b polarization as a probe of new physics

Yevgeny Kats

Weizmann Institute of Science

Work in progress, with

Mario Galanti, Andrea Giammanco (experiment)

Yuval Grossman, Emmanuel Stamou, Jure Zupan (theory)

Motivation

Polarization of decay products contains valuable information.

 \succ Examples: (SUSY) LH vs. RH stop/sbottom decaying to b's

(Higgs) CPV coupling $h\overline{b}\gamma^5b$ (spin correlations)

Motivation

Polarization of decay products contains valuable information.

 \succ Examples: (SUSY) LH vs. RH stop/sbottom decaying to b's

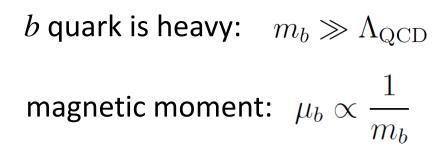
(Higgs) CPV coupling $h\bar{b}\gamma^5 b$ (spin correlations)

Despite hadronization, bottom **baryons** partly retain polarization. Falk, Peskin, PRD 49, 3320 (1994) [hep-ph/9308241]

> Evidence observed at LEP.

ALEPH: PLB 365, 437 (1996); OPAL: PLB 444, 539 (1998); DELPHI: PLB 474, 205 (2000)

Motivation

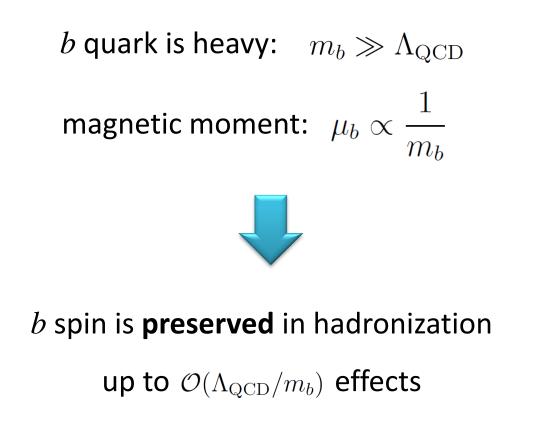

Polarization of decay products contains valuable information.

 \succ Examples: (SUSY) LH vs. RH stop/sbottom decaying to b's

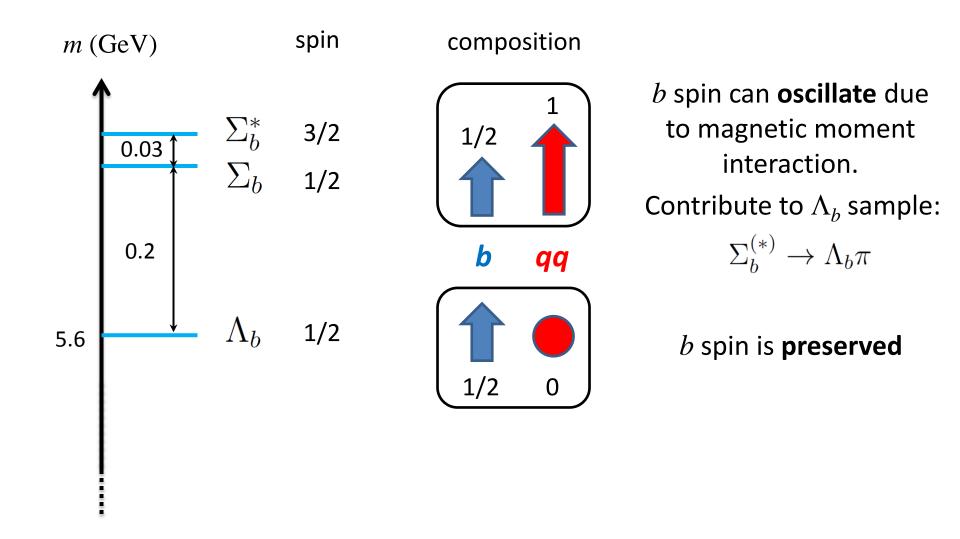
(Higgs) CPV coupling $h\bar{b}\gamma^5 b$ (spin correlations)

- Despite hadronization, bottom **baryons** partly retain polarization. Falk, Peskin, PRD 49, 3320 (1994) [hep-ph/9308241]
- Evidence observed at LEP.
 ALEPH: PLB 365, 437 (1996); OPAL: PLB 444, 539 (1998); DELPHI: PLB 474, 205 (2000)
- > What's the best way for measuring it at the LHC?
- Can we calibrate the measurement on Standard Model samples?
- > Can we use it for discovering / characterizing **new physics**?

b spin in a hadron



 \boldsymbol{b} spin is $\ensuremath{\textbf{preserved}}$ in hadronization


up to $\mathcal{O}(\Lambda_{\rm QCD}/m_b)$ effects

b spin in a hadron

Mesons (≈ 90%): decay as scalars, therefore useless Baryons (≈ 10%): much more interesting!

b spin in a baryon

For interpreting polarization measurement, need to know

$$r \equiv \frac{\mathcal{P}(\Lambda_b)}{\mathcal{P}(b)}$$

Polarization loss due to Λ_b 's from $\Sigma_b^{(*)}$ decays:

Produced in b spin basis, but decay in $\Sigma_b^{(*)}$ mass basis

$$\begin{array}{ccc} \text{diquarks} \\ S & T \\ \text{spin-0} & \text{spin-1} \\ \text{isosinglet} & \text{isotriplet} \end{array} & \begin{array}{c} \Lambda_{b,+\frac{1}{2}} = b_{+\frac{1}{2}}S_{0} \\ \Sigma_{b,+\frac{1}{2}} = -\sqrt{\frac{1}{3}} \ b_{+\frac{1}{2}}T_{0} + \sqrt{\frac{2}{3}} \ b_{-\frac{1}{2}}T_{+1} \\ \Sigma_{b,+\frac{1}{2}}^{*} = \sqrt{\frac{2}{3}} \ b_{+\frac{1}{2}}T_{0} + \sqrt{\frac{1}{3}} \ b_{-\frac{1}{2}}T_{+1} \\ \Sigma_{b,+\frac{3}{2}}^{*} = b_{+\frac{1}{2}}T_{+1} \\ \Sigma_{b,+\frac{3}{2}}^{*} = b_{+\frac{1}{2}}T_{+1} \end{array}$$

$$\begin{array}{c} \text{Example:} \ b_{+\frac{1}{2}}T_{0} = -\sqrt{\frac{1}{3}} \ \Sigma_{b,+\frac{1}{2}} + \sqrt{\frac{2}{3}} \ \Sigma_{b,+\frac{1}{2}}^{*} \end{array}$$

For interpreting polarization measurement, need to know

$$r \equiv \frac{\mathcal{P}(\Lambda_b)}{\mathcal{P}(b)}$$

Result:

$$r = \frac{1 + (1 + 4w_1)A/9}{1 + A}$$

depends on two hadronization parameters:

$$A = \frac{\operatorname{prob}(\Sigma_b^{(*)})}{\operatorname{prob}(\Lambda_b)} = 9 \frac{\operatorname{prob}(T)}{\operatorname{prob}(S)} \qquad \qquad w_1 = \frac{\operatorname{prob}(T_{\pm 1})}{\operatorname{prob}(T)}$$

For interpreting polarization measurement, need to know

$$r \equiv \frac{\mathcal{P}(\Lambda_b)}{\mathcal{P}(b)}$$

Result:

$$r = \frac{1 + (1 + 4w_1)A/9}{1 + A}$$

depends on two hadronization parameters:

$$A = \frac{\operatorname{prob}(\Sigma_b^{(*)})}{\operatorname{prob}(\Lambda_b)} = 9 \frac{\operatorname{prob}(T)}{\operatorname{prob}(S)} \qquad \qquad w_1 = \frac{\operatorname{prob}(T_{\pm 1})}{\operatorname{prob}(T)}$$

Pythia tunes: $0.24 \lesssim A \lesssim 0.45$

DELPHI: $w_1 = -0.36 \pm 0.30 \pm 0.30$ **CLEO:** $w_1 = 0.71 \pm 0.13$

For interpreting polarization measurement, need to know

$$r \equiv \frac{\mathcal{P}(\Lambda_b)}{\mathcal{P}(b)}$$

Result:

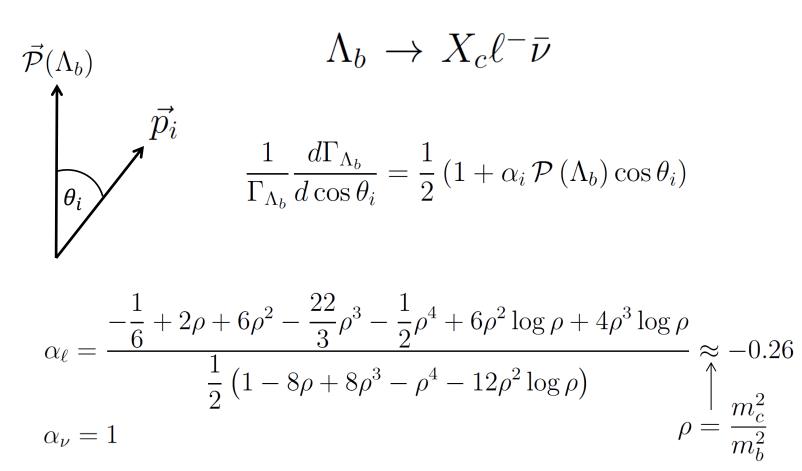
$$r = \frac{1 + (1 + 4w_1)A/9}{1 + A}$$

depends on two hadronization parameters:

$$A = \frac{\operatorname{prob}(\Sigma_b^{(*)})}{\operatorname{prob}(\Lambda_b)} = 9 \frac{\operatorname{prob}(T)}{\operatorname{prob}(S)} \qquad \qquad w_1 = \frac{\operatorname{prob}(T_{\pm 1})}{\operatorname{prob}(T)}$$

Pythia tunes: $0.24 \lesssim A \lesssim 0.45$

DELPHI: $w_1 = -0.36 \pm 0.30 \pm 0.30$ **CLEO:** $w_1 = 0.71 \pm 0.13$


It would be useful to measure *r* directly.

Λ_b decay modes

3
3
3
ł
ł
ļ
ł
3

Choose semileptonic mode, **inclusive** in charm hadrons to avoid hadronic uncertainties.

Semileptonic Λ_b decays

Polarization measurement

- > Demand a muon (with IP and $p_{T,rel}$) inside a jet.
- Reconstruct the neutrino (up to 2-fold ambiguity) by using:
 - Λ_b mass constraint
 - Line from primary to secondary vertex as Λ_b direction of motion Dambach, Langenegger, Starodumov, NIMA 569, 824 (2006) [hep-ph/0607294]
- > Measure neutrino $A_{\rm FB}$ in Λ_b rest frame

$$A_{\rm FB} \equiv \frac{N_+ - N_-}{N_+ + N_-} = f \frac{\alpha}{2} \mathcal{P}(\Lambda_b)$$

Polarization measurement

- > Demand a muon (with IP and $p_{T,rel}$) inside a jet.
- Reconstruct the neutrino (up to 2-fold ambiguity) by using:
 - Λ_b mass constraint
 - Line from primary to secondary vertex as Λ_b direction of motion Dambach, Langenegger, Starodumov, NIMA 569, 824 (2006) [hep-ph/0607294]
- > Measure neutrino $A_{\rm FB}$ in Λ_b rest frame

$$A_{\rm FB} \equiv \frac{N_+ - N_-}{N_+ + N_-} = \int \frac{\alpha}{2} \mathcal{P}(\Lambda_b)$$

 Λ_b fragmentation fraction ($\approx 10\%$)

i.e., semileptonic B-meson "background" (isotropic) dilutes $A_{\rm FB}$.

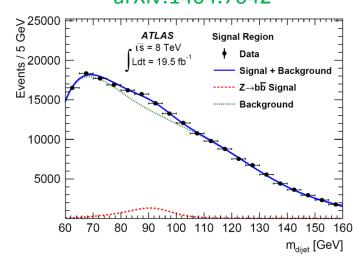
> (optional) To eliminate the B-mesons, demand the presence of $\Lambda \to p\pi^-$ in the jet (see backup slides).

Where to measure

Top pair production

- + Maximal polarization (\approx 1)
- + Large cross section
- + Easy to select a clean sample

> 3σ significance possible at ATLAS/CMS (in lepton + jets channel) with existing 8 TeV data, even for r = 0.5 (preliminary estimate).


Z production

- + Large polarization (≈ 0.94)
- + Large cross section
- Large QCD background (S/B ≈ 1/15) contributes statistical fluctuations.

Likely not measurable anytime soon.

$$\mathsf{LEP} \quad \begin{cases} \mathcal{P}(\Lambda_b) = -0.23^{+0.24}_{-0.20} + 0.08 & \text{(ALEPH)} \\ \mathcal{P}(\Lambda_b) = -0.49^{+0.32}_{-0.30} \pm 0.17 & \text{(DELPHI)} \\ \mathcal{P}(\Lambda_b) = -0.56^{+0.20}_{-0.13} \pm 0.09 & \text{(OPAL)} \end{cases}$$

arXiv:1404.7042

Where to measure

QCD production

- + Large cross section
- Unpolarized at leading order
- + Transverse polarization at NLO
- = Strong dependence on kinematics
- Significant only at low momenta $\mathcal{P}(b) \sim \alpha_s m_b/p_b$

Relevant for LHCb

Dharmaratna, Goldstein PRD 53, 1073 (1996)

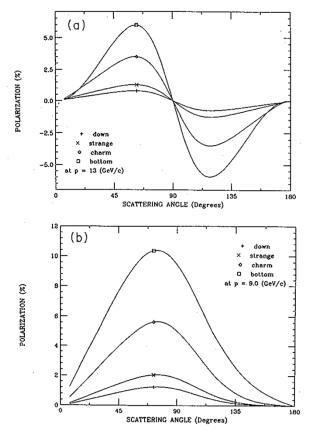


FIG. 7. Polarization of up, strange, charm, and bottom quarks at the subprocess CM momentum of (a) 13 GeV/c for gluon fusion and (b) 9 GeV/c for annihilation. Other parameters are identical to Fig. 5.

Where to measure

QCD production

- + Large cross section
- Unpolarized at leading order
- + Transverse polarization at NLO
- = Strong dependence on kinematics
- Significant only at low momenta $\mathcal{P}(b) \sim lpha_s m_b/p_b$

Relevant for LHCb

LHCb has already measured:

Measurements of the $\Lambda_b^0 \rightarrow J/\psi \Lambda$ decay amplitudes and the Λ_b^0 polarisation in pp collisions at $\sqrt{s} = 7 \text{ TeV}$

PLB 724, 27 (2013) [arXiv:1302.5578]

 $\mathcal{P}(\Lambda_b) = 0.06 \pm 0.07 \pm 0.02$

Far from optimal because the dependence on kinematics was ignored.

Dharmaratna, Goldstein PRD 53, 1073 (1996)

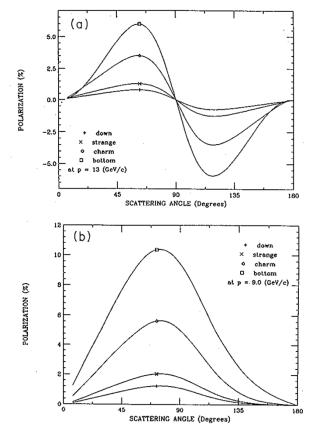


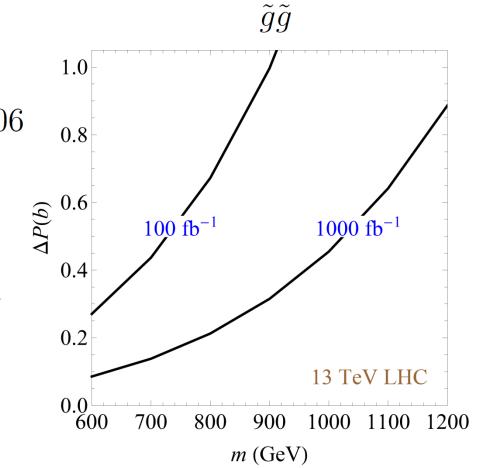
FIG. 7. Polarization of up, strange, charm, and bottom quarks at the subprocess CM momentum of (a) 13 GeV/c for gluon fusion and (b) 9 GeV/c for annihilation. Other parameters are identical to Fig. 5.

b's from new physics

Example: *b*'s from pair produced **sbottoms or stops**

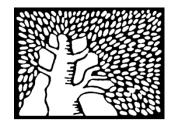
Assumptions about a future analysis:

 $\succ S/B \gtrsim 1$ $\tilde{t}\tilde{t}^*$ or $\tilde{b}\tilde{b}^*$ \blacktriangleright signal efficiency $\epsilon_S = 0.1$ 1.0 \blacktriangleright muon BR x efficiency $\epsilon_{b \to \mu} = 0.06$ 0.8 \blacktriangleright Using neutrino $A_{\rm FB}$, i.e., $\alpha = 1$ $(q)_{dV}^{(q)}$ 10 fb^{-1} 100 fb^{-1} 1000 fb^{-1} \succ Not requiring a Λ 0.4Statistical uncertainty dominates 0.2 $\Delta \mathcal{P}(b) = \frac{\sqrt{2} (1 + B/S)}{\alpha \, r \, f \sqrt{\epsilon_{b \to \mu} \, \epsilon_S \, \mathcal{L} \, \sigma}} \approx \frac{260}{\sqrt{\mathcal{L} \, \sigma}}$ 13 TeV LHC 0.0 200 100 300 400 500 $-1 < \mathcal{P}(b) < 1$ m (GeV)


600

b's from new physics

Example: *b*'s from pair produced **gluinos** (one *b* per gluino) Assumptions about a future analysis:


 $\succ S/B \gtrsim 1$ \blacktriangleright signal efficiency $\epsilon_S = 0.1$ \blacktriangleright muon BR x efficiency $\epsilon_{b \to \mu} = 0.06$ \blacktriangleright Using neutrino $A_{\rm FB}$, i.e., $\alpha = 1$ \succ Not requiring a Λ Statistical uncertainty dominates

$$\Delta \mathcal{P}(b) = \frac{\sqrt{2} (1 + B/S)}{\alpha \, r \, f \sqrt{\epsilon_{b \to \mu} \, \epsilon_S \, \mathcal{L} \, \sigma}} \approx \frac{260}{\sqrt{\mathcal{L} \, \sigma}}$$
$$-1 < \mathcal{P}(b) < 1 \qquad r = 0.7$$

b polarization as a probe of new physics

Yevgeny Kats Weizmann Institute of Science

Work in progress, with

Mario Galanti, Andrea Giammanco (experiment)

Yuval Grossman, Emmanuel Stamou, Jure Zupan (theory)

Backup slides

Effect of finite $\Sigma_b^{(*)}$ widths

$$\Delta \equiv m_{\Sigma_b^*} - m_{\Sigma_b} \approx 21 \text{ MeV}$$

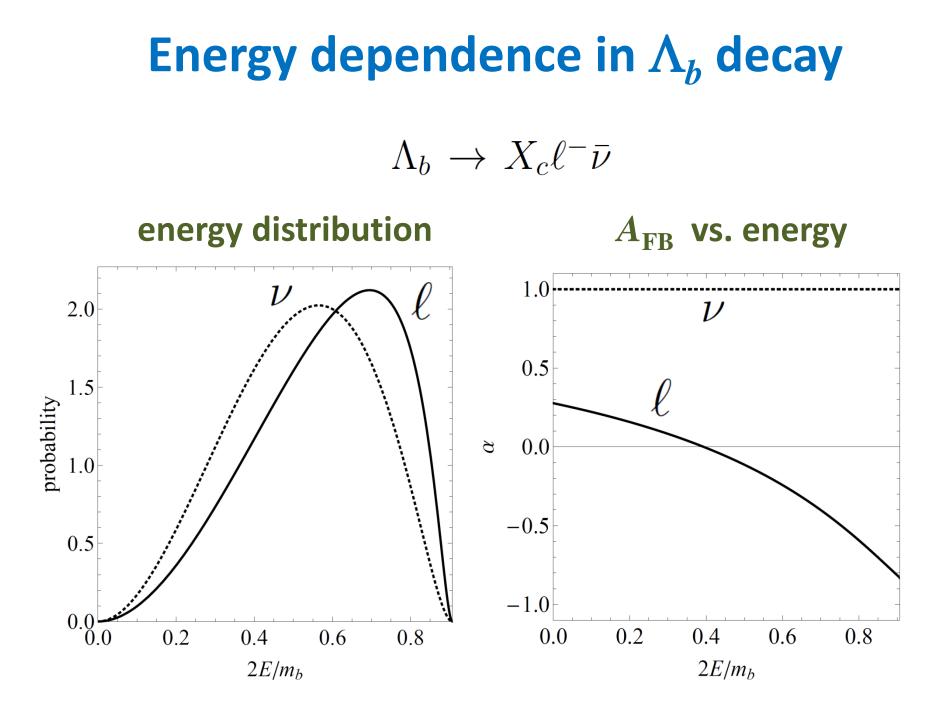
$$\Gamma \equiv \Gamma_{\Sigma_b} \approx \Gamma_{\Sigma_b^*} = 8 \pm 3 \text{ MeV}$$

$$\epsilon \equiv \left(\frac{\Gamma}{\Delta}\right)^2 \approx 0.15$$

$$r = \frac{1 + A \frac{(1 + 4w_1)/9 + \epsilon}{1 + \epsilon}}{1 + A}$$

The effect is small: suppressed by both ϵ and A

Extracting A and w_1 from anisotropy of r


 $w_1 = \frac{\operatorname{prob}(T_{\pm 1})}{\operatorname{prob}(T)}$ applies along the fragmentation axis

If b is polarized transversely, r is different.

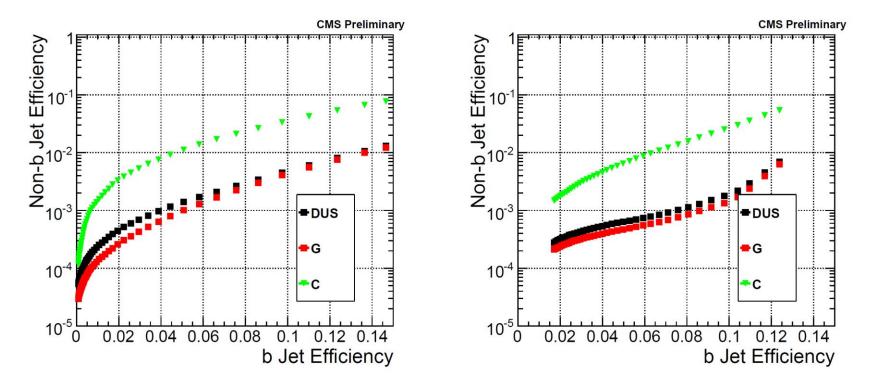
$$r_L = \frac{1 + (1 + 4w_1)A/9}{1 + A}$$

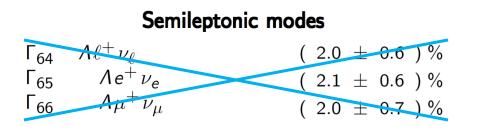
$$r_T = \frac{1 + (5 - 2w_1)A/9}{1 + A}$$

Measuring both r_L and r_T would allow determining A and w_1 .

Soft muon *b*-tagging

CMS PAS BTV-09-001 MC @ 10 TeV




Figure 9: Mistag rate versus efficiency for the "soft muon by $p_{T_{rel}}$ " (left) and "soft muon by IP" (right) taggers.

Λ requirement

Λ_c decay modes

Inclusive modes

Г ₆₇	e^+ anything	(4.5	\pm 1.7) %
Γ ₆₈	pe^+ anything	(1.8	\pm 0.9) %
Г ₆₉	Λe^+ anything			
Γ ₇₀	p anything	(50	± 16) %
Γ ₇₁	p anything (no Λ)	(12	± 19) %
Γ ₇₂	<i>p</i> hadrons			
Γ ₇₃	n anything	(50	± 16) %
Γ ₇₄	n anything (no Л)	(29	± 17) %
Γ ₇₅	Λ anything	(35	± 11) %
Γ ₇₆	Σ^\pm anything	(10	\pm 5) %
Γ ₇₇	3prongs	(24	± 8) %

Λ decay modes

Γ ₁	$p\pi^-$	(63.9 ± 0.5)%
Γ2	$n\pi^0$	(35.8 ± 0.5) %
Г ₃	$n\gamma$	$(1.75\pm0.15) imes10^{-3}$
Γ ₄	$p\pi^-\gamma$	(8.4 ± 1.4) $ imes 10^{-4}$
Γ ₅	$pe^-\overline{\nu}_e$	$(8.32\pm0.14) imes10^{-4}$
Г ₆	$p\mu^-\overline{ u}_\mu$	(1.57 ± 0.35) $ imes 10^{-4}$

Overall BR \approx 20%. Need $\Lambda \rightarrow p\pi^$ reconstruction efficiency > 50% to have statistical advantage. Will be possible with upgraded detectors (?)