b/c-quark flavor tagging and identification: past, present and future

Giacinto Piacquadio (SLAC - Stanford University)

Weizmann Institute Of Science - "Flavor of Higgs" workshop

23. June 2014

Experimental status

- Higgs boson discovery established by ATLAS and CMS at m(H) ~125 GeV.
- Discovery relies on clear signal observation in bosonic channels (γγ, WW, ZZ).
- Fermionic channels:
 - Recently >3 σ signal in H to tau tau
 - No 3σ observation yet in H to bb
- The main question today:
 - is it the Standard Model Higgs boson?
 - can we find deviations from SM predictions which hint at physics beyond SM?

ATLAS Prelim.	— σ(statistical)		Tota	Total uncertainty				
m _H = 125.5 GeV				l.theo.)	±	1σ on	μ	
	<u> </u>	o(theo	ory)					
$H \rightarrow \gamma \gamma$	+ 0.23 - 0.22 + 0.24	Phys. L	.ett. B	726 (2013	8) 88	-	+	
$\mu = 1.55_{-0.28}^{+0.33}$	- <mark>0.18</mark> + 0.17 - 0.12			I .				
$H \rightarrow ZZ^{\star} \rightarrow 4I$	+ 0.35 - 0.32 + 0.20	Phys. L	.ett. B	726 (2013	3) 88	<u> </u>		
$\mu = 1.43^{+0.40}_{-0.35}$	- 0.13 + 0.17 - 0.10			.		T	-	
$H \rightarrow WW^* \rightarrow I_V I_V$	- 0.21 + 0.23	Phys.L	ett.B72	26(2013)8				
$\mu = 0.99^{+0.31}_{-0.28}$	- 0.19 + 0.15 - 0.09				F	-1	1	
Combined H→γγ, ZZ*, WW*	+ 0.13 - 0.14 + 0.17	Phys. L	.ett. B	726 (2013	8) 88		•	
$\mu = 1.33^{+0.21}_{-0.18}$	- 0.13 + 0.12 - 0.10						· •	
				_				
W,Z H \rightarrow bb	±0.5					AS-CON	F-2013-0)79
$\mu = 0.2^{+0.7}_{-0.6}$	±0.4						1	
$\mathbf{H} \rightarrow \tau \tau$ (8TeV: 20.3 fb ⁻¹)	+ 0.3 - 0.3 + 0.4	ATLAS	CONF	-2013-10	8	-		
$\mu = 1.4^{+0.5}_{-0.4}$	- 0.3 + 0.3 - 0.2					F		
√s = 7 TeV ∫Ldt = 4.6-4.8 fb	1 -0	.5	0	0.5	5	1 1	.5	2
√s = 8 TeV ∫Ldt = 20.7/20.3	fb ⁻¹			Sign	al st	treng	th (μ	l)

$H_{iggs}^{\sigma_{YY \to H}BR(H \to XX) \approx \Gamma_{Y} \frac{\Gamma_{X}}{\Gamma_{H}}} I_{iggs}^{\sigma_{YY \to H}BR} Couplings}$

 Deviations from SM are presently looked for by defining multiplicative scale factors κ for the coupling parameters (SM expectation = 1), leaving the tensor structure unchanged.

$$\mathcal{L} = \kappa_W \frac{2m_W^2}{v} W^+_{\mu} W^-_{\mu} H + \kappa_Z \frac{m_Z^2}{v} Z_{\mu} Z_{\mu} H - \sum_f \kappa_f \frac{m_f}{v} f \bar{f} H + c_g \frac{\alpha_s}{12\pi v} G^a_{\mu\nu} G^a_{\mu\nu} H + c_\gamma \frac{\alpha}{\pi v} A_{\mu\nu} A_{\mu\nu} H$$

- Test of absolute couplings difficult
 - Total decay width not directly accessible at LHC.
- A measurement of absolute couplings is possible $\frac{1}{2}$ total width is bound
 - NEW! Measurement through interferometry, but has assumptions!
 - Upper limit from fulfilling unitarity in WW scattering (valid for SM and a large class of BSM models)

3

 $\Gamma \setminus \Gamma \mid \Gamma \mid \Gamma \mid \Gamma \mid \Gamma$

Higgs couplings (II)

• Lower limit from sum of all "visible" decay modes

- At ~125 GeV Higgs boson width is expected to be dominated by H to bb (BR ~ 60%)
 - Precise determination of H to bb would be important for extracting absolute couplings!
- Most sensitive channel is VH, H to bb (V=W/Z)
 - Leptonic signature to trigger / reduce backgrounds
 - Excellent b-quark ID required to reject light- and c-jets
 - Expected sensitivity at the end of Run-I LHC:
 - ~2σ (CMS), ~1.7σ* (ATLAS)
 - <15% error on H to bb signal foreseen by CMS with 300 inv. fb. of data

*Final ATLAS Run-I result not public yet

CI

Higgs couplings (III)

- Direct evidence of coupling to top-quarks implies observation of ttH production
 - at least 2 b-quarks in final state
- Most promising channel ttH, H to bb
 - Very challenging due to high backgrounds
 - Excellent b-quark ID required to suppress tt+light-jet backgrounds
 - 4 b-jets means it's hard to reconstruct an even broad Higgs mass peak
- Presently 0.7σ/0.5σ sensitivity (ATLAS / CMS) (~Iσ combining all decay modes)
- Measurement will become competitive in Run-II.

b/c-quark flavor ID

- Important role in Higgs physics:
 - H to bb searches
 - ttH production
 - as a handle to veto b-jets from top production (e.g.VBF H to WW)
- Will review:
 - What b-tagging is about and how it works
 - What we have achieved @ LHC in Run-I (performance + calibration)
 - What we can improve in the next run (upgraded detector, improved techniques)
- Will refer mainly to ATLAS, with a few comparisons to CMS.

We don't see b-quarks...

- A b-quark fragments typically (~87% of times) into:
 - B*, B** (excited b-hadrons)
- These decay strongly or electromagnetically ($c\tau < 10^{-16}$ s) into:
 - a b-hadron + few additional particles (which form a jet)

Relative production rates

b-hadron	Branching fraction (Γ_i/Γ)
B^+	$(40.0 \pm 1.2)\%$
B^0	$(40.0 \pm 1.2)\%$
B_S^0	$(11.4 \pm 2.1)\%$
b-baryon	$(8.6 \pm 2.1)\%$

 The b-quark fragmentation function is hard: in average most of the energy of the original b-quark (~70%) goes into the b-hadron

B-hadron decays

A b-hadron undergoes
 a weak decay with
 cτ ~ 1.5 x 10⁻¹² s

- Decay properties:
 - For a b-hadron with pT ~ 30 GeV, $\beta\gamma \sim 6 \rightarrow L = \beta\gamma c\tau \sim \sim 5 \text{ mm}$ \rightarrow Measurable displaced secondary vertex!
 - B-hadron mass is ~ 5 GeV
 - Since |Vcb| >> |Vub|, in most of the cases also a c-hadron is produced out of the b-hadron. cT (c-hadron) ~ 0.4-1 x 10⁻¹² s. This creates an additional tertiary vertex.
 - In ~42% of the cases the b-hadron decays semi-leptonically, in ~11% directly (b $\rightarrow \ell$) and in ~10% indirectly (b $\rightarrow c \rightarrow \ell$) where $\ell = e \text{ or } \mu$.
- All these properties can be exploited to identify b-jets and separate them from u,d,s-jets (light) and gluon-jets.

Typical topology in light-jets

- Most of the tracks really come directly from the quark fragmentation process.
- Few light jets present a real displaced vertex due to:
 - Hadronic interactions in the detector material (mostly on beam pipe and first pixel layers)
 - Photons converting into an electron-positron pair (track pair emitted collinearly)
 - Long lived particles: Ks/ Λ decaying to $\pi^{\dagger}\pi^{-}/p\pi^{-}$ (cT(Ks) = 2.7 cm / cT(Λ) = 7.9 cm >> cT(B)=0.46 mm)
- Badly measured tracks (hard scatter, nuclear interactions,...) / tracks with shared hits in the first pixel layers can significantly increase the rate of fake tracks / fake vertices.

Hadronic interactions

Ingredients to b-tagging

• I. Tracks

• 2. **Jets**

10

- Can only measure trajectory of charged particles
- Tracks associated to jets based on:

 $\Delta R(\vec{p}_{jet}, \vec{p}_{trk}) < \Delta R_{cut}$

(ΔR cut pT dependent)

• 3. Leptons

 Muons are used to identify semi-leptonic b-decays.

- Direction: allows to assign a "lifetime sign" to tracks
- Transverse momentum/ rapidity: exploit dependence of physics properties and detector resolution on jet kinematics

Tracking detector

PIXEL detector

Layers: 3 barrel, 3 end-caps Pixel size: 50 μ m (R ϕ) – 400 μ m (z/R) Resolution: ~10 μ m (R ϕ) – ~115 μ m (z/R) ~80M channels (ToT information)

- Impact parameter resolution of tracks determined by first layers of pixel detector
- Crucial to distinguish displaced tracks from b-hadron decays $(c\tau \sim 0.5 \text{mm})$ from tracks from fragmentation (compatible with the primary vertex).

Impact parameter resolution

• Can be parameterized as:

Intrinsic resolution at high pT

 $\sigma_X(\infty)$

 $\sigma_X(p_T) =$

Value of p_T where intrinsic resolution equals multiple scattering

- Measured in data
- After improvements in alignment iterations
 ~reached nominal resolution goal
 (wasn't the case in 2011).

Track parameter	$0.25 < \eta < 0.50$		$1.50 < \eta $	< 1.75
	$\sigma_X(\infty)$	p_X (GeV)	$\sigma_{\chi}(\infty)$	p_X (GeV)
Inverse transverse momentum $(1/p_T)$	0.34 TeV ⁻¹	44	0.41 TeV^{-1}	80
Azimuthal angle (ϕ)	70 µ rad	39	92 μ rad	49
Polar angle $(\cot \theta)$	0.7×10^{-3}	5.0	1.2×10^{-3}	10
Transverse impact parameter (d_0)	10 µ m	14	12 µ m	20
Longitudinal impact parameter $(z_0 \times \sin \theta)$	91 µm	2.3	71 µ m	3.7

Nominal track parameter resolutions:

Directly determined by first pixel layers!

Primary vertex recon

- The main challenge is the the reconstruction of multiple vertices due to pile-up.
- Present strategy: iterative vertex finder. Outliers of first vertex used to find further vertices
- "Adaptive" vertex fitter used. Downweights outliers iteration after iteration.

Event reconstructed in 2011 data with 20 vertices!

The PV error ellipses are magnified by 20x.

Ian

Online Luminosity

Month in 2010

 $\chi^{2} = \sum_{k=1}^{N} \omega_{k}(\chi_{k}^{2}) \sum_{i} (\frac{\vec{r} - \vec{r}_{k}}{\vec{\sigma}_{k}})_{i}^{2}$

Vb_l

B-tagging algorithms

- Two main categories:
 - "Lifetime" based
 - Impact parameter based
 - → exploit (in)compatibility of single tracks to PV
 - Inclusive secondary vertex based
 - → determination of weak B hadron decay vertex + production / decay properties
 - PV → b- → c-hadron decay chain based
 → more detailed determination of vertex topology
 - "Lepton-ID" based
 - \rightarrow Exploit identification of muons from B or B \rightarrow D decay

Impact parameter algorithm

$$\operatorname{sign}_{r\phi} = \operatorname{sign} \left(\sin(\phi_{jet} - \phi_{trk}) \cdot d_{0,trk} \right)$$
$$\operatorname{sign}_{3D} = \operatorname{sign} \left(\left[\vec{p}_{trk} \times \vec{p}_{jet} \right] \cdot \left[\vec{p}_{trk} \times \Delta \vec{r}_{IP} \right] \right)$$

- For each track define 2d likelihood with IP significance in rφ and z
- Assign lifetime sign to both of them
- **Compute LH as:** $LR(IP_1, IP_2, ..., IP_N) = \frac{\prod_{i=1}^{N} PDF_b(IP_i)}{\prod_{i=1}^{N} PDF_l(IP_i)}$

 $\texttt{weight}(IP_1, IP_2, ..., IP_N) = \log\left(\texttt{LR}(IP_1, IP_2, ..., IP_N)\right)$

Inclusive SV algorithm

- Finding strategy:
 - Find all displaced 2-track vertices within the jet
 - Remove all vertices with di-track mass compatible with KS, Lambda decay, or photon conversion.
 - Remove all vertices in correspondence of pixel layers (likely to stem from material interactions).
- Using only tracks from any of the non-vetoed 2-track vertices, form a single inclusive secondary vertex (only require "loose" vertex with $Prob(\chi^2)>0.1\%$)
- Combine variables:
 - invariant mass at vertex
 - # of non-vetoed 2-trk vertices
 - energy fraction of tracks at vertex w.r.t. all tracks in jets
- into a 2d+1d likelihood function.

JetFitter

- Constraints all tracks stemming from both B/D-hadron vertices to intersect Bflight axis
- Basically a new Kalman Filter relying on the "ghost track" method first introduced in SLD [SLAC-PUB-8225 (1999)]

• Two vertices

or I vertex + I single track reconstructed in ~6%/~14% of cases in real b-jets

Can be used to better separate b- from c- jets

Combination of "lifetime" algorithms

LH(IP3D)

LH(SVI)

NN(JetFitter)

weight_IP3D # 2-trk vertices Energy(vtx) / Energy (tot) Mass

vertices with > I track
tracks at vertices

I-track vertices

Mass DeltaPhi(b-momentum, b-axis) DeltaEta(b-momentum, b-axis)

Rejection = I / efficiency

 Combines the three discriminators into a single final Neural Network.

• Performance against light- and c-jets:

- For VH optimized b-tagging cut yields:
 - 70% b-tagging efficiency
 - ~5 c-jet rejection
 - ~I30-I50 light-jet rejection

And in CMS?

- Very similar geometry of pixel detector (despite all-silicon tracker). Pixel size 100x150 μm instead of 50x400 μm.
- 3D impact parameter resolution very similar to ATLAS (momentum resolution much better in CMS, but doesn't impact b-tagging)
- Most advanced algorithm "CSV" (Combined Secondary Vertex)
 - Combination of impact parameter, "pseudo-vertex" and vertex algorithm
- Comparison of c-jet and light-jet rejection factors for 70% efficiency working point:
 - **c-jets**: ~5 (ATLAS) vs ~5 (CMS)
 - light-jets: ~130 (ATLAS) vs ~50 (CMS)
- Take comparison with some care (depends a bit on sample/cuts)

Where does it matter? ttH...

- Light jet rejection is for example critical in ttH, H to bb
- Below a comparison of the tt+light jet contamination in the main I-lepton channel signa regions
- Light jet rejection is a bit less critical in VH, H to bb.
 CMS analysis
 ATLAS analysis

	-	-
	5 jets	\geq 6 jets
	\geq 4 b-tags	\geq 4 b-tags
tītH(125)	5.2 ± 1.4	8.3 ± 2.3
tt+lf	79 ± 34	71 ± 36
tt+b	29 ± 17	33 ± 20
$t\bar{t} + b\bar{b}$	38 ± 21	78 ± 47
$t\bar{t}+c\bar{c}$	32 ± 18	52 ± 31
tīV	2.5 ± 0.7	5.8 ± 1.8
Single t	10.3 ± 5.3	7.3 ± 3.1
V+jets	1.9 ± 1.7	1.2 ± 1.3
Diboson	0.1 ± 0.1	0.2 ± 0.1
Total bkg	193 ± 62	249 ± 90
Data	219	260

	5 jets,	\geq 6 jets,
	\geq 4 <i>b</i> -tags	\geq 4 <i>b</i> -tags
<i>t</i> t <i>H</i> (125)	$11\pm1\pm9$	$28\pm2\pm23$
<u>tt+ light</u>	78 ± 9	78 ± 11
$t\overline{t}+c\overline{c}$	45 ± 12	75 ± 19
$t\overline{t}+b\overline{b}$	149 ± 20	300 ± 40
$t\overline{t}+V$	3.3 ± 1.0	8.9 ± 2.7
non- <i>tī</i>	23.2 ± 2.5	18.8 ± 2.2
Total	309 ± 11	507 ± 27
Data	283	516

Rejecting c-jets

- Historically, most effort invested in light-jet rejection.
- More recently, dedicated algorithms to reject c-jets.
- Explicitly train NN / BDT against c-jets.
- Take advantage of secondary vertex properties and topology from JetFitter (decay chain fit).

	ε (B)	R(c)	R(light)		ε (B)	R(c)	R(light)
	80%	~3	~27		80%	~3	~29
MVI	70%	~5.0	~150	MVIc	70%	~5.3	~136
	60%	~8.0	~650		60%	~10.5	~450
	50%	~14	~2500		50%	~26	~1400
	30%	~78	~40k		30%	~212	~16k

Where does it matter?VH...

- In the VH, H to bb analysis, in the I-lepton channel (WH)
- ttbar is the leading background (and will be more so at 14 TeV)

D

b-tagging doesn't help!

low pT(V)

b+c-jets: c-jet rejection crucial!

From c-jet rejection to c-tagging

- Neural Network trained against both light- and c-charm jets, with three output nodes (Pb,Pc,Pu)
- Uses combination of cuts on log(Pb/Pc) and log(Pc/Pu)
- Presently used for SUSY analysis with c-quarks in the final state
- Presently proposed working points:
 - c-tag eff: 20% \rightarrow b-jet eff: 20%, light-jet eff: ~0.7%
 - c-tag eff: 95% \rightarrow b-jet eff. 50%, light-jet eff: ~100%
- Algorithm being refined through the use of Deep Neural Networks
- But main problem is that in most of the discriminant variables c-jets are always between light- and b-jets.

Higgs to cc ?

- Higgs to cc BR is ~2.9%, against ~57% of bb (20 times smaller)
- "C"-tagging for now is not able to reduce b-jet much more than c-jets:
 - Efficiency for c-jets significantly lower than for b-jets (ϵ_c^2)
 - Background from b-jets not significantly suppressed
 - Additional backgrounds from c+b and c+c (e.g. top rejection at high pT won't work anymore)
- Without really a significant improvement in b-tagging, Higgs to cc seems out of reach.

Performance calibration

- Performance is not everything
- Efficiencies/rejections need to be calibrated with data
- The calibration uncertainty can be a limiting systematics in analysis with b-jets (dominant systematics in the VH EPS 2013 analysis!)

- Both ATLAS and CMS have developed a complete set of calibration measurements, for b-, c- and light-jets
- Will briefly describe the main techniques

B-jet calibration in ATLAS

 Previously main calibration method was "pTrel", based on having two nearly independent taggers, a "muon" and a "lifetime" based one

- The dominant systematics with this method is the extrapolation of the MC-to-data Scale Factor from b-jets with B $\rightarrow \mu$ +X to inclusive b-jets
 - ATLAS estimated such uncertainty to be ~4%, but no good way to rigorously justify it (+ no correlation model vs pT).
 - CMS claims this is a percent level effect and therefore negligible

B-jet calibration in ATLAS (II)

- Will present most precise of the calibrations based on ttbar events.
- Within the H to bb analysis group, we designed a new calibration method, based on applying a maximum likelihood fit to di-leptonic ttbar events with 2 jets:

$$\mathcal{L}(p_{T,1}, p_{T,2}, w_1, w_2) = \begin{bmatrix} f_{bb} PDF_{bb}(p_{T,1}, p_{T,2}) PDF_b(w_1|p_{T,1}) PDF_b(w_2|p_{T,2}) \\ + f_{bb} PDF_{bl}(p_{T,1}, p_{T,2}) PDF_b(w_1|p_{T,1}) PDF_l(w_2|p_{T,2}) \\ + f_{bb} PDF_{ll}(p_{T,1}, p_{T,2}) PDF_l(w_1|p_{T,2}) PDF_l(w_2|p_{T,2}) \\ + 1 \leftrightarrow 2]/2,$$

where:

- $f_{bb}f_{bl}$ and $f_{ll} = 1 f_{bb} f_{bl}$ are the overall two jet flavour fractions.
- PDF_f (w|p) is the PDF (probability density function) for the *b*-tagging weight for a jet of flavour *f*, conditionally dependent on p_T^2 .
- $PDF_{f_1f_2}(p_{T,1}, p_{T,2})$ is the two-dimensional PDF for $[p_{T,1}, p_{T,2}]$ for the flavour combination $[f_1, f_2]$.

B-jet calibration in ATLAS (III)

- Flavor fractions and non b-jet efficiencies from MC.
- Fit extracts from data b-jet efficiency in bins of pT(jet)
- B-efficiency uncertainty reduced from ~5% to ~2% in intermediate pT region
- Leading systematics:
 - Top pair modeling

b-jet efficiency scale factor 1.1 1:1 60 o-jet efficiency **ATLAS** Preliminary $\int L dt = 20.3 \text{ fb}^{-1}$ **ATLAS** Preliminary $\int L dt = 20.3 \text{ fb}^{-1}$ = 8 TeV 0.8 SF~0.98 0.6 0.4 tt PDF (MC) tt PDF (tot. error) MV1, ⊆, = 70% MV1, ⊆, = 70% 0.8 tt PDF (Data) PDF (stat. error) 2×10² 10^{2} 2×10² 10^{2} 20 30 40 20 30 40 Jet p₋ [GeV] Jet p₇ [GeV]

SF = eff(data)/eff(MC)

- Amount of residual non-top background (Z+jets, diboson)
- Jet energy scale, jet energy resolution
- Uncertainty on pT dependence still significantly impacts ATLAS top mass measurement.

B-jet calibration in CMS

- While these methods introduce some MC dependence, they have the advantage that they allow to calibrate jets well above 200 GeV (for which ATLAS right now only uses MC extrapolation).
- At lower pT (20-200 GeV) a precision of 2-4% is obtained. Still relies mostly on multijet events, while the top based measurement has still larger uncertainties.

Light-jet calibration

0.05

0.04

0.03

0.02

0.0

- Relying mainly on negative tag method
 - Hypothesis: tracks from light jets are symmetric with respect to their lifetime sign.
- Procedure: use "fake tracks or vertices" with negative lifetime sign to emulate the ones with positive sign
- However two corrections are needed to ε(neg):
 - $k_{hf} = \varepsilon_l^{\text{neg}} / \varepsilon_{\text{inc}}^{\text{neg}}$ due to the contamination of tracks from b- and c-jets
 - $k_{II} = \varepsilon_I / \varepsilon_I^{\text{neg}}$, because of tracks in light jets which are not symmetric in lifetime sign (e.g. from conversions, Ks, Λ s, ...) **Mistag rate** 0.06
- Mistag rate determined as:

 $\varepsilon_l = \varepsilon_{inc}^{neg} k_{hf} k_{ll}$

- Errors of the order of ~30%
- CMS uses ~same method, but ends up with smaller uncertainties.

Upgrade for Run-II

IBL:

- Additional pixel layer R~3.3 cm
- Pixel size 50x250 μm
- ATLAS "b"-layer:
- R~5.1 cm, pixel size 50x400μm
- b-Layer IST Modules Stave Support Beam Pipe

- Insertable B Layer: new pixel layer, closer to interaction point
- It is installed on top of a new (thinner) beam pipe
- Was inserted into ATLAS on May 7th 2014.
- Planar sensors in central region, 3d sensors in forward region.

B-tagging performance with IBL

• Tracking resolution: multiple scattering term reduced by ~70%, intrinsic resolution in z improved by ~80% for $|\eta|$ <0.4

- B-tagging (top pair events):
 - factor 2 improvement in light-jet rejection
 - counteracts degradation due to up to ~50 additional pile-up interactions
- More detailed studies show:
 - Improvement mostly at low pT (up to x3-4).
 - Performance for pT>200 GeV nearly unchanged.

Tracking in the core of high pT jets

- Neural Network based clustering: allows to identify and split correctly most of the shared clusters
- Status: already commissioned with present pixel detector, now being retuned for IBL.
- Aim: be able to exploit the improved track resolution also at high pT!

- Degradation due to collimated tracks in core of high pT jets: for R~3cm already relevant at pT ~ O(200 GeV)
 - relevant for VH analysis at high pT(V)

Beyond Run-II

- Phase-I Upgrade
 - Instantaneous luminosity up to ~2.2 x 10^{34} cm⁻² s⁻¹ (µ~50?) \rightarrow Run from 2019 to 2012 to get ~300 fb⁻¹
- Phase-II Upgrade (High Lumi LHC)
 - Instantaneous luminosity up to ~5 x 10^{34} cm⁻² s⁻¹(µ~140?) → Run from 2023 to 2034 to get ~3000 fb⁻¹
- Inner Detector Upgrade
 - CMS: for Phase-I (ATLAS plans to live with present detector + IBL) [TDR 2012]
 - ATLAS: for Phase-II, all-silicon Inner Detector [Lol 2012]

Upgrade of ATLAS Inner Detector (ITK)

r (B

- Present pixel detector designed to survive until ~400 fb-1, IBL until ~850 fb-1
- SCT and TRT not be able to cope with High Lumi occupancy
 → build more granular all-silicon detector
- Barrel:
 - Presently: 3 pixel, 4 SCT, TRT
 - Proposed: 4 pixel, 3 short-strip, 2 long-strip layers
- 3 \rightarrow 6 pixel discs
- Plan to use ID earlier in trigger chain (100 kHz → 200-500 kHz, challenging!)

New pixel detector
Withstand 10¹⁶ n_{eq} / cm²
60M → 600M channels
25x150 µm pixels
Planar, 3d or diamond

Projected performance

 9 → II hits per track, to suppress fakes

Existing ID with IBL	Phase-II tracker
no pile-up	200 events pile-up
$\sigma_x(\infty)$	$\sigma_x(\infty)$
0.3	0.2
8	8
65	50
	no pile-up $\sigma_x(\infty)$ 0.3 8

CMS upgrade for Phase-I

- Also move to 4 pixel layers in barrel (as in ATLAS after addition of IBL)
- First layer $4.4 \rightarrow 3$ cm
- Pixel size still 100x150 µm

B-tagging performance

- Without pile-up 3x better light-jet rejection @ 70% efficiency
- Better with respect to the current ATLAS upgrade with IBL because of the significant decrease in material budget
- Will allow to efficiently counteract the effect of pile-up.

Prospects for Higgs couplings...

• Projections publicly available for CMS, which rely on the performance of the upgraded detector (to counteract the effect of pile-up).

Scenario 2 = theory systematics / 2

	Uncertainty (%)					
Coupling	$300 {\rm ~fb^{-1}}$		3000 fb^{-1}			
	Scenario 1	Scenario 2	Scenario 1	Scenario 2		
κ_{γ}	6.5	5.1	5.4	1.5		
$\kappa_\gamma \ \kappa_V$	5.7	2.7	4.5	1.0		
κ_q	11	5.7	7.5	2.7		
κ_b	15	6.9	11	2.7		
κ_t	14	8.7	8.0	3.9		
$\kappa_{ au}$	8.5	5.1	5.4	2.0		

- Predictions are hard, as the main problem is controlling the backgrounds to levels of accuracy of per mille, which is VERY challenging!
 - Here the assumption is made that systematic uncertainties also scale with luminosity. So these are rather indications of the maximum ultimative precision one could reach, rather than solid predictions.
- Nevertheless it shows the incredible potential of 300 or 3000 fb^{-'} of LHC data.

Summary and outlook

 Identification of b-quark jets in LHC Run-I matched and exceeded expectations

→ Can select 70% of b-jets, with well below 1% light-jet fake rates

- Calibration for b-jets reached a precision of 2-4% over most of the pT spectrum (against ~5% of most optimistic assumptions before start of data taking)
- Rejection of c-jets has been significantly improved, but more work needed to reach decent c-tagging performance
- The insertion of IBL in ATLAS or, in the future, the tracker upgrades of ATLAS and CMS will further improve the performance, despite the more and more demanding high pile-up conditions.
- Exciting times are (still!) ahead of us!