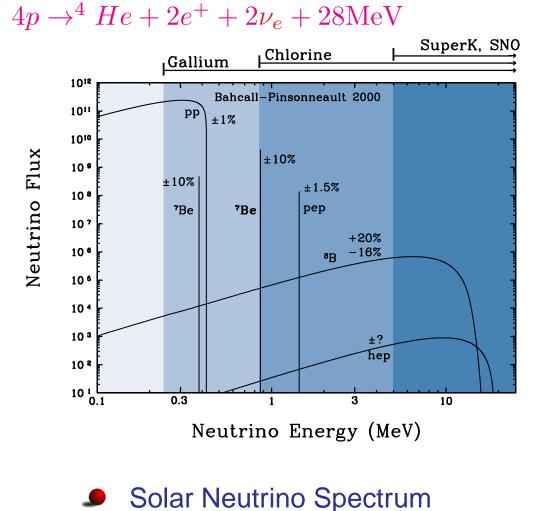
- In 1960 Bruon Pontecorvo suggested that the neutrino produced in $\pi^+ \rightarrow \mu^+ + \nu$ may be different from the neutrino produced in β -decay
- Can the neutrinos produced in pion decays, can subsequently be converted into electrons ?
- The experiment was carried out in Brookhaven in 1962 using a beam of 15 GeV protons from AGS accelerator and the muon neutrino (ν_μ) was discovered.
- Nobel prize to Lederman. Schwartz and Steinberger in 1988
- The third type of neutrino ν_{τ} was discovered in 2000 by the DONUT experiment
- From $Z \rightarrow \nu \bar{\nu}$, LEP experiment gives $N_{\nu} = 2.994 \pm 0.012$
- **D** Big Bang Nucleosynthesis give $N_{\nu} = 3.14 \pm 0.7$
- There exist atleast three types of neutrinos
- Are there more ?

Neutrinos are Unique

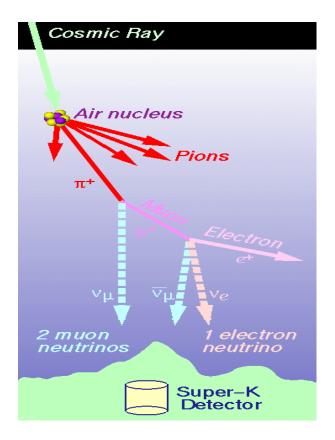
- The second most abundant particle in the Universe
 - Cosmic microwave background photons: 400 / cc
 - Cosmic microwave neutrinos: 330 /cc
- The lightest massive particle
 - A million times lighter than electron
 - No direct mass measurement yet
 - Can change from one type to another \rightarrow neutrino oscillation \rightarrow very small mass and flavour mixing
- Interacts weakly
 - This allows them to carry information directly from astrophysical objects
 - But this also makes their detection extremely difficult
- Can be its own antiparticle (?)



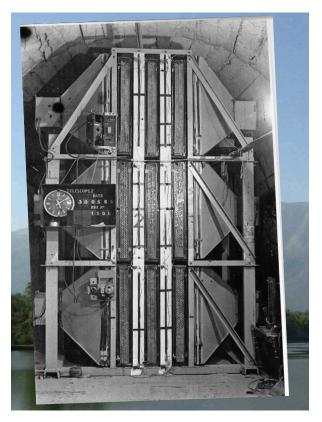
The Sun is an intense source of MeV neutrinos



Neutrinos are generated in our Atmosphere

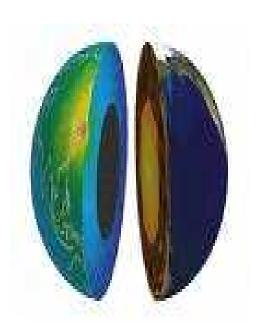


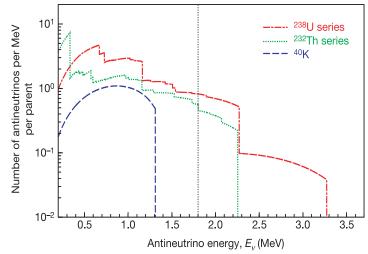
Cosmic Ray + $A_{air} \rightarrow \pi^+ + \dots$ $\pi^+ \rightarrow \mu^+ + \nu_\mu$ $\mu^+ \rightarrow e^+ + \bar{\nu}_\mu + \nu_e$



One of the first detections Kolar Gold Mine, India, 1965

They come from inside our Earth





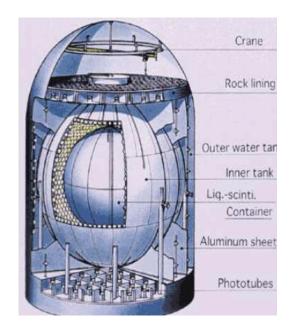
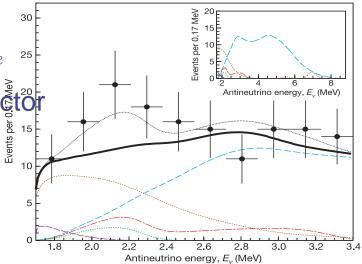
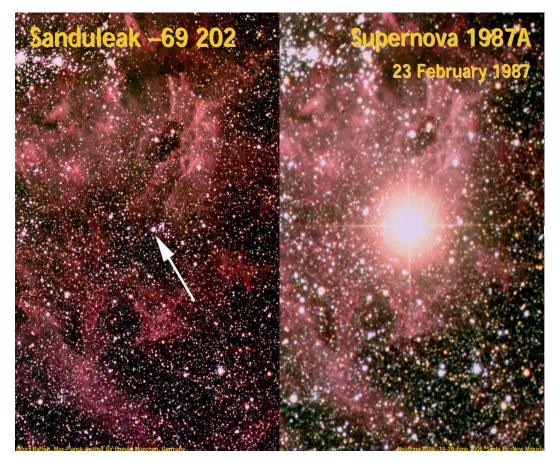


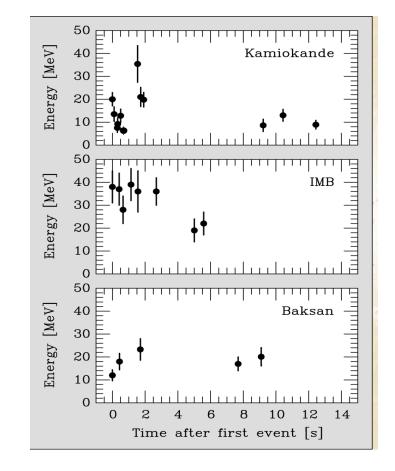
Figure 1 | The expected ²³⁸U, ²³²Th and ⁴⁰K decay chain electron antineutrino energy distributions. KamLAND can only detect electron antineutrinos to the right of the vertical dotted black line; hence it is insensitive to ⁴⁰K electron antineutrinos.

The U, Th and K inside the earth produce v_e
 Geoneutrinos detected by KamLAND detected in Japan

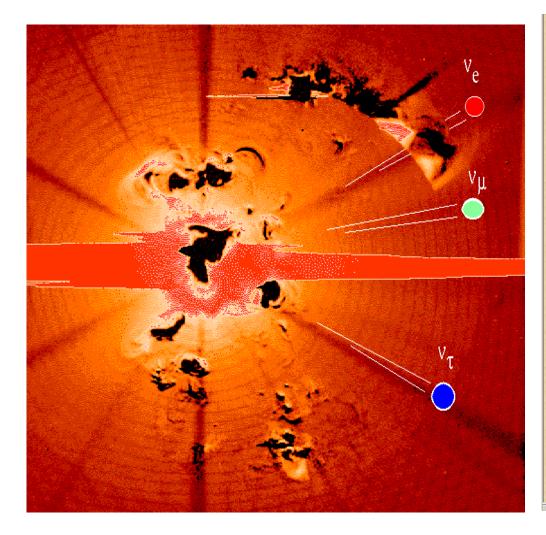


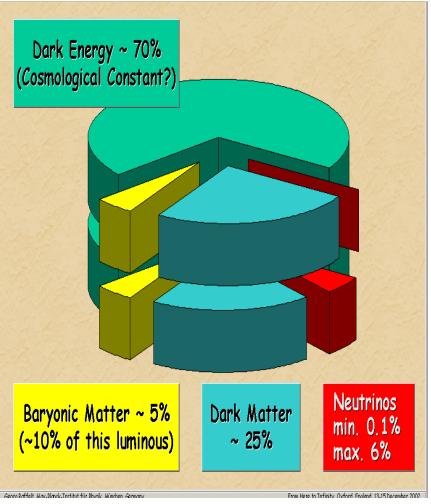
- They come from SuperNovae explosion
- Only about 1% of SN energy is released in photons
- Remaining 99% comes out as neutrinos



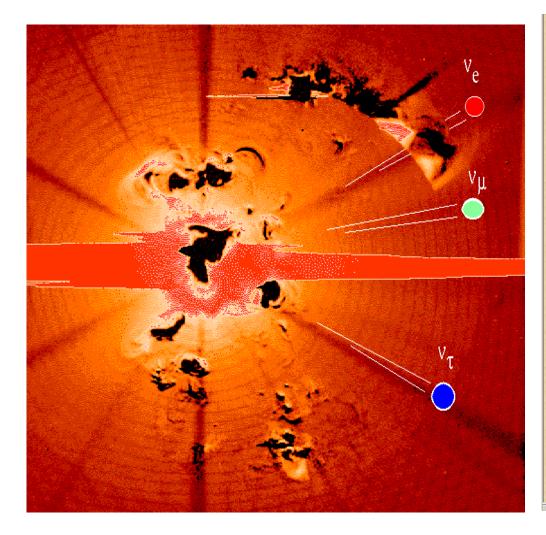


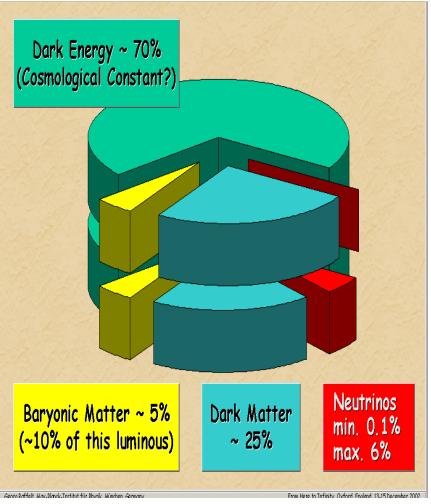
They are generated during BigBang



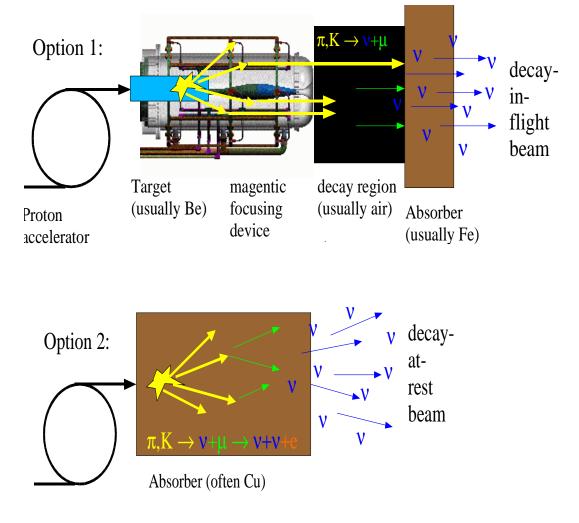


They are generated during BigBang

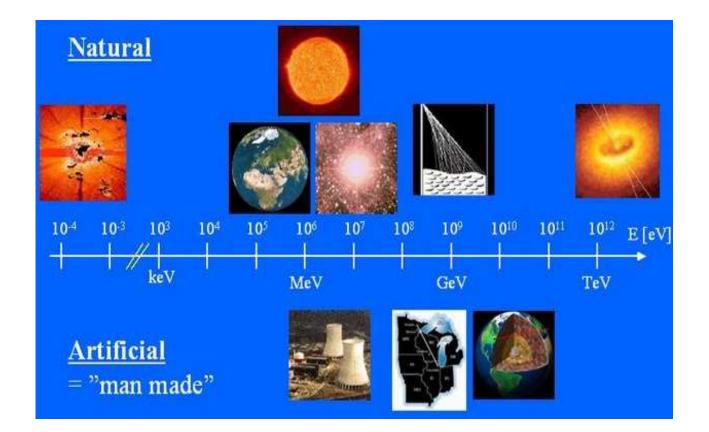




They can be produced in particle accelerators



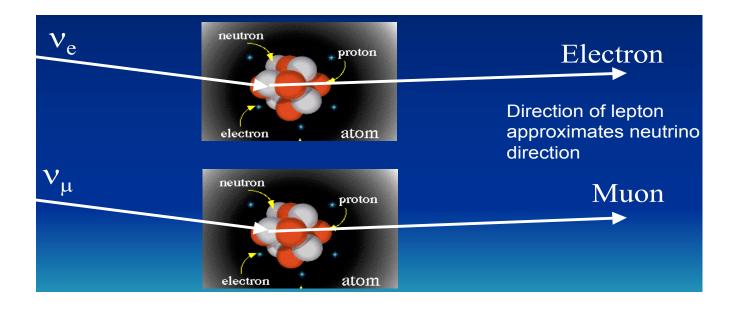
They are also produced in nuclear reactors



- I eV = 1.6 × 10⁻¹⁹ Joule
 I MeV = 10⁶ eV
 I GeV = 10⁹
 eV
- Span an energy range from KeV TeV

Neutrino Detection Principle

A neutrino is detected by observing the product of its interaction with matter

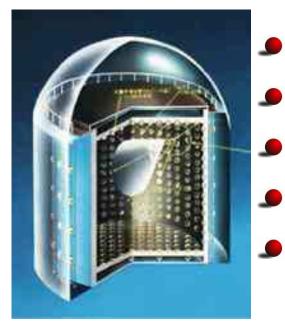


Interaction strength – very weak

Huge detectors

The elusive Neutrino

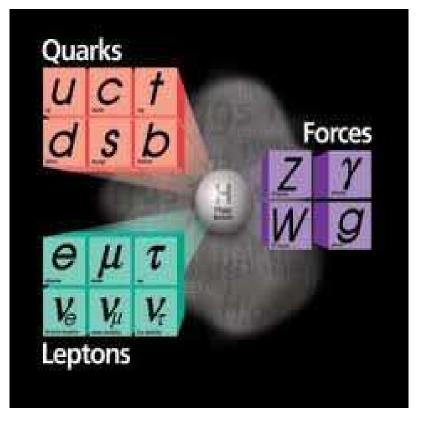
- Since neutrinos are weakly interacting the detectors has to be
 - BIG : to have enough statistics
 - DEEP : to reduce cosmic radiation
 - CLEAN : to reduce radioactive background



- SuperKamiokande
- 50,000 litres of water
 - 10,000 photomultiplier tube
 - 10^{25} neutrinos passing through/day
- Neutrino events /day 5-10

The Standard Model of Particle Physics

- Aim: To describe the Fundamental Particles and their Interaction
- Guided by symmetry principles governing strong, weak and electromagnetic interaction : $SU(3)_C \times SU(2)_L \times U(1)_Y$



Force	Strength	Carrier
Strong nuclear	1	Gluons
Electromagnetic	.001	Photon
Weak nuclear	.00001	Z^0, W^+, W^-
THE EXCHANGE OF PARTICLES IS RESPONSIBLE FOR THE FORCES		

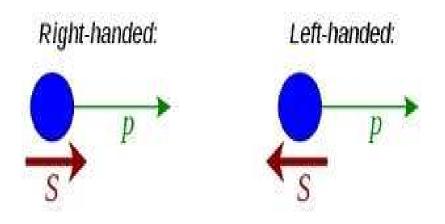
Contains the antiparticles also

Neutrinos in the Standard Model

- Neutrinos are weakly interacting : $SU(2)_L \times U(1)_Y$
- Neutrinos are part of lepton doublets l_l in 3 flavours $\begin{pmatrix} \nu_e \\ e^- \end{pmatrix}_L \begin{pmatrix} \nu_\mu \\ \mu^- \end{pmatrix}_L \begin{pmatrix} \nu_\tau \\ \tau^- \end{pmatrix}_L :(2:-1)$
- Solution Right handed leptons occur as singlets : e_R^- , μ_R^- , τ_R^- :(1,-2)
- The quantum numbers are related as Q = $T_3 + Y/2$
- The corresponding antiparticles are also there $\begin{pmatrix} \nu_e \\ e^- \end{pmatrix}_I \longleftrightarrow \begin{pmatrix} e^+ \\ \nu_e^c \end{pmatrix}_P$
- Neutrinos are left-handed and antineutrinos are righthanded
- No right handed neutrino \rightarrow Parity Violation

Parity Violation in Weak Interactions

- Parity refers to the symmetry of space inversion
- In 1956 Lee and Yang proposed violation of parity in weak interactions to solve the $\tau \theta$ puzzle.
- **9** 1957 Wu et al. discovered Parity violation in β -decay of ${}^{60}Co$
- 1957 : Landau, Lee and Yang, Salam proposed that neutrinos are massless and only left-handed



In 1958 Goldhaber et al. measured the neutrino helicity to be left-handed

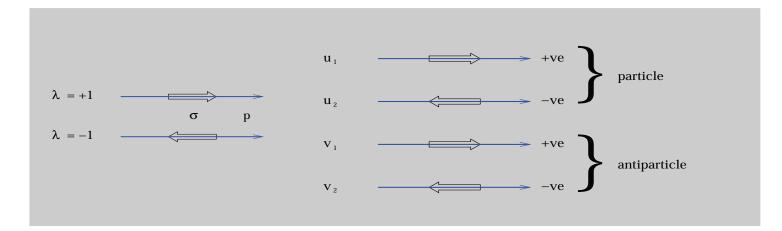
V-A form of weak interaction

Helicity

Helicity is the projection of spin along the direction of motion

$$\vec{\Sigma}.\hat{p} = \left(\begin{array}{cc} \vec{\sigma}.\hat{p} & 0\\ 0 & \sigma.\hat{p} \end{array}\right)$$

- Helicity operator commutes with the Dirac Hamiltonian $H = \alpha \cdot \mathbf{p} + \beta m$
- Energy eigenstates of Dirac Hamiltonian are also eigenstates of helicity,



Chirality or Handedness

The chirality ooperator is γ_5

Consider now the chirality/handedness operator in the Pauli-Dirac representation:

$$\gamma_5 = i \gamma^0 \gamma^1 \gamma^2 \gamma^3 = \begin{pmatrix} 0 & I \\ I & 0 \end{pmatrix}$$

which satisfies:

$$\{\gamma_{5},\gamma^{\mu}\} = 0$$

This anti-commutation relationship is true in any Dirac matrix representation. Lets evaluate the commutator of the chirality operator with the Dirac hamiltonian:

$$[\gamma_5, H] = [\gamma_5, \vec{\alpha} \cdot \vec{p} + m\beta] = \begin{pmatrix} 0 & I \\ I & 0 \end{pmatrix} \begin{pmatrix} m & \vec{\sigma} \cdot \vec{p} \\ \vec{\sigma} \cdot \vec{p} & -m \end{pmatrix} - \begin{pmatrix} m & \vec{\sigma} \cdot \vec{p} \\ \vec{\sigma} \cdot \vec{p} & -m \end{pmatrix} \begin{pmatrix} 0 & I \\ I & 0 \end{pmatrix} \Rightarrow$$

$$[\gamma_5, H] = \begin{pmatrix} \vec{\sigma} \cdot \vec{p} & -m \\ m & \vec{\sigma} \cdot \vec{p} \end{pmatrix} - \begin{pmatrix} \vec{\sigma} \cdot \vec{p} & m \\ -m & \vec{\sigma} \cdot \vec{p} \end{pmatrix} \Rightarrow$$

$$[\gamma_5, H] = 2m \begin{pmatrix} 0 & -I \\ I & 0 \end{pmatrix}$$

Physical meaning of Chirality

Lets now investigate the physical meaning of the chirality. Consider the massless Dirac equation:

$$\boldsymbol{i} \boldsymbol{\gamma}^{\mu} \partial_{\mu} \boldsymbol{\Psi}(\boldsymbol{x}) = \boldsymbol{0}$$

Let $\Psi(\mathbf{x}) = \mathbf{u}(\mathbf{\vec{p}}) e^{-i\mathbf{p}^{\mu}\mathbf{x}_{\mu}}$ be a solution of the Dirac equation. By substituting we get that:

$$(\gamma^{0} p_{0} - \vec{\gamma} \cdot \vec{p}) u(\vec{p}) = \mathbf{0} \Rightarrow$$

$$\gamma^{0} p_{0} u(\vec{p}) = \vec{\gamma} \cdot \vec{p} u(\vec{p}) \Rightarrow$$

$$\gamma_{5} \gamma^{0} \gamma^{0} p_{0} u(\vec{p}) = \gamma_{5} \gamma^{0} \vec{\gamma} \cdot \vec{p} u(\vec{p}) \Rightarrow$$

$$p_{0} \gamma_{5} u(\vec{p}) = \gamma_{5} \gamma^{0} \vec{\gamma} \cdot \vec{p} u(\vec{p}) \qquad (3)$$

Physical meaning of Chirality

If this is a positive energy solution then we have that $p^0 > 0$ and (3) becomes:

$$\gamma_5 \boldsymbol{u}(\vec{\boldsymbol{p}}) = \gamma_5 \gamma^0 \vec{\boldsymbol{\gamma}} \cdot \hat{\boldsymbol{p}} \, \boldsymbol{u}(\vec{\boldsymbol{p}}) \tag{4}$$

If this is a negative solution then, $p^0 < 0$ and

$$\gamma_5 \boldsymbol{u}(\vec{\boldsymbol{p}}) = -\gamma_5 \gamma^0 \vec{\boldsymbol{\gamma}} \cdot \hat{\boldsymbol{p}} \, \boldsymbol{u}(\vec{\boldsymbol{p}}) \tag{5}$$

Lets compute the matrix product on the right side:

$$\gamma_{5}\gamma^{0}\vec{\gamma} = \begin{pmatrix} \mathbf{0} & \mathbf{I} \\ \mathbf{I} & \mathbf{0} \end{pmatrix} \begin{pmatrix} \mathbf{I} & \mathbf{0} \\ \mathbf{0} & -\mathbf{I} \end{pmatrix} \begin{pmatrix} \mathbf{0} & \vec{\sigma} \\ -\vec{\sigma} & \mathbf{0} \end{pmatrix} = \begin{pmatrix} \vec{\sigma} & \mathbf{0} \\ \mathbf{0} & \vec{\sigma} \end{pmatrix} = \vec{\Sigma} \Rightarrow$$
$$\vec{\Sigma} = \gamma_{5}\gamma^{0}\vec{\gamma} \qquad (6)$$

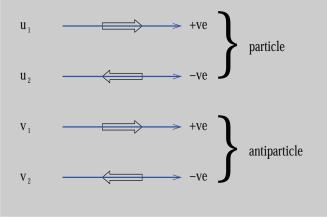
$$p^{0} > 0 \Rightarrow \gamma_{5} u(\vec{p}) = \begin{pmatrix} \vec{\sigma} \cdot \hat{p} & 0 \\ 0 & \vec{\sigma} \cdot \hat{p} \end{pmatrix} u(\vec{p}) = \vec{\Sigma} \cdot \hat{p} u(\vec{p})$$
(7)

and

$$p^{0} < 0 \implies \qquad \gamma_{5} u(\vec{p}) = - \begin{pmatrix} \vec{\sigma} \cdot \hat{p} & 0 \\ 0 & \vec{\sigma} \cdot \hat{p} \end{pmatrix} u(\vec{p}) = - \vec{\Sigma} \cdot \hat{p} u(\vec{p})$$
(8)

Chirality and Helicity

- For m=0 eigenstates of chirality are eigenstates of helicity
- Let us define the projection operators $P_L = \frac{1 - \gamma_5}{2}$ and $P_R = \frac{1 + \gamma_5}{2}$ for left and right handed states



$$\gamma_5 u_1(p) = \vec{\Sigma} \cdot \hat{p} u_1(p) = u_1(p) \implies P_L u_1(p) = 0, P_R u_1(p) = u_1(p)$$

$$\gamma_5 u_2(p) = \vec{\Sigma} \cdot \hat{p} u_2(p) = -u_2(p) \implies P_L u_2(p) = u_2(p), P_R u_2(p) = 0$$

 $p_0 < 0$

 $p_0 > 0$

$$\gamma_5 v_1(p) = -\vec{\Sigma} \cdot \hat{p} v_1(p) = -v_1(p) \Longrightarrow P_L v_1(p) = v_1(p), P_R v_1(p) = 0$$

$$\gamma_5 v_2(p) = -\vec{\Sigma} \cdot \hat{p}_2 v(p) = v_2(p) \Longrightarrow P_L v_2(p) = 0, P_R v_2(p) = v_2(p)$$

 P_L projects -ve (+ve) helicity states for particles (antiparitcles)

 P_R projects +ve (-ve) helicity states for particles (antiparticles)

Chirality and Helicity

- \blacksquare \Longrightarrow Left handed particles and right-handed antiparticles have -ve helicity
- \blacksquare \Longrightarrow Right-handed particles and left-handed antiparticles have +ve helicity

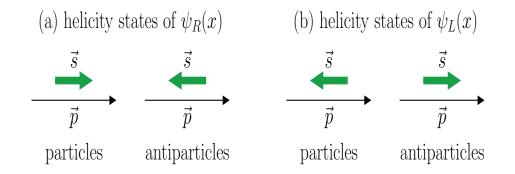


FIG. 2.1. Helicity states of the massless chiral fields $\psi_R(x)$ and $\psi_L(x)$.

Giunti and Kim, Fundamentals of Neutrino Physics and Astrophysics

- For massive fields left handed particles are predominantly -ve helicity +ve helicity component $\sim m/E$
- For massive fields right handed particles are predominantly +ve helicity with a -ve helicity component $\sim m/E$

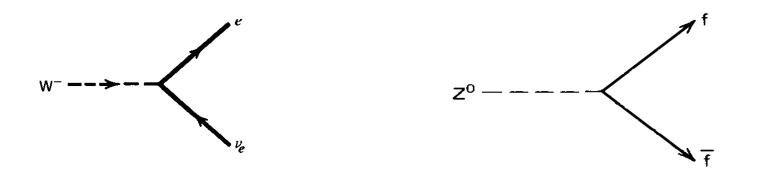
Neutrino Interaction in SM

Neutrinos interact with W boson through the "charged current" interaction that gives rise to the term

$$\mathcal{L}_{CC} = \frac{g}{2\sqrt{2}} \bar{\ell} \gamma^{\mu} (1 - \gamma_5) \nu W_{\mu}^- + h.c.$$
⁽¹⁾

The interaction with Z boson is the "neutral current" interaction that gives rise to the term

$$\mathcal{L}_{NC} = \frac{g}{(2\cos\theta_W)} \bar{\nu}\gamma_\mu (1-\gamma_5)\nu Z^\mu \tag{2}$$



Lepton Number

- Neutrinos are electrically neutral
- Neutrinos carry Lepton Number +1, antineutrinos carry lepton number -1
 (Global U(1) symmetry, \u03c6 \u03c6 \u03c6' = e^{i\u03c6} \u03c6)
- Introduced in 1953 by Konopinski and Mahmoud to explain certain missing decay modes
- Known reactions conserve generational lepton number L_e, L_µ and L_τ as well as total Lepton number L_e + L_µ + L_τ
- Allowed Decays
 - $\begin{aligned} \pi &\to \mu^- \bar{\nu}_\mu \\ \mu^- &\to e^- \bar{\nu_e} \nu_\mu \end{aligned}$
- Forbidden Decays

 $\mu \rightarrow e \gamma$ (L_e and L_μ not conserved separately)

Fermion Mass in Standard Model

- Mass term : $m\bar{\psi}\psi$
- Chiral decomposition : $\psi = \psi_L + \psi_R$
- $\psi_{R,L} = \frac{1}{2}(1 \pm \gamma_5)\psi$, the left and right handed states
- $M_{Dirac} = -m_D(\bar{\psi}_L \psi_L + \bar{\psi}_R \psi_L + \bar{\psi}_L \psi_R + \bar{\psi}_R \psi_R)$

Thus,
$$L_{Dirac} = -m(\bar{\psi}_R\psi_L + \bar{\psi}_L\psi_R)$$

- In SM ψ_L belongs to SU(2) doublet and ψ_R is SU(2) singlet e.g $\psi_L = (\nu_e, e^-)^T, \psi_R = e_R$
- Y is also not conserved ($e_L : Y = -1, e_R : Y = -2$)
- Mass terms break gauge symmetry

Fermion Mass in Standard Model

- Fermion masses can be generated through Higgs : $\phi = \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix} (2, +1)$
- $I_Y = y_e \overline{\psi}_L \phi e_R$, (the fermions and Higgs doublets : $2 \times 2 = 3 \oplus 1$)

$$\psi_L : Y = 1, \phi : Y = 1, e_R : Y = -2$$

- $[L_Y] = 4 \rightarrow y \rightarrow dimension less$
- When Higgs develops Vaccum expectation value : ϕ =

$$\begin{pmatrix} 0\\ \frac{v+h(x)}{\sqrt{2}} \end{pmatrix}$$

Mass term :
$$\frac{y_e}{\sqrt{2}}\overline{e_L}ve_R$$
 , $m_e = \frac{y_ev}{\sqrt{2}}$

- y_e is arbitrary $\longrightarrow m_e$ is not a prediction of SM
- When we include other leptons and quarks there are different Yukawa couplings \rightarrow free parameters of SM
- No right handed neutrinos and hence no Dirac mass term in SM

Dirac Neutrino Mass beyond SM

- Simplets extentsion of SM : add N_R : (1,0)
- Mass term $\rightarrow \mathcal{L}_{Dirac} = m_D \bar{\nu} \nu = m_D (\bar{\nu}_L N_R + \bar{N}_R \nu_L)$: $\nu \equiv \nu_L + N_R$
- Lepton number $L_{\nu} + L_N$ is conserved
- Mass is generated by Higgs mechanism through Yukawa coupling

- Same ϕ cannot give mass to upper and lower fermions of the doublet \rightarrow Y cannot be conserved
- $i\sigma_2\phi^*$ same transformation properties as ϕ under SU(2)

Dirac Mass Matrix

Solution When there are several fields with the same quantum numbers, we define the Dirac mass matrix, $(m_D)_{ij}$

$$\mathscr{L}_{\mathsf{D}} = -\sum_{\alpha,\beta=e,\mu,\tau} M^{\mathsf{D}}_{\alpha\beta} \,\overline{\nu_{\alpha L}} \,\nu_{\beta R} + \mathsf{H.c.} \qquad \qquad M^{\mathsf{D}}_{\alpha\beta} = \frac{v}{\sqrt{2}} \,Y_{\alpha\beta}$$

 $v = (\sqrt{2} G_F)^{-1/2} = 246 \,\text{GeV}$ complex 3 × 3 Dirac mass matrix

$$\mathscr{L}_{\mathrm{D}} = - \begin{pmatrix} \overline{\nu_{eL}} & \overline{\nu_{\mu L}} & \overline{\nu_{\tau L}} \end{pmatrix} \begin{pmatrix} m_{ee} & m_{e\mu} & m_{e\tau} \\ m_{\mu e} & m_{\mu\mu} & m_{\mu\tau} \\ m_{\tau e} & m_{\tau\mu} & m_{\tau\tau} \end{pmatrix} \begin{pmatrix} \nu_{eR} \\ \nu_{\mu R} \\ \nu_{\tau R} \end{pmatrix} + \mathrm{H.c.}$$

 L_e , L_μ , L_τ are not conserved

In the SM, the fermion fields are present in three copies, and the Dirac mass matrices are 3×3 matrices. In general, however, m_D does not have to be a square matrix.

Majorana Mass and cgarge conjugation

Majorana mass term uses the charge conjugated states

need charge conjugation:

electron e^- : $[\gamma_{\mu} (i\partial^{\mu} + e A^{\mu}) - m] \psi = 0$ (1) positron e^+ : $[\gamma_{\mu} (i\partial^{\mu} - e A^{\mu}) - m] \psi^c = 0$ (2)

Try $\psi^c = S \psi^*$, evaluate $(S^*)^{-1} (2)^*$ and compare with (1):

 $S = i\gamma_2$

and thus

$$\psi^c = i\gamma_2 \,\psi^* = i\gamma_2 \,\gamma_0 \overline{\psi}^T \equiv C \,\overline{\psi}^T$$

slide courtsey: W. Rodejohann

Properties of C

Properties of C: $C^{\dagger} = C^{T} = C^{-1} = -C$ $C \gamma_{\mu} C^{-1} = -\gamma_{\mu}^{T}$ $C \gamma_{5} C^{-1} = \gamma_{5}^{T}$ $C \gamma_{\mu} \gamma_{5} C^{-1} = (\gamma_{\mu} \gamma_{5})^{T}$

properties of charged conjugate spinors:

$$(\psi^c)^c = \psi$$
$$\overline{\psi^c} = \psi^T C$$
$$\overline{\psi_1} \psi_2^c = \overline{\psi_2^c} \psi_1$$
$$(\psi_L)^c = (\psi^c)_R$$
$$(\psi_R)^c = (\psi^c)_L$$

slide courtsey: W. Rodejohann

Majorana Mass

- ▶ Let us consider the Dirac mass term Thus, $\mathcal{L}_{Dirac} = -m(\overline{N}_R \nu_L + \overline{\nu}_L N_R)$
- In order to get Majorana mass one does not need an extra N_R but use the right-handed state $(\nu_L)^c \equiv (\nu^c)_R$

• where,
$$u^C = C \bar{
u}^T = i \gamma_2 \gamma_0 \gamma_0 \nu^* = i \gamma_2 \nu^*$$

- The full Majorana Lagrangian $\mathcal{L}^{M} = \frac{1}{2} \left[\bar{\nu_{L}} i \partial \!\!\!/ \nu_{L} + \overline{\nu_{L}}^{c} i \partial \!\!\!/ \nu_{L}^{c} m (\overline{\nu_{L}}^{c} \nu_{L} + \overline{\nu_{L}} \nu_{L}^{c}) \right]$
- The overall factor of 1/2 to avoid doublecounting as ν_L and ν_L^c are not independent

The Majorana field $\nu \equiv \nu_L + \nu^c_R$ $\nu^c = (\nu_L)^c + (\nu^c_R)^c = (\nu^c)_R + \nu_L = \nu$ A Majorana Neutrino is its own Antineutrino

$$In terms of \nu \mathcal{L}^M = \frac{1}{2} \left[\overline{\nu} i \partial \!\!\!/ \nu - m \overline{\nu} \nu \right]$$

Can particles be their own antiparticles ?

- A few years before he mysteriously disappeared at sea, Italian physicist Ettore Majorana posed a puzzle for future researchers. In 1937 he varied Dirac equation to predict a class of particles that are its own antiparticles: the Majorana fermions.
- Is the Dirac equation a real equation like the Klein-Gordon equation "
- For Majorana representation all non-zero elements of all the four γ_{μ} 's are purely imaginary. This leads to $\psi = \psi^c$

Palsh. B. Pal, arXiv 1006.1718

Majorana Mass Matrix

• The Majorana mass term in matrix form can be written as, $\mathcal{L}_{mass}^{M} = -\frac{1}{2}(\overline{\nu_{L}^{c}}M\nu_{L}) + h.c. = \frac{1}{2}\sum_{\alpha,\beta=e,\mu,\tau} (\nu_{\alpha L}^{T}C^{\dagger}M_{\alpha\beta}\nu_{\beta L}) + h.c.$ $(\overline{\nu_{L}^{c}} = -\nu_{L}^{T}C^{\dagger})$

$$\sum_{\alpha,\beta=e,\mu,\tau} \nu_{\alpha L}^T C^{\dagger} M_{\alpha\beta} \nu_{\beta L} = \sum_{\alpha,\beta=e,\mu,\tau} \nu_{\beta L}^T C^{\dagger} M_{\alpha\beta} \nu_{\alpha L}$$

using $C^T = -C$ and '-' sign due anti-commutation of fermion fields

Interchanging \$\alpha\$, \$\beta\$ in the last term,
 $\sum_{\alpha,\beta=e,\mu,\tau} \nu_{\alpha L}^T C^{\dagger} M_{\alpha\beta} \nu_{\beta L} = \sum_{\alpha,\beta=e,\mu,\tau} \nu_{\alpha L}^T C^{\dagger} M_{\beta\alpha} \nu_{\beta L}$ $\implies M_{\beta\alpha} = M_{\alpha\beta}$

Lepton Number

Under global U(1) gauge transformation, $\nu_L \rightarrow e^{i\varphi}\nu_L$ and $\nu_L^T \rightarrow e^{i\varphi}\nu_L^T$ Majorana Mass Term becomes,

$$\mathcal{L}_{mass}^{M} = -m\frac{1}{2}(-e^{2i\varphi}\nu_{L}^{T}C^{\dagger}\nu_{L} + e^{-2i\varphi}\nu_{L}^{\dagger}C\nu_{L}^{*})$$
(3)

- Not invariant under the global U(1) gauge transformation
- Violation of Lepton Number by 2 units
- Can lead to neutrinoless double β decay (A, Z) → (A, Z + 2) + 2e⁻
- Charged particle cannot be Majorana

How to generate Majorana Mass?

Can we have a Majorana mass term in SM ?

The
$$SU(2)_L \times U(1)_Y$$
 quantum numbers :
$$\nu_L: (2,-1), \quad \nu_L{}^c = i\gamma_2\nu_L^*: (2,1)$$

$$\overline{\nu_L{}^c}\nu_L = (2,-1) \times (2,-1) = (1,-2) + (3,-2)$$

$$\overline{\nu_L}\nu_L{}^c = (1,2) + (3,2)$$

- Thus Y is not conserved
- No Majorana mass term in SM
- Majorana mass term can be generated at tree-level through a term $\overline{\nu_L}{}^c \nu_L X$
- To ensure gauge invariance X needs to have Q=0
- Scalar triplet with (Y = 2) $(3, -2) \times (3, 2) = (1, 0) + (3, 0) + (5, 0)$

Neutrino Mixing: Dirac case

- $(\nu_e, \nu_\mu \nu_\tau)$ are the weak interaction eigenstates
- The mass matrix M is in general non-diagonal and non-hermitian and can be diagonalized by a Bi-Unitary transformation

 $M_{diag} = UMV^{\dagger}$

-
$$\mathcal{L}_{Dirac} = (\overline{\nu}_{L\alpha}U^{\dagger})(UM_{\alpha\beta}V^{\dagger})(VN_{R\beta}) + h.c. = \overline{\nu'}_{L\alpha}M_{dia}N'_{R\beta} + h.c.$$

The weak eigenstates are related to the mass eigenstates as,

$$\nu_L \alpha = U_{\alpha i} \nu'_{Li}, \quad N_R^{\alpha} = V_{\alpha i} N'_{Ri} \text{ (i =1,2,3)}$$

Neutrino Mixing: Dirac case

- The charged current Lagrangian
- Using the primed basis ν'_i the Charged Current Lagrangian is

$$\mathcal{L}_{CC} = \frac{g}{2\sqrt{2}} (\overline{\nu'}_1, \overline{\nu'}_2, \overline{\nu'}_3) U^{\dagger} \gamma^{\mu} \begin{pmatrix} e \\ \mu \\ \tau \end{pmatrix}_L W^{+}_{\mu} + h.c.$$

 $U^{\dagger} \rightarrow$ PMNS or MNSP mixing matrix for leptons in the basis where the charged lepton mass matrix is diagonal analogous to CKM matrix in the quark sector

- $2N^2$ parameters for a $N \times N$ complex matrix
- Unitarity $\implies N^2$ independent elements
- ${}^{N}C_{2} = N(N-1)/2$ angles, $N^{2} N(N-1)/2 = N(N+1)/2$ phases

 \implies 2 generation: 1 angle, 3 phases,

3 generation: 3 angles, 6 phases

Not all phases are physically observable

Neutrino Mixing: Dirac case

- The weak charged current : $j_w^{\mu} = \sum_{k=1,3} \sum_{\alpha=e,\mu\tau} \bar{\nu_k}_L U^*_{\alpha k} \gamma^{\mu} l_{\alpha l}$
- Making phase transformations : $\nu_k
 ightarrow e^{i\phi_k} \nu_k$ and $l_{\alpha} = e^{i\phi_{\alpha}} l_{\alpha}$

$$j_{w}{}^{\mu} = \sum_{k=1,3} \sum_{\alpha=e,\mu\tau} \bar{\nu}_{kL} e^{-i\phi_{k}} U_{\alpha k}^{*} e^{i\phi_{\alpha}} \gamma^{\mu} l_{\alpha l} j_{w}{}^{\mu} = e^{-i(\phi_{1}-\phi_{e})} \sum_{k=1,3} \sum_{\alpha=e,\mu\tau} \bar{\nu}_{kL} e^{-i(\phi_{k}-\phi_{1})} U_{\alpha k}^{*} e^{i\phi_{\alpha}} - \phi_{e} \gamma^{\mu} l_{\alpha l}$$

- \blacksquare \Longrightarrow 5 arbitrary phases which can be used to absorb 5 out of 6 phases in U
- A common rephasing of all the fields leaves the charged current invariant \implies conservation of total lepton number
- \blacksquare \Longrightarrow the mixing matrix contains 3 angles and 1 physical phase

Parametrizing the Neutrino Mixing Matrix

 $U_{PMNS} = R_{23}(\theta_{23})R_{13}(\theta_{13},\delta)R_{12}(\theta_{12})$

$$\begin{array}{c|cccc} \bullet & U_{PMNS} = \\ & \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} = \\ & \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix} \end{array}$$

- 3 mixing angles and 1 phase
- This phase is responsible for CP violation in lepton sector

Neutrino Mixing: Majorana case

The Majorana mass matrix,

$$\begin{aligned} \mathcal{L}_{mass}^{M} &= -\frac{1}{2} \sum_{\alpha,\beta=e,\mu,\tau} \nu_{\alpha L}^{T} C^{\dagger} M_{\alpha\beta} \nu_{\beta L}) + h.c. \\ &= -\frac{1}{2} \sum_{\alpha,\beta=e,\mu,\tau} \nu_{\alpha L}^{T} C^{\dagger} U^{T} (U^{*} M_{\alpha\beta} U^{\dagger}) U \nu_{\beta L} + h.c. \\ &= -\frac{1}{2} \nu_{kL}^{T} C^{\dagger} M_{dia} \nu_{kL} + h.c. \end{aligned}$$
$$\begin{aligned} M_{diag} &= U^{*} M U^{\dagger} \qquad \text{or} \qquad M_{diag} = U^{T} M U \end{aligned}$$

Can be shown starting from a bi-unitary transformation and assuming the mass matrix to be symmetric

Phases of the Majorana Mixing

- The weak charged current : $j_w{}^{\mu} = \sum_{k=1,3} \sum_{\alpha=e,\mu\tau} \bar{\nu_k}_L U^*_{\alpha k} \gamma^{\mu} l_{\alpha l}$
- U in general contains 6 phases
- The Majorana mass term $-\frac{1}{2}\nu_{kL}^T C^{\dagger} M_{\alpha\beta}\nu_{\beta L}$ not invariant under the phase transformation $\nu_k \to e^{i\phi_k}\nu_k$
- Phases of the mixing matrix can not be absorbed in the neutrino field. If absorbed then again reappear in the mass matrix.
- Only 3 phases can be absorbed by rephasing the charged lepton fields
- The Majorana Mixing Matrix $U = U^{Dirac}P$ where P is the phase matrix $P = Dia(0, e^{i\alpha}, e^{i\beta})$

PART-II : Neutrino Oscillation

Neutrino Oscillations

- Do neutrinos change flavour after passing through a distance ?
- Proposed by Pontecorvo in 1957 in analogy with $K_0 \overline{K_0}$ oscillations
- Quantum Mechanical Interference phenomena
- ν_e, ν_μ, ν_τ produced in weak interactions flavour states
- \boldsymbol{P} ν_1, ν_2, ν_3 are the mass eigenstates that propagate
- If neutrinos have mass then, $\nu_{\alpha} = U_{\alpha i}\nu_{i}$ (In terms of Fields) $|\nu_{\alpha} \rangle = U_{\alpha i}^{*}|\nu_{i}\rangle$ (In terms of States) U is the neutrino mixing matrix 3×3 for three flavours
- This leads to Neutrino Oscillations

Neutrino Oscilltions in Vaccum: Two Flavours

If neutrinos have mass

$$\begin{pmatrix} \nu_e \\ \nu_\mu \end{pmatrix} = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \end{pmatrix}$$

Neutrinos acquire different phases as they propagate

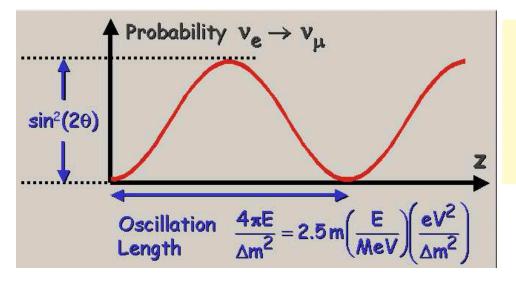
 $|\nu_j(t)\rangle = \exp(-iE_jt)|\nu_j(0)\rangle$ $E_j = p^2 + m_i^2/2p$

A phase difference develop between the terms since $m_1 \neq m_2$

- At some later time $|\nu_e(t)\rangle = \cos\theta \exp(-iE_1t)|\nu_1(0)\rangle + \sin\theta \exp(-iE_2t)|\nu_2(0)\rangle \neq |\nu_e\rangle$
- Survival Probability (in vacuum) $|\langle \nu_e(t)|\nu_e\rangle|^2 = P_{\nu_e\nu_e} = 1 - \sin^2 2\theta \sin^2 (1.27\Delta m^2 L/E);$
- Socillation Probability (in vacuum) $P_{\nu_e\nu_\mu} = 1 P_{\nu_e\nu_e} = \sin^2 2\theta \sin^2 (1.27\Delta m^2 L/E)$

Oscilltion Probability in Vacuum

 $P_{\nu_e\nu_\mu} = \sin^2 2\theta \sin^2 (1.27\Delta m^2 L/E) = \sin^2 2\theta \sin^2 (\pi L/\lambda)$



Neutrino Oscillation requires
 Non-zero neurino mass
 Non-zero mixing angles
 Oscillation effect $\Delta m^2 \sim E/L$

 $\begin{array}{l} \Delta m^2 = m_2^2 - m_1^2 \\ \theta \rightarrow \text{mixing angle} \\ L \rightarrow \text{Distance travelled (in m/Km)} \\ E \rightarrow \nu \text{ Energy (in MeV/GeV)} \end{array}$

• Oscillation Wavelength $\lambda = 2.5m(E/MeV)(eV^2/\Delta m^2)$ • $\lambda >> L, \sin^2(\pi L/\lambda) \rightarrow 0$ • $\lambda << L, \sin^2(\pi L/\lambda) \rightarrow 1/2$ • $\lambda \sim 2L, \sin^2(\pi L/\lambda) \sim 1 \rightarrow \Delta m^2 \sim E/L$

Neutrino oscillations in vacuum

Neutrino oscillations in vacuum

Generalisation to more than 2 flavours

$$\mathcal{P}(\nu_{\alpha} \longrightarrow \nu_{\beta}) = |\langle \nu_{\beta} | \nu_{\alpha}(t) \rangle|^{2} = \sum_{i,j} U_{\alpha i} U_{\beta i}^{\star} U_{\alpha j}^{\star} U_{\mathbf{Q} i} e^{-i2\Delta_{ij}}$$

 $= \delta_{\alpha\beta} - 4 \Sigma_{i>j} Re(U_{\alpha i} U^{\star}_{\beta i} U^{\star}_{\alpha j} U_{\beta j}) \sin^2(\Delta_{ij})$ +2 $\Sigma_{i>j} Im(U_{\alpha i} U^{\star}_{\beta i} U^{\star}_{phaj} U_{\beta j}) \sin(2\Delta_{ij}) U^{\star}_{\beta i} U^{\star}_{\alpha j} U_{\beta j}) \sin(2\Delta_{ij})$

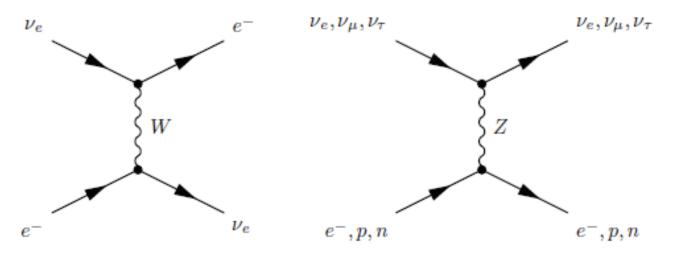
$$\Delta_{ij} = \frac{1.267\Delta m_{ij}^2 (eV^2) L(Km)}{E(GeV)}.$$

For real U

 $\mathcal{P}(\nu_{\alpha} \longrightarrow \nu_{\beta}) == \delta_{\alpha\beta} - 4 \Sigma_{i>j} \operatorname{Re}(U_{\alpha i} U_{\beta i} U_{\alpha j} U_{\beta j}) \sin^2(\Delta_{ij})$

Matter Effects

- Neutrinos travelling through matter will interact with it.
- Normal matter only has e^- , p and n (CP, CPT violating).
- Only ν_e and $\bar{\nu}_e$ have charge current interactions.
- All the neutrino types can have neutral current interactions



- This interaction modifies the mixing and masses in matter
- The probabilities are also different than vacuum oscillation case
- The neutrino flavour conversion in matter violate CP, CPT.

Matter Potential

- Neutrinos undergo forward elastic scattering (no momentum change)
- Energies are much below the electroweak scale, $\mathcal{H}_{eff}^{CC}(x) = \frac{G_F}{\sqrt{2}} \left[\bar{\nu}_e(x) \gamma^{\mu} (1 - \gamma^5) \nu_e(x) \right] \left[\bar{e}(x) \gamma_{\mu} (1 - \gamma^5) e \right]$
- To calculate the effective potential one needs to average over the electron background i,e compute $\langle (\bar{e}_L \gamma_\mu e_L) \rangle$: $\langle \bar{e}_L \gamma_0 e_L \rangle = N_e, \langle \bar{e}_L \vec{\gamma} e_L \rangle = \langle \vec{v_e} \rangle, \ \bar{e}_L \gamma_0 \gamma_5 e_L \rangle = \langle \vec{\sigma_e} \vec{p_e} \rangle$ $\frac{\vec{\sigma_e} \vec{p_e}}{E_e} \rangle, \ \bar{e}_L \vec{\gamma} \gamma_5 e_L \rangle = \langle \vec{\sigma_e} \rangle,$
- For unpolarized electrons at rest only the first one contributes

 $V_{CC} = \sqrt{2}G_F N_e$ For antineutrinos, $V_{CC} = -\sqrt{2}G_F N_e$ (The current for charge conjugate field is $-\overline{\psi}\gamma^{\mu}\psi$)

For detailed derivation e.g. Giunti and Kim Book

Matter Potential : Neutral Currents

One can similarly get for the neutral current

$$V_{NC} = \sqrt{2}G_F \sum_f N_f [I_{3L}^{(f)} - 2\sin^2 \theta_W Q^{(f)}] \qquad f \quad I_{3L}^{(f)} \quad Q^{(f)}$$

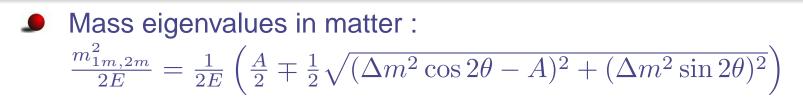
$$e \quad -1/2 \quad -1$$

$$- INSERT - -657,329p \quad 1/2 \quad 1$$

$$n \quad -1/2 \quad 0$$

Normal matter has $N_e = N_p$ and so their contribution cancels out and only the neutron contribution stays

Matter effects: Two Flavours



• The mass squared difference in matter: $\Delta m_m^2 = \sqrt{A - \Delta m^2 \cos 2\theta}^2 + \sin^2 2\theta$

• Effective mixing angle θ_M in matter :

 $\tan 2\theta_M = \frac{\Delta m_{21}^2 \sin 2\theta}{\Delta m_{21}^2 \cos 2\theta - A}$

$$\Delta m^2 \cos 2\theta = A = 2\sqrt{2}G_F n_e,$$

 $\theta_M \to \pi/4$ MSW Resonance

Mixing angle Maximal

L. Wolfenstein, PRD 17, 1978

S.P. Mikheyev, A.Yu. Smirnov, SJNP 42, 1985

Mass squared difference in Matter Minimal

Intrinsic Neutrino Properties Δm^2 , θ

Survival probability in constant density matter is $P_{ee}^{m} = 1 - \sin^{2} 2\theta_{m} \sin^{2} \left(\frac{\Delta m_{m}^{2} L}{4E}\right)$