

HIGGS COUPLINGS : AN EXPERIMENTAL VIEW

André David (CERN)

The flavor of Higgs

23-26 June 2014 Weizmann Institute of Science Europe/Zurich timezone

The distinctive taste [of this Higgs]

$flavor \mid `flavor \mid \quad (\mathsf{Brit}.flavour)$

noun

- 1 the distinctive taste of a food or drink: the yogurt comes in eight fruit flavors | adding sun-dried tomatoes gives the sauce extra flavor.
 - the general quality of taste in a food: no other cracker adds so much flavor to the cheese.
 - a substance used to alter or enhance the taste of food or drink; a flavoring: we use vanilla and almond flavors.
- 2 [in sing.] an indication of the essential character of something: the extracts give a flavor of the content and tone of the conversation.
 - [in sing.] a distinctive quality or atmosphere: whitewashed walls and red pantiles gave the resort a Mediterranean flavor.
- 3 a kind, variety, or sort: various flavors of firewall are evolving.
- **4** Physics a quantized property of quarks that differentiates them into at least six varieties (up, down, charmed, strange, top, bottom). Compare with **COLOR**.

degustation The flavor of Higgs

23-26 June 2014 Weizmann Institute of Science Europe/Zurich timezone

(self-inflicted) Mission: impossible

	R		Ś
	Fig	ures	
(cps) (cps)	(cs) (jpz)		entropy of the second s
eres and ere	(CES) (IDES)	d to the second	dependence of the second secon
(cps) (jpc)	e de la construcción de la const	A state of the sta	 Section of Land W Section of Land W<
(ps) (pc)	And the second s	New Rel(1,10) Rel(1,10) New Rel(1,10)	
(cps) (jpcg)		eps) (jpcs)	(cps) (jpcs)
y 	(ps) (jpg)	2	
(cps) (pcs)	The second secon	(eps) (jpog)	

ATLAS						
Channel		Conf	erence note	L	Date	
Charged Higgs tau nu + jets		ATLA	AS-CONF-2013-090	20 ft	0-1 27/09/	2013
High Mass WW(IvIv)		ATLA	AS-CONF-2013-067	21 ft	D-1 18/07/	2013
Higgs to Diphoton differentia	al cross sections	ATLA	S-CONF-2013-072	21 ft	D-1 18/07/	2013
Higgs in VH(WW)		ATLA	AS-CONF-2013-075	25 ft	D-1 18/07/	2013
Higgs in VH(bb)		ATLA	S-CONF-2013-079	25 ft	D-1 18/07/	2013
ttH (diphoton)		ATLA	S-CONF-2013-080	20 ft	D-1 25/07/	2013
FCNC top to Higgs (diphoto	n) Charm	ATLA	S-CONF-2013-081	25 ft	D-1 25/07/	2013
	Channel		Conference note	L		Date
	Spin Combination	ı	ATLAS-CONF-2013-0	040 u	p to 25 fb	
	Couplings Combi	nation	ATLAS-CONF-2013-0) <u>34</u> –	-	* e
	Higgs to Diphotor	n spin	ATLAS-CONF-2013-0	29	×	
	Higgs to WW(IvIv)) spin	ATLAS-CONF-2013-0	031 2		11/03
	Higgs to WW(IvIv))	ATLAS-CONF-2013-0	2	5 fb-1	11/03
	2HDM WW(Iviv)		ATLAS-CONF-2013-0	027 1	3 fb-1	11/03
	Combined of Mas	ss	ATLAS-CONF-2013-0)14 u	p to 25 fb-1	05/03
	Higgs to Diphotor	ı	ATLAS-CONF-2013-0	012 2	5 fb-1	05/03
	Higgs to 4 leptons	s	ATLAS-CONF-2013-0	013 2	5 fb-1	05/03
	ZH (invisible deca	ays)	ATLAS-CONF-2013-0	011 1	8 fb-1	05/03

Higgs to dimuon

Oct-2013	Z(bb)H, H -> invisible	TWiki, PAS
Oct-2013	SM H -> mumu	TWiki, PAS
Oct-2013	ttH Combination	TWiki
Sep-2013	Full 8 TeV dataset: ttH, H -> multi-leptons	TWiki, PAS
Aug-2013	Full 8 TeV dataset: VBF H -> invisible	TWiki, PAS
Aug-2013	Full 7+8 TeV dataset: VBF H -> WW	TWiki, PAS
Jul-2013	Full 8 TeV dataset: ttH, H -> bb or tautau	TWiki, PAS
Jul-2013	Full (dataset: H -> ZZ -> 2l2j	TWiki, PAS
Jul-20	lataset: h -> 2a + X -> 4mu + X	TWiki, PAS
	Jataset: VH, H -> invisible	TWiki, PAS
20	. eV dataset: VH, H -> WW(2l2nu) + V -> jj	TWiki, PAS

ull 7+8 TeV dataset: Higgs properties from H -> gamma gamma	TWiki, PAS
---	------------

May-2013	Full 8 TeV dataset: VBF H, H -> bb	TWiki, PAS
May-2013	Full 8 TeV dataset: ttH, H -> gamma gamma	TWiki, PAS
May-2013	Full 7+8 TeV dataset: VH, H -> bb	TWiki, PAS
May-2013	Full 8 TeV dataset: H -> WW -> InuJ	TWiki, PAS
May-2013	Full 7+8 TeV dataset: H -> ZZ -> 2l2nu	TWiki, PAS
Apr-2013	Moriond Higgs Combination	TWiki, PAS
Mar-2013	Full 7+8 TeV dataset: H -> gamma gamma	TWiki, PAS
Mar-2013	Full 7+8 TeV dataset: H -> ZZ -> 4I	TWiki, PAS
Mar-2013	Full 7+8 TeV dataset: H -> WW -> 2l2nu	TWiki, PAS
Mar-2013	Full 7+8 TeV dataset: H -> tau tau	TWiki, PAS
Mar-2013	Full 7+8 TeV dataset: H -> Z gamma	TWiki, PAS
Mar-2013	Full 7+8 TeV dataset: H -> WWW -> 3l3nu	TWiki, PAS
Mar-2013	Full 7+8 TeV dataset: VH -> tau tau	TWiki, PAS

Present a coherent view of present-day results of Higgs couplings from the LHC and Tevatron experiments.
 Any omission or mistake are the speaker's fault (send email).

ATLAS-CONF-2013-010 21 fb-

ATLAS-CONF-2013-009 25 fb-

measuring.higgs@cern.ch Flavor of Higgs 2014

05/03/2013

05/03/2013

How SM Higgses are born

6

[http://cern.ch/go/cWH8] [http://cern.ch/go/SnJ8]

measuring.higgs@cern.ch

Flavor of Higgs 2014

How SM Higgses die

[http://cern.ch/go/qkh6] [arXiv:1208.1993]

Couplings and kinematics drive BR (bb, WW, τττ, ZZ).
 Decays with photons (γγ, Ζγ) through loops.

First things first: the mass

measuring.higgs@cern.ch Flavor of Higgs 2014

-2InA

- Slight difference in ATLAS results:
 - $m_{H}^{\gamma \gamma} m_{H}^{ZZ} = 1.47$ ±0.67(stat.) ±0.28(syst.) GeV
 - **□** 1.97σ (p=4.9%).
- Using more conservative energy scale uncertainties: 1.8σ (p=7.5%).

Oversimplified big picture

★ "seen" ★ "tried" 'impossible"	н	_→b	b	H-	ightarrow T	τ	H	→W	W	н	—→ Z	Z	H-	$ ightarrow$ γ	γ	H-	→Z	r	H	→in	١٧.	H-	$\rightarrow \mu$	μ	н Н	l→c →H	c H
	Т	А	С	т	А	С	т	А	С	т	А	С	Т	А	С	т	А	С	Т	А	С	т	А	С	Т	А	С
ggH	-	-	-	☆	*	*	☆	*	*	☆	*	*	☆	*	*	-	☆	☆				-	☆	☆	-		
VBF			☆	☆	*	*		*	*		*	☆		*	☆	-		☆			☆	-		☆	-		
VH	*	☆	*	☆		☆	☆	☆	☆		☆	☆		☆	☆	-				☆	☆	-			-		
ttH		☆	☆	☆		☆	☆							☆	☆	-						-			-		

□ Still much to explore on the rarer ends.

(to the right and to the bottom) (and outside this picture 🗮)

Relative signal strengths

Ņ

[arXiv:1303.6346] [ATLAS-CONF-2014-009] [CMS-PAS-HIG-13-005]

Production mechanisms

[ATLAS-CONF-2014-009] [CMS-PAS-HIG-13-005]

Scale fermion-mediated (ggH & ttH) and vector-boson-mediated (VBF & VH) together.

measuring.higgs@cern.ch Flavor of Higgs 2014

Production mechanisms

CERN

13

[ATLAS-CONF-2014-009] [CMS-PAS-HIG-13-005]

• > 3 σ evidence for $\mu_{VBF,VH} / \mu_{ggH,ttH}$ > 0 in both experiments.

Couplings deviations

[arXiv:1209.0040]

- □ Single state, spin 0, and CP-even.
- □ Narrow-width approximation: ($\sigma \times BR$) = $\sigma \cdot \Gamma / \Gamma_{H}$.

Couplings deviations

[arXiv:1209.0040]

Contributions resolved at NLO QCD and LO EWK.
 Peg the as-of-yet unmeasured to "closest of kin".

measuring.higgs@cern.ch Flavor of Higgs 2014

Couplings deviations

[arXiv:1209.0040]

Total width as dependent function of other K.
 Total width scaled as free parameter.

Probing custodial symmetry

B [arXiv:1209.0040]

	Probi	ng custodial symmetry assuming no invisible o	or undetectable wid	ths			
	Free par	rameters: κ_Z , λ_{WZ} (= κ_W/κ_Z), κ_f (= $\kappa_t = \kappa_b = \kappa_t$).					
ZI		$ m H ightarrow \gamma\gamma$	$\mathrm{H} \to \mathrm{ZZ}^{(*)}$	${ m H} ightarrow { m WW}^{(*)}$	${ m H} ightarrow { m b} { m \overline{b}} \qquad { m H} ightarrow \tau^- \tau^+$		
	ggH	$\kappa_{\rm f}^2 \cdot \kappa_{\gamma}^2(\kappa_{\rm f},\kappa_{\rm f},\kappa_{\rm f},\kappa_{\rm Z}\lambda_{\rm WZ})$	$\kappa_f^2 \cdot \kappa_Z^2$	$\kappa_{\rm f}^2 \cdot (\kappa_{\rm Z} \lambda_{\rm WZ})^2$	$\kappa_f^2 \cdot \kappa_f^2$		
	$t\overline{t}H$	$\kappa_{ m H}^2(\kappa_i)$	$\kappa_{ m H}^2(\kappa_i)$	$\kappa_{ m H}^2(\kappa_i)$	$\kappa_{ m H}^2(\kappa_i)$		
	VBF	$\frac{\kappa_{\rm VBF}^2(\kappa_{\rm Z},\kappa_{\rm Z}\lambda_{\rm WZ})\cdot\kappa_{\gamma}^2(\kappa_{\rm f},\kappa_{\rm f},\kappa_{\rm f},\kappa_{\rm Z}\lambda_{\rm WZ})}{\kappa_{\rm H}^2(\kappa_i)}$	$\frac{\kappa_{\rm VBF}^2(\kappa_{\rm Z},\kappa_{\rm Z}\lambda_{\rm WZ})\cdot\kappa_{\rm Z}^2}{\kappa_{\rm H}^2(\kappa_i)}$	$\frac{\kappa_{\rm VBF}^2(\kappa_{\rm Z},\kappa_{\rm Z}\lambda_{\rm WZ})\cdot(\kappa_{\rm Z}\lambda_{\rm WZ})^2}{\kappa_{\rm H}^2(\kappa_i)}$	$\frac{\kappa_{\rm VBF}^2(\kappa_{\rm Z},\kappa_{\rm Z}\lambda_{\rm WZ})\cdot\kappa_{\rm f}^2}{\kappa_{\rm H}^2(\kappa_i)}$		
	WH	$\frac{(\kappa_{\rm Z}\lambda_{\rm WZ})^2{\cdot}\kappa_{\gamma}^2(\kappa_{\rm f},\kappa_{\rm f},\kappa_{\rm f},\kappa_{\rm Z}\lambda_{\rm WZ})}{\kappa_{\rm H}^2(\kappa_i)}$	$\frac{(\kappa_Z \lambda_{WZ})^2 \cdot \kappa_Z^2}{\kappa_H^2(\kappa_i)}$	$rac{(\kappa_{\mathrm{Z}}\lambda_{\mathrm{WZ}})^2\cdot(\kappa_{\mathrm{Z}}\lambda_{\mathrm{WZ}})^2}{\kappa_{\mathrm{H}}^2(\kappa_i)}$	$rac{(\kappa_{ m Z}\lambda_{ m WZ})^2\cdot\kappa_{ m f}^2}{\kappa_{ m H}^2(\kappa_i)}$		
	ZH	$\frac{\kappa_Z^2 \cdot \kappa_\gamma^2(\kappa_{\rm f},\kappa_{\rm f},\kappa_{\rm f},\kappa_{\rm Z}\lambda_{\rm WZ})}{\kappa_{\rm H}^2(\kappa_i)}$	$rac{\kappa_{ m Z}^2\cdot\kappa_{ m Z}^2}{\kappa_{ m H}^2(\kappa_i)}$	$\frac{\kappa_{\rm Z}^2 \cdot (\kappa_{\rm Z} \lambda_{\rm WZ})^2}{\kappa_{\rm H}^2(\kappa_i)}$	$rac{\kappa_Z^2\cdot\kappa_{ m f}^2}{\kappa_{ m H}^2(\kappa_i)}$		
\bigcirc	Probin	ng custodial symmetry without assumptions o	on the total width				
	Free par	rameters: $\kappa_{ZZ} (= \kappa_{Z} \cdot \kappa_{Z} / \kappa_{H}), \lambda_{WZ} (= \kappa_{W} / \kappa_{Z}), \lambda_{FZ} (= \kappa_{W} / \kappa_{Z})$	$\kappa_{\rm f}/\kappa_{\rm Z}$).				
ATLAS		${ m H} ightarrow \gamma\gamma$	$\mathrm{H} \to \mathrm{ZZ}^{(*)}$	${ m H} ightarrow { m WW}^{(*)}$	$H \rightarrow b\overline{b}$ $H \rightarrow \tau^{-}\tau^{+}$		
	ggH $t\overline{t}H$	$\kappa_{\mathrm{ZZ}}^2 \lambda_{FZ}^2 \cdot \kappa_{\gamma}^2(\lambda_{FZ},\lambda_{FZ},\lambda_{FZ},\lambda_{\mathrm{WZ}})$	$\kappa_{ZZ}^2\lambda_{FZ}^2$	$\kappa_{\rm ZZ}^2\lambda_{\rm FZ}^2\cdot\lambda_{\rm WZ}^2$	$\kappa_{ZZ}^2\lambda_{FZ}^2\cdot\lambda_{FZ}^2$		
	VBF	$\kappa_{\mathrm{ZZ}}^2\kappa_{\mathrm{VBF}}^2(1,\lambda_{\mathrm{WZ}}^2)\cdot\kappa_{\gamma}^2(\lambda_{FZ},\lambda_{FZ},\lambda_{FZ},\lambda_{\mathrm{WZ}})$	$\kappa^2_{ m ZZ}\kappa^2_{ m VBF}(1,\lambda^2_{ m WZ})$	$\kappa^2_{ m ZZ}\kappa^2_{ m VBF}(1,\lambda^2_{ m WZ})\cdot\lambda^2_{ m WZ}$	$\kappa^2_{ m ZZ}\kappa^2_{ m VBF}(1,\lambda^2_{ m WZ})\cdot\lambda^2_{FZ}$		
	WH	$\kappa^2_{\mathrm{ZZ}}\lambda^2_{\mathrm{WZ}}\cdot\kappa^2_{\gamma}(\lambda_{FZ},\lambda_{FZ},\lambda_{FZ},\lambda_{\mathrm{WZ}})$	$\kappa_{\mathrm{ZZ}}^2 \cdot \lambda_{\mathrm{WZ}}^2$	$\kappa^2_{ m ZZ}\lambda^2_{ m WZ}\cdot\lambda^2_{ m WZ}$	$\kappa^2_{ m ZZ} \lambda^2_{ m WZ} \cdot \lambda^2_{FZ}$		
	ZH	$\kappa_{\mathrm{ZZ}}^2 \cdot \kappa_{\gamma}^2(\lambda_{FZ},\lambda_{FZ},\lambda_{FZ},\lambda_{\mathrm{WZ}})$	κ_{ZZ}^2	$\kappa^2_{ m ZZ} \cdot \lambda^2_{ m WZ}$	$\kappa^2_{ZZ} \cdot \lambda^2_{FZ}$		

18

CERN

Probing custodial symmetry

[arXiv:1303.6346] [ATLAS-CONF-2014-009] [CMS-PAS-HIG-13-005]

Weak bosons and fermions

20 [arXiv:1209.0040]

Weak bosons and fermions

21

[arXiv:1303.6346] [ATLAS-CONF-2014-009] [CMS-PAS-HIG-13-005]

	Tevatron	ATLAS	CMS
p(SM)	-	10%	< 1 <i>o</i>

Weak bosons and fermions

[ATLAS-CONF-2014-009] [CMS-PAS-HIG-13-005]

Composite (R.Contino)

[http://cern.ch/go/W96V]

Leading effects in tree-level couplings and Zγ rate

$$c_V, c_u, c_d = 1 + O\left(\frac{v^2}{f^2}\right)$$
 $\qquad \frac{\Gamma(h \to Z\gamma)}{\Gamma_{SM}} = 1 + O\left(\frac{v^2}{f^2}\right)$ $\qquad f = \text{Higgs decay constant}$
 $m_{ ext{new}} = g_*f \lesssim 4\pi f$

Red points at $(v/f)^2 = 0.2, \ 0.5, \ 0.8$

measuring.higgs@cern.ch Flavor of Higgs 2014

Looking for new particles

[arXiv:1209.0040]

measuring.higgs@cern.ch Flavor of Higgs 2014

Looking for new particles in loops

25

[ATLAS-CONF-2014-009] [CMS-PAS-HIG-13-005]

A further take on loops

[CMS-PAS-HIG-13-005]

Looking for new particles

[ATLAS-CONF-2014-009] [CMS-PAS-HIG-13-005]

measuring.higgs@cern.ch Flavor of Higgs 2014

Probing the fermion sector

 \mathbf{Z}

 \mathbf{ZH}

28 [arXiv:1209.0040]

	u-type	d-type	lepton	
Ι	$\frac{\cos \alpha}{\sin \beta}$	$rac{\cos lpha}{\sin eta}$	$\frac{\cos \alpha}{\sin \beta}$	SM-like
I'	$\frac{\cos \alpha}{\sin \beta}$	$\frac{\cos \alpha}{\sin \beta}$	$\frac{-\sin\alpha}{\cos\beta}$	
II	$\left(\frac{\cos\alpha}{\sin\beta}\right)$	$\frac{-\sin\alpha}{\cos\beta}$	$\left[\frac{-\sin \alpha}{\cos \beta} \right]$	
II'	$\frac{\cos \alpha}{\sin \beta}$	$\left(\frac{-\sin \alpha}{\cos \beta} \right)$	$\left(\frac{\cos\alpha}{\sin\beta}\right)$	Probing

	Prol	bingu	p-type and down-type fermion sym	metry assum	ing no invisible	e or undete	ctable widths
15	/ Free	paramete	ers: $\kappa_{\rm V}(=\kappa_{\rm Z}=\kappa_{\rm W}), \lambda_{\rm du}(=\kappa_{\rm d}/\kappa_{\rm u}), \kappa_{\rm u}(=$	κ _t).			
		Probi	ng up-type and down-type fermion s	ymmetry with	out assumption	s on the tot	al width
\checkmark		🔪 ee pa	rameters: $\kappa_{uu}(=\kappa_u\cdot\kappa_u/\kappa_H), \lambda_{du}(=\kappa_d/\kappa_u), \lambda_{du}(=\kappa_d/\kappa_$	$\lambda_{\rm Vu} (= \kappa_{\rm V} / \kappa_{\rm u}).$			
	- 8		$\mathrm{H} \to \gamma\gamma$	$\mathrm{H} \to \mathrm{ZZ}^{(*)}$	$\mathrm{H} \rightarrow \mathrm{WW}^{(*)}$	$H \rightarrow b\overline{b}$	$\mathrm{H} \rightarrow \tau^- \tau^+$
		γgH	$\kappa_{uu}^2\kappa_g^2(\lambda_{du},1)\cdot\kappa_{\gamma}^2(\lambda_{du},1,\lambda_{du},\lambda_{Vu})$	$\kappa_{ m uu}^2\kappa_{ m g}^2(\lambda_{ m c})$	$(\lambda_{ m lu},1)\cdot\lambda_{ m Vu}^2$	$\kappa_{\rm uu}^2 \kappa_{\rm g}^2 (2$	$\lambda_{\mathrm{du}}, 1) \cdot \lambda_{\mathrm{du}}^2$
		^{AS} .tH	$\kappa_{\mathrm{uu}}^2 \cdot \kappa_{\gamma}^2(\lambda_{\mathrm{du}}, 1, \lambda_{\mathrm{du}}, \lambda_{\mathrm{Vu}})$	κ_{uu}^2	$\cdot \lambda_{Vu}^2$	κ_{u}^{2}	$\lambda_{\rm du}^2 \cdot \lambda_{\rm du}^2$
	w	VBF					
	71	\mathbf{WH}	$\kappa_{\mathrm{uu}}^2\lambda_{\mathrm{Vu}}^2\cdot\kappa_{\mathrm{y}}^2(\lambda_{\mathrm{du}},1,\lambda_{\mathrm{du}},\lambda_{\mathrm{Vu}})$	$\kappa_{uu}^2 \lambda_V^2$	$\lambda_{\rm Vu}^2 \cdot \lambda_{\rm Vu}^2$	κ_{uu}^2	$\lambda_{\rm Vu}^2 \cdot \lambda_{\rm du}^2$

Pro	bing q	uark and lepton fermion s	ymmetry assuming no invisi	ible or und	etectable widths
MS / Free	e paramet	ers: $\kappa_{\rm V}(=\kappa_{\rm Z}=\kappa_{\rm W}), \lambda_{\rm lq}(=\kappa_{\rm l}/\kappa_{\rm l})$	$\kappa_{\rm q}$), $\kappa_{\rm q}$ (= $\kappa_{\rm t}$ = $\kappa_{\rm b}$).		
	Probi	ng quark and lepton fermio	n symmetry without assumpt	ions on the	total width
	ee pa	rameters: $\kappa_{qq} (= \kappa_{q} \cdot \kappa_{q} / \kappa_{H}), \lambda_{lq} (=$	$=\kappa_{ m l}/\kappa_{ m q}), \lambda_{ m Vq}(=\kappa_{ m V}/\kappa_{ m q}).$		
- 4		$\mathrm{H} \to \gamma \gamma$	$\mathrm{H} \to \mathrm{ZZ}^{(*)} \mid \mathrm{H} \to \mathrm{WW}^{(*)}$	$\mathrm{H} \to \mathrm{b} \overline{\mathrm{b}}$	${\rm H} \rightarrow \tau^- \tau^+$
	gH tH	$\kappa_{qq}^2\cdot\kappa_{\gamma}^2(1,1,\lambda_{lq},\lambda_{Vq})$	$\kappa_{\rm qq}^2\cdot\lambda_{\rm Vq}^2$	$\kappa_{ m qq}^2$	$\kappa_{qq}^2\cdot\lambda_{lq}^2$
	VBF WH	$\kappa_{\rm ag}^2 \lambda_{\rm Vg}^2 \cdot \kappa_{\rm v}^2 (1, 1, \lambda_{\rm lg}, \lambda_{\rm Vg})$	$\kappa_{aa}^2 \lambda_{Va}^2 \cdot \lambda_{Va}^2$	$\kappa_{aa}^2 \cdot \lambda_{Va}^2$	$\kappa_{\alpha\alpha}^2 \lambda_{V\alpha}^2 \cdot \lambda_{l\alpha}^2$
	ZH	<u> </u>	44 · 4 · 4	11 V	44,4,4,14

measuring.higgs@cern.ch Flavor of Higgs 2014

2HDM

Probing the fermion sector

[CMS-PAS-HIG-13-005]

29

Probing the fermion sector

[ATLAS-CONF-NOTE-2014-009]

measuring.higgs@cern.ch Flavor of Higgs 2014

The deviations that we do not (yet) see

31

[ATLAS-CONF-2014-009] [CMS-PAS-HIG-13-005]

Resolving SM contributions

32

[ATLAS-CONF-2014-009] [CMS-PAS-HIG-13-005]

Resolving SM contributions

[CMS-PAS-HIG-13-005]

33

Spin is so much more than a number

[arXiv:1208.4018]

34

□ The spin-2 amplitude has many (higher-order) terms:

$$\begin{aligned} A(X \to V_{1}V_{2}) &= \Lambda^{-1} \left[2g_{1}^{(2)}t_{\mu\nu}f^{*(1)\mu\alpha}f^{*(2)\nu\alpha} + 2g_{2}^{(2)}t_{\mu\nu}\frac{q_{\alpha}q_{\beta}}{\Lambda^{2}}f^{*(1)\mu\alpha}f^{*(2)\nu\beta} + g_{3}^{(2)}\frac{\tilde{q}^{\beta}\tilde{q}^{\alpha}}{\Lambda^{2}}t_{\beta\nu}\left(f^{*(1)\mu\nu}f^{*(2)}_{\mu\alpha} + f^{*(2)\mu\nu}f^{*(1)}_{\mu\alpha}\right) \\ &+ g_{4}^{(2)}\frac{\tilde{q}^{\nu}\tilde{q}^{\mu}}{\Lambda^{2}}t_{\mu\nu}f^{*(1)\alpha\beta}f^{*(2)}_{\alpha\beta} + m_{V}^{2}\left(2g_{5}^{(2)}t_{\mu\nu}\epsilon^{*\mu}\epsilon^{*\nu}_{1} + 2g_{6}^{(2)}\frac{\tilde{q}^{\mu}q_{\alpha}}{\Lambda^{2}}t_{\mu\nu}\left(\epsilon^{*\nu}_{1}\epsilon^{*\alpha}_{2} - \epsilon^{*\alpha}_{1}\epsilon^{*\nu}_{2}\right) + g_{7}^{(2)}\frac{\tilde{q}^{\mu}\tilde{q}^{\nu}}{\Lambda^{2}}t_{\mu\nu}\epsilon^{*}_{1}\epsilon^{*}_{2}\right) \\ &+ g_{8}^{(2)}\frac{\tilde{q}_{\mu}\tilde{q}_{\nu}}{\Lambda^{2}}t_{\mu\nu}f^{*(1)\alpha\beta}\tilde{f}^{*(2)}_{\alpha\beta} + m_{V}^{2}\left(g_{9}^{(2)}\frac{t_{\mu\alpha}\tilde{q}^{\alpha}}{\Lambda^{2}}\epsilon_{\mu\nu\rho\sigma}\epsilon^{*\nu}_{1}\epsilon^{*\rho}_{2}q^{\sigma} + \frac{g_{10}^{(2)}t_{\mu\alpha}\tilde{q}^{\alpha}}{\Lambda^{4}}\epsilon_{\mu\nu\rho\sigma}q^{\rho}\tilde{q}^{\sigma}\left(\epsilon^{*\nu}_{1}(q\epsilon^{*}_{2}) + \epsilon^{*\nu}_{2}(q\epsilon^{*}_{1})\right)\right)\right], \tag{18}$$

Spin is so much more than a number

[arXiv:1208.4018]

The spin-2 amplitude has many (higher-order) terms:

- □ Keep only dim-4 terms $(g_1 = g_5 \neq 0)$:
 - Graviton-like "couplings" (2⁺_m).

J^P: a simplified picture

- Until there is enough data, perform pairwise hypothesis tests against SMH (0⁺).
- Select models using simplifying assumptions on amplitudes:
 O⁻ (parity) "from" ZZ.
 - 2^+_m (graviton-like minimal couplings) also "from" WW and $\gamma \gamma$.

scenario	$X \to ZZ$	$X \to WW$	$X\to\gamma\gamma$
0_m^+ vs background	5.0	5.0	5.0
$0_m^+ \text{ vs } 0_h^+$	1.7	1.1	0.0
$0_m^+ \text{ vs } 0^-$	2.9	1.2	0.0
$0_m^+ \text{ vs } 1^+$	1.9	2.0	_
$0^+_m { m ~vs~} 1^-$	2.6	3.2	_
$0_m^+ ext{ vs } 2_m^+$	1.5	2.8	2.4
$0_m^+ ext{ vs } 2_h^+$	~ 5	1.1	3.1
$0_m^+ \text{ vs } 2_h^-$	~ 5	2.5	3.1

[ATLAS-CONF-2013-013] [arXiv:1312.5353]

- Discriminants built from decay angles and invariant masses.
- Profiled likelihood ratio test statistic.
 - CL_s criterion protects against fluctuations from null hypothesis.

Even-odd mix?

38

Other J^{P} in $H \rightarrow ZZ \rightarrow 4\ell$

[ATLAS-CONF-2013-013] [arXiv:1312.5353]

CÉRN

39

Share this: 📑 👫 🔽 🔂 🚺

The Nobel Prize in Physics 2013

Photo: A. Mahmoud François Englert Prize share: 1/2

Photo: A. Mahmoud Peter W. Higgs Prize share: 1/2

The Nobel Prize in Physics 2013 was awarded jointly to François Englert and Peter W. Higgs "for the theoretical discovery of a mechanism that contributes to our understanding of the origin of mass of subatomic particles, and which recently was confirmed through the discovery of the predicted fundamental particle, by the ATLAS and CMS experiments at CERN's Large Hadron Collider"

...and knighthoods.

by Deborah Evanson, Colin Smith, Gail Wilson 16 June 2014

Two of Imperial's physicists, best known for predicting and finding the Higgs boson, have been knighted in this year's Queen's Birthday honours list.

Flexing your BICEP2 muscles

CERN

42

[arXiv:1403.3985]

□ Who knows ?

	Is F ph. 12 hep Sabha	ligg CO p-ph up rwal /	js In]) odates 1d // I	on arX keep u	iv.org b	Dea by Jess // hide	ad?. ((arXi	v:14	03.4 Krauss,	971 Andre	v1 w J. Lc	asti	f O-	
		(1	N	۵	U	+TAG	\sim	8.	9	f	in	¢,	*	1
G uu hu	We co ravit im Ir odates o	onside tatio nflat n arXiv	er the sonal ion.	status Way (arX Isabella	s of Hig ve B Xiv:1 a Masin	ggs In ack 1403 a / 1d	flation in grour 5.5244 // keep ur	ight of nd an v1 [a mead // f	f the red d Hig stro- nide f in	cently a ggs ph.C	annot Fals CO])	unced SC	detec y the E y BICE ion ge al to a s esse	tion o 3ICEP EP2, th nerall sk if H	f B- 22 he y Higgs / no,
harr Hi pr	ow bar Hig 5 hep-	nd of v gs i	alues d infla dates o	of the atio n arXiv	top qua n st /.org by	ark and ill a	d Higgs b live. Hamada,	oson m (arXi Hikaru K	asses. t v:14 iawai, Ki	he Star 03.5 n-ya Oc	ndard 043 Ia, Sec	by1	eyond of the [hep an Par	the origin >-ph k / 1d	nal 1])
ss isc ora	keep u	enread	// hide				+TAG		8	9	f	in	0,0	٠	
Ch ati h]	iaoti ion I UPE es on ar	c In Disc DATI Xiv.org	flati ove ED) by Kazı		and t by E	the BICE a, Fumi	Primo P2. (a	ordial arXiv	B-m :1403	ode 8.413 punread	3 2v2	ial b consi ut th aller ich i	ecome der th at the than s cons	e Higg non- ten. F	all gs [:] or t with

We show that the standard model Higgs field can realize the quadratic chaotic inflation, if the kinetic term is significantly modified at large field values. This is a simple realization of the so-called running kinetic inflation. The point is that the Higgs field respects an approximate shift symmetry at high energy scale. The tensor-to-scalar ratio is predicted to be r = 0.13 - 0.16, which nicely explains the primordial B-mode polarization, $r = 0.20^{+0.07}_{-0.05}$, recently discovered by the BICEP2 experiment. In particular, allowing small modulations induced by the shift symmetry breaking, the negative running spectral index can also be induced. The reheating temperature is expected to be so high that successful thermal leptogenesis is possible. The suppressed quartic coupling of the Higgs field at high energy scales may be related to the Higgs chaotic inflation.

Published in PRL but...

[http://cern.ch/go/nr66]

Home » Physics » General Physics » June 19, 2014

BICEP2 researchers publish nuanced account of stunning patterns in the microwave sky

2 hours ago

BICEP2 T, Q, U maps. The left column shows the basic signal maps with 0.25° pixelization as output by the reduction pipeline. The right column shows difference (jackknife) maps made with the first and second halves of the data set. No ... more *

Following a thorough peer-review process, the researchers who previously announced the detection of B-mode polarization in a patch of the microwave sky have published their findings today in the journal *Physical Review Letters*.

Quantum theory reveals puzzling pattern in how people respond to some surveys // Jun 16, 2014 III 14

Quantum biology: Algae evolved to switch quantum coherence on and off / Jun 16, 2014 || 13

Published in PRL but...

[http://cern.ch/go/8HwP]

New	Sci	entist	Physi	cs 8	Math	2	sea	rch New Scie	ntist Go»	Log
Home News	Home News In-Depth Articles Opinion CultureLab Galleries Topic Guides Last Word Subscribe Dating									
SPACE T	ECH	ENVIRONMENT	HEALTH	LIFE	PHYSICS&MATH	SCIEN	CE IN	SOCIETY		

Home | Physics & Math | News

Big Bang breakthrough team back-pedals on major result

) 18:56 19 June 2014 by Jacob Aron , Lisa Grossman and Stuart Clark

It was hailed as the discovery of the century. But now the researchers who earlier this year reported the first detection of primordial gravitational waves – ripples in space time hailing from the early universe – say they are not so sure after all.

"Has my confidence gone down? Yes," says Clement Pryke of the University of Minnesota, co-leader of the team that reported the original result.

In March, the team, which uses a te South Pole, announced their discov Astrophysics in Cambridge, Massac online. The paper published today is significant because it is the first time the researchers themselves have dialled back on their original claims.

Today, the first peer-reviewed version of their results appears in the journal *Physical Review Letters* – and it backtracks on the certainty of the original announcement.

Star dust

BICEP2: dust in its eyes? (Image: Steffen Richter/Bicep2)

Ike 24 Tweet 65 8+1 0 Share 7 • •

A very long way to go...

CERN 45

Decay Modes

Γ_i	Mode	Fraction (Γ_i / Γ)	Scale Factor/ Confidence	P (Mo)//o)
			Level	(INIE V/C)
Γ_1	$H^0 \rightarrow WW^*$	seen		
Γ2	$H^0 \rightarrow ZZ^*$	seen		
Γ_3	$H^0 ightarrow \gamma\gamma$	seen		
Γ_4	$H^0 ightarrow b\overline{b}$	possibly seen		
Γ_5	$H^0 o au^+ au^-$	possibly seen		
^D SIGNAI	L STRENGTHS IN DIFFEREN	IT CHANNELS		
Combir	ned Final States	1.07 ±0.2	6 (S = 1.4)	
WW^* F	Final State	0.88 ± 0.3	3 (S = 1.1)	
ZZ* Fi	nal State	$0.89^{+0.30}_{-0.25}$		
vy Fina	I State	1.65 ± 0.25	3	
		1.03 ± 0.5	Decay Modes	
bb Fina	al State	$0.5^{+0.6}_{-0.7}$		
$ au^+ au^-$	Final State	0.1 ± 0.7	Γ_i	Mode
			Γ_1	$Z \rightarrow e^+ e^-$
			Γ_2	$Z \rightarrow \mu^+ \mu^-$
			Г ₃ Г	$Z \to \tau^+ \tau^-$ $Z \to \ell^+ \ell^-$
			Γ_5	$Z \to \ell^+ \ell^- \ell^+ \ell^-$
			Γ_6	$Z \rightarrow \text{invisible}$
			Γ_7	$Z \rightarrow$ hadrons
			Γ_8	$Z \rightarrow (u\overline{u} + c\overline{c})/2$
			Γ_9	$Z \rightarrow (d\overline{d} + s\overline{s} + b)$
			Γ_{10}	$Z \rightarrow c\overline{c}$
			Γ_{11}	$Z \rightarrow b\overline{b}$
			Γ_{12}	$Z \rightarrow b\overline{b}b\overline{b}$

About the future

- Boson "solo gigs":
 - Theory uncertainties and ratios.
 - The adventure of unfolding: going differential.
 - Statistics-limited: ttH, tH, invisible.
 - **Loops** and rare decays: $Z \gamma$, $\gamma \gamma$, full Dalitz, $\mu \mu$.
 - Weird decays: vector mesons, t→cH FCNC, etc.
- Boson & friends:
 - **Small deviations:** from the \mathcal{K} -framework to Wilson coefficients.
 - Global electroweak picture: EWPD, Higgs, and aTGCs.

Caveats:

- Not directly discussing beyond-one-doublet alternatives: extra singlet, MSSM, 2HDM, nMSSM, triplet and double charged, etc.
 - They need searching as well !
- Not discussing parity, which is a definitely not a closed case.

Theory

uncertainties

- Description PDFs not dominating on μ .
 - ggH vs VBF+VH.
 - PDF4LHC prescription too conservative?
 - Changing soon!
 - PDG σ(α_s) too aggressive?
- NNLO+NNLL not enough to tame large QCD corrections in gluon-fusion?

Theory uncertainties: MHOU

[arXiv:1307.1843] [http://cern.ch/go/V8xJ]

- Scale variations are not theory uncertainties.
- The uncertainty is due to missing higher orders.

- All series terms are positive.
- We can try and complete the series instead of always being off.

$$\frac{\sigma_{gg}(\sqrt{s}, M_H)}{\sigma_{gg}^{LO}(\sqrt{s}, M_H)} = 1 + \sum_{n=1}^{\infty} \alpha_s^n(\mu_R) \ K_{gg}^n(\sqrt{s}, \mu = M_H)$$

$$\frac{8 \text{ TeV} \quad \mu = M_H/2 \quad \mu = M_H \quad \mu = 2M_H}{K_{gg}^1 \quad 11.879}$$

$$K_{gg}^2 \quad 72.254$$

$$K_{gg}^3 \quad 168.98 \pm 30.87 \quad 377.20 \pm 30.78 \quad 681.72 \pm 29.93$$

CERN

Theory uncertainties: a tale of PDFs

[http://cern.ch/go/V8xJ]

 Long-standing difference in d/u ratio between MSTW and others.

- Neatly resolved by CMS
 W asymmetry measurements.
- MSWT made parameterization more flexible: case closed.

Theory uncertainties

- Bottom-line for Run2:
 - Consider measurements that constrain PDF fits.
 - For higher orders, more than precision, also a matter of accuracy.
 - Need to work with theorists to get these right, also differentially.

Or you can try to dodge them with ratios...

Ratios to the rescue?

51

[arXiv:1303.6591] [http://cern.ch/go/gLP9]

Total width not accessible at the LHC

More on that later.

- Idea: take ratios and cancel out the TH uncertainties.
- But this is naïve: THU only cancel if the phase-space probed is exactly the same.
- More statistics allows for exactly matched kinematics.

Differential distributions

- [ATLAS-CONF-2013-072]
 - Differential picture directly touches fundamental aspects:
 - **The loop structure where new particles may be running (p** $_T$ shape).
 - The QCD structure of the calculations (N_{iets}).
 - □ ATLAS $H \rightarrow \gamma \gamma$ result and the adventure of unfolding. □ Illustrates the power of having more statistics (signal-like excess).

Boosted Higgs + Ratios

[arXiv:1306.4581] [http://cern.ch/go/lqB8]

- p_T(H) sensitive to the loop particle masses.
 - m_b intrinsically ill-defined.
- Idea: check p_T(H) in H+j and use THU "cancelling":

$$\mathcal{R}(c_t, k_g) = \frac{\sigma_{650 \,\text{GeV}}}{\sigma_{150 \,\text{GeV}}} (c_t, k_g) \frac{K_{650}}{K_{150}}$$

But it's a 3000/fb venture.

Rare decays: full Dalitz analysis

[arXiv:1308.0422]

- γ γ and Z γ loops sensitive to different physics because of V-A structure for Z.
- More information from full m_{QQ} spectrum.
 - Need to clearly define the phase-space used in analysis.

 $\blacksquare H \longrightarrow \gamma^* \gamma \longrightarrow \varrho \varrho \gamma$

[CMS-PAS-HIG-14-003]

55

□ $m_{\mu\mu}$ < 20 GeV. □ Veto J/ ψ and Y.

Requirement	Observed event	Expected number
	yield	of signal events
		for $m_{\rm H} = 125~{\rm GeV}$
Trigger, photon selection, $p_T^{\gamma} > 25 \text{ GeV}$	0.6M	6.2
Muon selection, $p_T^{\mu 1} > 23$ GeV and $p_T^{\mu 2} > 4$ GeV	55836	4.7
$110 \text{ GeV} < m_{\mu\mu\gamma} < 170 \text{ GeV}$	7800	4.7
$m_{\mu\mu} < 20 { m GeV}$	1142	3.9
$\Delta \mathrm{R}(\gamma,\mu) > 1$	1138	3.9
Removal of resonances	1020	3.7
$p_T^\gamma/m_{\mu\mu\gamma}>0.3~{ m and}~p_T^{\mu\mu}/m_{\mu\mu\gamma}>0.3$	665	3.3
$122 \text{ GeV} < m_{\mu\mu\gamma} < 128 \text{ GeV}$	99	2.9

 μ at 125 GeV (95% CL)

Obs. (exp.)

< 11 (8)

measuring.higgs@cern.ch F

Flavor of Higgs 2014

Weird decays: $H \rightarrow Q\overline{Q} + \gamma$

56

[arXiv:1306.5770]

Complementary way to get to the bottom.

 $\begin{aligned} \mathrm{BR}_{\mathrm{SM}}(H \to J/\psi\,\gamma) \; = \; (2.46^{+0.26}_{-0.25}) \times 10^{-6} \\ \mathrm{BR}_{\mathrm{SM}}(H \to \Upsilon(1S)\,\gamma) \; = \; (1.41^{+2.03}_{-1.14}) \times 10^{-8} \end{aligned}$

A way to get to charm?

Weird decays: H→VP

[http://cern.ch/go/8gXr]

- \Box Accessible due to small m_H.
- Relatively clean.
- Can bear O(1) BSM changes.

VP mode	$\mathcal{B}^{ ext{SM}}$	VP^* mode	$\mathcal{B}^{ ext{SM}}$
$W^{-}\pi^{+}$	0.6×10^{-5}	$W^- \rho^+$	0.8×10^{-5}
W^-K^+	0.4×10^{-6}	$Z^0\phi$	0.4×10^{-5}
$Z^0\pi^0$	0.3×10^{-5}	$Z^0 ho^0$	0.4×10^{-5}
$W^-D_s^+$	2.1×10^{-5}	$W^{-}D_{s}^{*+}$	3.5×10^{-5}
W^-D^+	0.7×10^{-6}	$W^{-}D^{*+}$	1.2×10^{-6}
$Z^0\eta_c$	1.4×10^{-5}	$Z^0 J/\psi$	1.4×10^{-5}

■ Weird decays: t→cH FCNC

58 [ATLAS-CONF-2013-081] [CMS-PAS-HIG-13-034]

Process	SM	QS	2HDM-III	FC-2HDM	MSSM								
$t \rightarrow u\gamma$	$3.7 \cdot 10^{-16}$	$7.5 \cdot 10^{-9}$	_	_	$2 \cdot 10^{-6}$								
$t \rightarrow uZ$	$8 \cdot 10^{-17}$	$1.1\cdot 10^{-4}$	_	_	$2 \cdot 10^{-6}$				CMS Pre	eliminary Vs = 8 TeV L _{int} = 19.5 fb ⁻¹			
$t \rightarrow uH$	$2 \cdot 10^{-17}$	$4.1 \cdot 10^{-5}$	$5.5 \cdot 10^{-6}$	_	10 ⁻⁵	>		ATLAS Preliminary	200	+	CMS Prelimir	nary vis = 8 TeV I	_{int} = 19.5 fb ⁻¹
$t \rightarrow c\gamma$	$4.6 \cdot 10^{-14}$	$7.5 \cdot 10^{-9}$	~ 10 ⁻⁶	~ 10 ⁻⁹	$2 \cdot 10^{-6}$	t Ge	14 Hadronic selection Sig+SM Hig	ggs (126.8 GeV)+Bkg fit	600	Fit for upto 2x+2y MET 0-30GeV	20 EV	PI	from upto 2x+2y, MET 0-30GeV
$t \rightarrow cZ$	$1 \cdot 10^{-14}$	$1.1 \cdot 10^{-4}$	$\sim 10^{-7}$	$\sim 10^{-10}$	$2 \cdot 10^{-6}$	s / 4	12 SM Higgs+	Bkg	500 E		70	Fit - Fit	1kp+2r, MET 30-50 GeV
$t \rightarrow cH$	$3 \cdot 10^{-15}$	$4.1 \cdot 10^{-5}$	$1.5 \cdot 10^{-3}$	$\sim 10^{-5}$	10-5	vent			300	+ *	50		
1 . 011	5 10	1.1 10	1.5 10	10	10	ш́		$dt = 20.3 \text{ fb}$, $\sqrt{s} = 8 \text{ IeV}$	200	+	40	+ +	_
										++ · · · · · · · · · · · · · · · · · ·	20 + 1	+ +	
	[roo		l in F	$\mathbf{X} \mathbf{X} \mathbf{X}$			6 [/ \ +		° 0	50 100 150 200 M ₁₇	10 +		+++++++++++++++++++++++++++++++++++++++
				55/11.			4				0	.0 100	150 200 M,
									Ē	OSSF pair N_{Tbad} $E_{\text{T}}^{\text{miss}}$ [GeV] H_{T} [GeV] N	_{b-jets} data backg	round signal	efficiency [10 ⁻⁵]
_ (' → ' → <u></u>		below Z 0 50–100 0–200 n/a 0 50–100 0–200 below Z 0 0.50 0.200	≥ 1 48 48 \pm ≥ 1 29 26 \pm ≥ 1 34 42 \pm	23 9.5 ± 2.3 13 5.9 ± 1.3 11 5.9 ± 1.2	10.3 ± 2.5 6.4 ± 1.4 6.4 ± 1.3
)///П	now	a pa	скдго	una:		100 110 120 130	140 150 160		n/a 0 0-50 0-200 below Z 0 50-100 > 200	≥ 1 29 23 \pm ≥ 1 10 9.9 \pm	$11 0.9 \pm 1.2 10 4.3 \pm 1.1 3.7 3.0 \pm 1.1 $	4.7 ± 1.2 3.3 ± 1.2
				•			-	m _{γγ} [GeV]		below Z 0 0–50 > 200 below Z 0 50–100 0–200	≥ 1 5 10 ± 0 142 125 :	$\begin{array}{ccc} 2.5 & 2.8 \pm 0.8 \\ \pm 27 & 9.7 \pm 2.1 \end{array}$	3.1 ± 0.9 10.6 ± 2.3
_		λς μ_	$\rightarrow 2$	/						n/a 1 0-50 0-200 n/a 0 50-100 0-200 showa Z 0 0-50 0-200	≥ 1 237 240 \pm 0 35 38 \pm > 1 17 18 \pm	$ \begin{array}{c} 113 \\ 13.1 \pm 2.6 \\ 15 \\ 4.3 \pm 1.1 \\ 6.7 \\ 2.8 \pm 0.8 \end{array} $	14.3 ± 2.8 4.7 ± 1.2 3.1 ± 0.9
		43 N-	- r r	•								00 100 100	01200
						_ ¹		·····					
_		< ⊔→	~ ~ ~	8		N ∆							
		STI /	1 1	X			8 JL di = 20.3 ib , VS = 8 iev						
		•1					$\int L dt = 4.7 \text{ fb}, \forall s = 7 \text{ leV}$						
	muit	пертс	ons.				With systematic uncertainties	i E	н	igge Docay Mode	observed	avpocted	1σ rango
		-					4		$H \rightarrow WW^*$	$\frac{(\mathcal{B} = 231\%)}{(\mathcal{B} = 231\%)}$	1 58 %	1 57 %	(1.02-2.22)%
								-	$H \rightarrow \tau \tau$	$(\mathcal{B} = 6.15\%)$	7.01 %	4.99 %	(3.53–7.74)%
							2		$H \to Z Z^\ast$	(B = 2.89%)	5.31 %	4.11 %	(2.85–6.45)%
									combined m	nultileptons (WW*, $\tau\tau$, ZZ*)	1.28 %	1.17 %	(0.85–1.73)%
							0 0 2 0 4 0 6 0 8 1 1 2 1 4	16 18 2	$H \rightarrow \gamma \gamma$	$(\mathcal{B} = 0.23\%)$	0.69%	0.81 %	(0.60–1.17)%
							0 0.2 0.4 0.0 0.0 1 1.2 1.4	$Br(t \rightarrow cH) (\%)$	combined in	iurureptons + aipnotons	0.30 %	0.65 %	(0.46-0.94)%

Obs. (exp.)	ATLAS	CMS
BR(t→cH) (95% CL)	< 0.83% (0.53%)	< 0.56% (0.65%)
	measuring.higgs@cern.ch	Flavor of Higgs 2014

From deviations to EFTs

- [http://cern.ch/go/W96V]
 - Today we talk about deviations from the SMH.
 - arXiv:1209.0040 or equivalent.
 - Draw/exclude your own theory. →
 - One (single) nice feature: K =1 recovers best SMH calculations.
 - But that's it: we can find deviations, but only roughly fathom their meaning.

And deviations are on a diet

[arXiv:1306.6352]

61

Effective field theory (EFT): the idea

[NPB 268 (1986) 621]

- Instead of an experimentally-driven basis of parameters use a basis of QFT operators that may be more aligned with the BSM physics.
- EFT allows to perform accurate calculations
 - NLO EWK effects, etc.
 - More sensitive interpretation.
- 59 dim-6 operators already mapped out in 1986.
 - Which operators to keep?
 - What about dim-8?
 - What about loop processes?

First steps in YR3

[arXiv:1307.1347]

Table 52: Dimension-6 operators involving Higgs doublet fields or gauge-boson fields. For all $\psi^2 \Phi^3$, $\psi^2 X \Phi$ operators and for $\mathcal{O}_{\Phi ud}$ the hermitian conjugates must be included as well.

Φ^6 and $\Phi^4 D^2$	$\psi^2 \Phi^3$	X ³
${\cal O}_{\Phi}=(\Phi^{\dagger}\Phi)^3$	$\mathcal{O}_{\mathrm{e}\Phi} = (\Phi^{\dagger}\Phi)(\bar{l}\Gamma_{\mathrm{e}}\mathrm{e}\Phi)$	$\mathcal{O}_G = f^{ABC} G^{A\nu}_\mu G^{B\rho}_\nu G^{C\mu}_\rho$
$\mathcal{O}_{\Phi\Box} = (\Phi^{\dagger}\Phi)\Box(\Phi^{\dagger}\Phi)$	$\mathcal{O}_{u\Phi} = (\Phi^\dagger \Phi) (\bar{q}\Gamma_u u \widetilde{\Phi})$	$\mathcal{O}_{\widetilde{G}} = f^{ABC} \widetilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$
$\mathcal{O}_{\Phi D} = (\Phi^{\dagger} D^{\mu} \Phi)^{*} (\Phi^{\dagger} D_{\mu} \Phi)$	${\cal O}_{d\Phi} = (\Phi^\dagger \Phi) (\bar q \Gamma_d d\Phi)$	$\mathcal{O}_{\mathrm{W}} = \varepsilon^{IJK} \mathrm{W}^{I\nu}_{\mu} \mathrm{W}^{J\rho}_{\nu} \mathrm{W}^{K\mu}_{\rho}$
		$\mathcal{O}_{\widetilde{\mathbf{W}}} = \varepsilon^{IJK} \widetilde{\mathbf{W}}_{\mu}^{I\nu} \mathbf{W}_{\nu}^{J\rho} \mathbf{W}_{\rho}^{K\mu}$
$X^2 \Phi^2$	$\psi^2 \mathrm{X} \Phi$	$\psi^2 \Phi^2 D$
$\mathcal{O}_{\Phi G} = (\Phi^{\dagger} \Phi) G^A_{\mu\nu} G^{A\mu\nu}$	$\mathcal{O}_{\mathrm{u}G} = (\bar{\mathrm{q}}\sigma^{\mu\nu}\frac{\lambda^{A}}{2}\Gamma_{\mathrm{u}}\mathrm{u}\widetilde{\Phi})G^{A}_{\mu\nu}$	$\mathcal{O}_{\Phi l}^{(1)} = (\Phi^{\dagger} i \overset{\leftrightarrow}{D}_{\mu} \Phi) (\bar{l} \gamma^{\mu} l)$
$\mathcal{O}_{\Phi\widetilde{G}}=(\Phi^{\dagger}\Phi)\widetilde{G}^{A}_{\mu\nu}G^{A\mu\nu}$	$\mathcal{O}_{\mathrm{d}G} = (\bar{\mathrm{q}}\sigma^{\mu\nu}\frac{\lambda^A}{2}\Gamma_{\mathrm{d}}\mathrm{d}\Phi)G^A_{\mu\nu}$	$\mathcal{O}^{(3)}_{\Phi \mathrm{l}} = (\Phi^{\dagger} \mathrm{i} \overset{\leftrightarrow}{D}{}^{I}_{\mu} \Phi) (\bar{\mathrm{l}} \gamma^{\mu} \tau^{I} \mathrm{l})$
$\mathcal{O}_{\Phi \mathrm{W}} = (\Phi^{\dagger} \Phi) \mathrm{W}^{I}_{\mu \nu} \mathrm{W}^{I \mu \nu}$	$\mathcal{O}_{\mathrm{eW}} = (\bar{\mathrm{l}}\sigma^{\mu\nu}\Gamma_{\mathrm{e}}\mathrm{e}\tau^{I}\Phi)\mathrm{W}^{I}_{\mu\nu}$	$\mathcal{O}_{\Phi \mathrm{e}} = (\Phi^\dagger \mathrm{i} \stackrel{\leftrightarrow}{D}_\mu \Phi) (\bar{\mathrm{e}} \gamma^\mu \mathrm{e})$
$\mathcal{O}_{\Phi \widetilde{\mathrm{W}}} = (\Phi^{\dagger} \Phi) \widetilde{\mathrm{W}}^{I}_{\mu \nu} \mathrm{W}^{I \mu \nu}$	$\mathcal{O}_{\mathrm{uW}} = (\bar{\mathrm{q}}\sigma^{\mu\nu}\Gamma_{\mathrm{u}}\mathrm{u}\tau^{I}\widetilde{\Phi})\mathrm{W}^{I}_{\mu\nu}$	$\mathcal{O}^{(1)}_{\Phi \mathrm{q}} = (\Phi^\dagger \mathrm{i} \overset{\leftrightarrow}{D}_\mu \Phi) (\bar{\mathrm{q}} \gamma^\mu \mathrm{q})$
$\mathcal{O}_{\Phi B} = (\Phi^{\dagger} \Phi) B_{\mu\nu} B^{\mu\nu}$	$\mathcal{O}_{\rm dW} = (\bar{\mathbf{q}} \sigma^{\mu\nu} \Gamma_{\rm d} \mathbf{d} \tau^I \Phi) \mathbf{W}^I_{\mu\nu}$	$\mathcal{O}_{\Phi \mathbf{q}}^{(3)} = (\Phi^{\dagger} \mathbf{i} \overset{\leftrightarrow}{D}{}^{I}_{\mu} \Phi)(\bar{\mathbf{q}} \gamma^{\mu} \tau^{I} \mathbf{q})$
$\mathcal{O}_{\Phi\widetilde{\mathbf{B}}}=(\Phi^{\dagger}\Phi)\widetilde{\mathbf{B}}_{\mu\nu}\mathbf{B}^{\mu\nu}$	$\mathcal{O}_{eB} = (\bar{l}\sigma^{\mu\nu}\Gamma_{e}e\Phi)B_{\mu\nu}$	$\mathcal{O}_{\Phi \mathrm{u}} = (\Phi^{\dagger} \mathrm{i} \overset{\leftrightarrow}{D}_{\mu} \Phi) (\bar{\mathrm{u}} \gamma^{\mu} \mathrm{u})$
$\mathcal{O}_{\Phi \rm WB} = (\Phi^{\dagger} \tau^{I} \Phi) \mathbf{W}^{I}_{\underline{\mu} \nu} \mathbf{B}^{\mu \nu}$	$\mathcal{O}_{uB} = (\bar{q}\sigma^{\mu\nu}\Gamma_{u}u\widetilde{\Phi})B_{\mu\nu}$	$\mathcal{O}_{\Phi \mathrm{d}} = (\Phi^{\dagger} \mathrm{i} \overleftrightarrow{D}_{\mu} \Phi) (\bar{\mathrm{d}} \gamma^{\mu} \mathrm{d})$
$\mathcal{O}_{\Phi \widetilde{\mathbf{W}} \mathbf{B}} = (\Phi^{\dagger} \tau^{I} \Phi) \widetilde{\mathbf{W}}_{\mu \nu}^{I} \mathbf{B}^{\mu \nu}$	$\mathcal{O}_{dB} = (\bar{q}\sigma^{\mu\nu}\Gamma_{d}d\Phi)B_{\mu\nu}$	$\mathcal{O}_{\Phi \mathrm{ud}} = \mathrm{i}(\widetilde{\Phi}^{\dagger} D_{\mu} \Phi)(\bar{\mathrm{u}}\gamma^{\mu}\Gamma_{\mathrm{ud}}\mathrm{d})$

Table 53: Alternative basis of dimension-6 operators involving Higgs doublet fields or gauge-boson fields.

	1 0 00	5 5
Φ^6 and $\Phi^4 D^2$	$\psi^2 \Phi^3$	X^3
$\mathcal{O}_6' = (\Phi^\dagger \Phi)^3$	$\mathcal{O}_{e\Phi}' = (\Phi^{\dagger}\Phi)(\overline{l}\Gamma_{e}e\Phi)$	$\mathcal{O}_G' = f^{ABC} G^{A\nu}_\mu G^{B\rho}_\nu G^{C\mu}_\rho$
$\mathcal{O}'_\Phi = \partial_\mu (\Phi^\dagger \Phi) \partial^\mu (\Phi^\dagger \Phi)$	$\mathcal{O}_{\mathrm{u}\Phi}' = (\Phi^\dagger \Phi) (\bar{q}\Gamma_\mathrm{u} \mathrm{u} \widetilde{\Phi})$	$\mathcal{O}_{\widetilde{G}}' = f^{ABC} \widetilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$
$\mathcal{O}_{\mathrm{T}}' = (\Phi^{\dagger} \stackrel{\leftrightarrow}{D_{\mu}} \Phi) (\Phi^{\dagger} \stackrel{\leftrightarrow}{D^{\mu}} \Phi)$	$\mathcal{O}_{\mathrm{d}\Phi}^{\prime} = (\Phi^{\dagger}\Phi)(\bar{\mathrm{q}}\Gamma_{d}d\Phi)$	$\mathcal{O}'_{\mathrm{W}} = \varepsilon^{IJK} \mathrm{W}^{I\nu}_{\mu} \mathrm{W}^{J\rho}_{\nu} \mathrm{W}^{K\mu}_{\rho}$
		$\mathcal{O}'_{\widetilde{\mathbf{W}}} = \varepsilon^{IJK} \widetilde{\mathbf{W}}_{\mu}^{I\nu} \mathbf{W}_{\nu}^{J\rho} \mathbf{W}_{\rho}^{K\mu}$
$X^2 \Phi^2$	$\psi^2 X \Phi$	$\psi^2 \Phi^2 D$
$\mathcal{O}_{\mathrm{D}W}^{\prime} = \left(\Phi^{\dagger} \tau^{I} \mathrm{i} \overleftrightarrow{D^{\mu}} \Phi \right) \left(D^{\nu} \mathrm{W}_{\mu\nu} \right)^{I}$	$\mathcal{O}'_{\mathrm{u}G} = (\bar{\mathrm{q}}\sigma^{\mu\nu}\frac{\lambda^A}{2}\Gamma_{\mathrm{u}}\mathrm{u}\widetilde{\Phi})G^A_{\mu\nu}$	$\mathcal{O}_{\Phi \mathbf{l}}^{\prime(1)} = (\Phi^{\dagger} \mathbf{i} \overset{\leftrightarrow}{D}_{\mu} \Phi) (\bar{\mathbf{l}} \gamma^{\mu} \mathbf{l})$
$\mathcal{O}_{D\mathrm{B}}^{\prime} = \left(\Phi^{\dagger} \mathrm{i} \overleftrightarrow{D^{\mu}} \Phi \right) \left(\partial^{\nu} \mathrm{B}_{\mu\nu} \right)$	$\mathcal{O}'_{\mathrm{d}G} = (\bar{\mathrm{q}}\sigma^{\mu\nu}\frac{\lambda^A}{2}\Gamma_{\mathrm{d}}\mathrm{d}\Phi)G^A_{\mu\nu}$	$\mathcal{O}_{\Phi \mathbf{l}}^{\prime(3)} = (\Phi^{\dagger} \mathbf{i} \overset{\leftrightarrow}{D}{}_{\mu}^{I} \Phi) (\bar{\mathbf{l}} \gamma^{\mu} \tau^{I} \mathbf{l})$
$\mathcal{O}_{D\Phi\mathbf{W}}^{\prime} = \mathbf{i} (D^{\mu} \Phi)^{\dagger} \tau^{I} (D^{\nu} \Phi) \mathbf{W}_{\mu\nu}^{I}$	$\mathcal{O}_{\rm eW}^{\prime} = (\bar{\mathbf{l}} \sigma^{\mu\nu} \Gamma_{\rm e} \mathbf{e} \tau^{I} \Phi) \mathbf{W}_{\mu\nu}^{I}$	$\mathcal{O}'_{\Phi \mathrm{e}} = (\Phi^\dagger \mathrm{i} \stackrel{\leftrightarrow}{D}_\mu \Phi) (\bar{\mathrm{e}} \gamma^\mu \mathrm{e})$
$\mathcal{O}_{D\Phi\widetilde{W}}' = \mathrm{i}(D^{\mu}\Phi)^{\dagger}\tau^{I}(D^{\nu}\Phi)\widetilde{W}_{\mu\nu}^{I}$	$\mathcal{O}'_{\mathrm{uW}} = (\bar{\mathbf{q}} \sigma^{\mu\nu} \Gamma_{\mathrm{u}} \mathbf{u} \tau^{I} \widetilde{\Phi}) \mathbf{W}^{I}_{\mu\nu}$	$\mathcal{O}_{\Phi \mathbf{q}}^{\prime(1)} = (\Phi^{\dagger} \mathbf{i} \overset{\leftrightarrow}{D}_{\mu} \Phi)(\bar{\mathbf{q}} \gamma^{\mu} \mathbf{q})$
$\mathcal{O}_{D\Phi\mathbf{B}}^{\prime}=\mathbf{i}(D^{\mu}\Phi)^{\dagger}(D^{\nu}\Phi)\mathbf{B}_{\mu\nu}$	$\mathcal{O}_{\mathrm{dW}}^{\prime} = (\bar{\mathbf{q}} \sigma^{\mu\nu} \Gamma_{\mathrm{d}} \mathbf{d} \tau^{I} \Phi) \mathbf{W}_{\mu\nu}^{I}$	$\mathcal{O}_{\Phi \mathbf{q}}^{\prime(3)} = (\Phi^{\dagger} \mathbf{i} \overset{\leftrightarrow}{D}{}^{I}_{\mu} \Phi) (\bar{\mathbf{q}} \gamma^{\mu} \tau^{I} \mathbf{q})$
$\mathcal{O}_{D\Phi\widetilde{\mathbf{B}}}^{\prime}=\mathbf{i}(D^{\mu}\Phi)^{\dagger}(D^{\nu}\Phi)\widetilde{\mathbf{B}}_{\mu\nu}$	$\mathcal{O}_{\rm eB}' = (\bar{l}\sigma^{\mu\nu}\Gamma_{\rm e}{\rm e}\Phi)B_{\mu\nu}$	$\mathcal{O}'_{\Phi \mathbf{u}} = (\Phi^{\dagger} \mathbf{i} \overleftrightarrow{D}_{\mu} \Phi)(\bar{\mathbf{u}} \gamma^{\mu} \mathbf{u})$
$\mathcal{O}_{\Phi \mathrm{B}}^{\prime} = (\Phi^{\dagger} \Phi) B_{\mu\nu} \mathrm{B}^{\mu\nu}$	$\mathcal{O}'_{uB} = (\bar{q}\sigma^{\mu\nu}\Gamma_u u\widetilde{\Phi})B_{\mu\nu}$	$\mathcal{O}'_{\Phi \mathrm{d}} = (\Phi^{\dagger} \mathrm{i} \overset{\leftrightarrow}{D}_{\mu} \Phi) (\bar{\mathrm{d}} \gamma^{\mu} \mathrm{d})$
$\mathcal{O}_{\Phi\widetilde{\mathbf{B}}}^{\prime}=(\Phi^{\dagger}\Phi)\mathbf{B}_{\mu\nu}\widetilde{\mathbf{B}}^{\mu\nu}$	$\mathcal{O}_{\rm dB}^\prime = (\bar{\rm q} \sigma^{\mu\nu} \Gamma_{\rm d} {\rm d} \Phi) {\rm B}_{\mu\nu}$	$\mathcal{O}'_{\Phi \mathrm{ud}} = \mathrm{i}(\widetilde{\Phi}^{\dagger} D_{\mu} \Phi)(\bar{\mathrm{u}} \gamma^{\mu} \Gamma_{\mathrm{ud}} \mathrm{d})$
$\mathcal{O}_{\Phi G}^{\prime}=\Phi^{\dagger}\Phi G^{A}_{\mu\nu}G^{A\mu\nu}$		
$\mathcal{O}_{\Phi \widetilde{G}}' = \Phi^{\dagger} \Phi G^A_{\mu\nu} \widetilde{G}^{A\mu\nu}$		

A Rosetta stone for Higgs EFT

[http://cern.ch/go/lgT8]

- Multiple sectors affected:
 - Electroweak precision data.
 - Anomalous triple gauge couplings.
 - Higgs only.
- Global EWK fit should be possible.

CP-even:8 (precision test) + 3 (TGC) + 8 (Higgs physics)CP-odd:+ 2 (TGC) + 3 (Higgs physics)

Summary

- □ LHC13: last chance before a "BSM desert".
 - Tevatron: Run I → top discovery, Run II → SM precision.
 - LHC 2010: early SUSY and EXO exclusions.

Higgs, one way out of the "SM oasis":

- From O(10%) to differential.
- From "seen" to O(%) measurements.
- From limits on rare things to observations.
- From conjectures on weird things, to putting limits on them.
- From ad-hoc κ fits to global EWK EFT fits.
- □ We have a long way to go.
 All it takes is one deviation.

The beautiful boring 2014 Universe

[arXiv:1303.5062]

□ Up above: "Simple sixparameter ∧ CDM".

Down below: (Not-as-simple) ~20-parameter Standard Model of Particle Physics.

Looking forward to LHC combination and surprises at higher energy: PeV neutrinos, LHC 13 TeV, ...

"...and references therein."

- ATLAS: <u>http://cern.ch/go/7IDT</u>
- CMS: <u>http://cern.ch/go/6qmZ</u>
- Tevatron: <u>http://cern.ch/go/h9jX</u>
 CDF: <u>http://cern.ch/go/q8NV</u>
 - D0: http://cern.ch/go/9Djq
- Higgs Days 2013: <u>http://cern.ch/go/6zBp</u>
- ECFA HL-LHC workshop: <u>http://cern.ch/go/SFW6</u>
- Higgs EFT 2013: <u>http://cern.ch/go/bR7w</u>
- Higgs Couplings 2013: <u>http://cern.ch/go/THp9</u>
- Moriond 2014: <u>http://cern.ch/go/k8FP</u>

Higgs in CMS – ca. 2008

71

[http://cern.ch/go/dJf7] [http://cern.ch/go/Sx8m]

Viability – photons and massive weak bosons can coexist was shown by Kibble (1967).

measuring.higgs@cern.ch F

Flavor of Higgs 2014

From the other side of the pond

72 [arXiv:1207.6436]

2.8 σ local significance at m_H=125 GeV.

Looking up to a new boson

[http://cern.ch/go/q8jx]

measuring.higgs@cern.ch Flavor of Higgs 2014

73

Higgsdependence day recap

[http://cern.ch/go/g8jx]

A 2012 hit

[http://goo.gl/49c0c] [http://goo.gl/suJzZ] [http://goo.gl/ShJJG]

Symmetry of particle physics

departments 👳 science topics 👳 image bank 🛛 pdf issues 🔅 archives

signal to background May 12, 2013 The top 40 physics hits of 2012

The Higgs boson is a popular subject among the most-cited physics papers of 2012, but a particle simulation manual takes the top spot.

2012 reports for eprints

1. 568 citations in 2012 Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC ATLAS Collaboration (Georges Aad (Freiburg U.) et al.). Jul 2012. 24 pp. Published in Phys.Lett. B716 (2012) 1-29 CERN-PH-EP-2012-218 DOI: 10.1016/j.physletb.2012.08.020 e-Print: arXiv:1207.7214 [hep-ex] | PDF

References | BibTeX | LaTeX(US) | LaTeX(EU) | Harvmac | EndNote ADS Abstract Service: Link to all figures including auxiliary figures

2. 558 citations in 2012 Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC CMS Collaboration (Serguei Chatrchyan (Yerevan Phys. Inst.) et al.). Jul 2012. Published in Phys.Lett. B716 (2012) 30-61 CMS-HIG-12-028, CERN-PH-EP-2012-220 DOI: 10.1016/j.physletb.2012.08.021 e-Print: arXiv:1207.7235 [hep-ex] | PDF

References | BibTeX | LaTeX(US) | LaTeX(EU) | Harvmac | EndNote CERN Document Server : ADS Abstract Service: Link to PRESSRELEASE

3. <u>433</u> citations in 2012 Combined results of searches for the standard model Higgs boson in \$pp\$ collisions at \$\sqrt{s}=7\$ TeV CMS Collaboration (Serguei Chatrchyan (Yerevan Phys. Inst.) et al.), Feb 2012. Published in Phys.Lett. B710 (2012) 26-48 CMS-HIG-11-032, CERN-PH-EP-2012-023 DOI: 10.1016/j.physletb.2012.02.064 e-Print: arXiv:1202.1488 [hep-ex] | PDF References | BibTeX | LaTeX(US) | LaTeX(EU) | Harvmac | EndNote CERN Document Server ; ADS Abstract Service

4. 381 citations in 2012 Combined search for the Standard Model Higgs boson using up to 4.9 fb\$^{-1}\$ of \$pp\$ collision data at \$\sqrt{s}=7\$ TeV with the ATLAS detector at the LHC ATLAS Collaboration (Georges Aad (Freiburg U.) et al.). Feb 2012. 8 pp. Published in Phys.Lett. B710 (2012) 49-66 CERN-PH-EP-2012-019 DOI: 10.1016/j.physletb.2012.02.044 e-Print: arXiv:1202.1408 [hep-ex] | PDF References | BibTeX | LaTeX(US) | LaTeX(EU) | Harvmac | EndNote

CERN Document Server ; ADS Abstract Service, Link to all figures including auxiliary figures

All Scien Science AAAS.ORG | FEEDBACK | HELP | LIBRARIANS AAAS NEWS SCIENCE JOURNALS CAREERS BLOGS & COMM Subject Collections Online Extras Science Special Collections Archived Collections

Home > Collections > Online Extras > Special Issues 2012 > Breakthrough of the Year, 2012

Breakthrough of the Year, 2012

Every year, crowning one scientific achievement as Breakthrough of the Year is no easy task, and 2012 was no exception. The year saw leaps and bounds in physics, along with significant advances in genetics, engineering, and many other areas. In keeping with tradition, Science's editors and staff have selected a winner and nine runners-up, as well as highlighting the year's top news stories and areas to watch in 2013.

FREE ACCESS The Discovery of the Higgs Boson A. Cho

Exotic particles made headlines again and again in 2012, making it no surprise that the breakthrough of the year is a big physics finding: confirmation of the existence of the Higgs boson. Hypothesized more than 40 years ago, the elusive particle completes the standard model of physics, and is arguably the key to the explanation of how other fundamental particles obtain mass. The only mystery that remains is whether its discovery marks a new dawn for particle physics or the final stretch of a field that has run its course.

Read more about the Higgs boson from the research teams at CERN.

Runners-Up FREE WITH REGISTRATION

This year's runners-up for Breakthrough of the Year underscore feats in engineering, genetics, and other fields that promise to change the course of science.

Statistics-limited: tH

- Interesting added value to the couplings fit.
 - Esp. in the presence of a diphoton excess.

TH projection for 14 TeV and 50/fb looks promising.

CERN

78

tHq and flipped couplings

[CMS-PAS-HIG-14-001]

50 -----

40H

30

ATLAS Preliminary \s=8

[ATLAS-CONF-2013-011] [CMS-PAS-HIG-13-018]

- What if?
- Disentangles invisible from undetectable.
- Cosmic connection via limits on Dark Matter.
- Also VBF and $Z \rightarrow bb$ in CMS.

L = 13.0 fb

WZ

WW

Other BG

Top

ZZ

CMS preliminary, ZH → II+ME1, VS=8.0 1eV, L=19.6 tb

145

M_H [GeV]

140

0 120 125 110 115 130 135 105 Obs. (exp.) **ATLAS** CMS BR_{inv.} at 125 GeV (95% CL) < 0.75 (0.91) < 0.65 (0.84)

20

\bigstar VBF, H \rightarrow invisible

[CMS-PAS-HIG-13-013]

At m_H=125 GeV,
 BR_{inv.} < 0.69 (0.53) (95%CL), obs.(exp.).

Statistics-limited: invisible

[ATL-PHYS-PUB-2013-015]

Cosmic connection at the HL-LHC.

Direct bounds for massive dark particles with $m_{\chi} < m_{H}/2$.

Direct and indirect combined

[ATLAS-CONF-2014-010] [http://cern.ch/go/bL8M]

- Shown by ATLAS at Moriond 2014.
- Combination

82

- BR_{inv} < 0.37 (0.39) (95% CL), obs.(exp.)
- Dominated by constraints from the visible decays.

[arXiv:1402.3051] [CMS-PAS-HIG-13-006]

Obs. (exp.)

 μ at 125 GeV (95% CL)

Weird form factors: $H \rightarrow Zll$

[http://cern.ch/go/8gXr]

□ Analogous to the
 LHCb analysis of
 B→K*ll.

- Can be done in the 4l channel.
- Complementary to spin-CP analyses.

85

A way out the spin quandary?

[arXiv:1307.7121]

- It's not easy to kill all possible non-spin-0 alternatives.
- $\Box gg \rightarrow H \rightarrow \gamma \gamma holds$
promise:
 - J≠0 allowed areas do not contain J=0 point.
 - But gluons and photons must be real...

Statistics-limited: HH and self-coupling

[http://cern.ch/go/7smd]

86

- Among main objectives for HL-LHC.
 - Tiny cross-section.
 - Diagrams interfere destructively...
 - Problematic even in e⁺e⁻.
- Experimental projections not finalized.

Estimated yields for 3000/fb		
bbWW	30'000	
bbtt	9'000	
WWWW	6'000	
γγbb	320	
γγγγ	1	

Looking well ahead

[http://cern.ch/go/P8Tn] [http://cern.ch/go/I7RZ]

- □ 300/fb at 14 TeV:
 - Vast improvement over present datasets.
 - Room for theory improvements.
- \Box For (HL-LHC) 3 ab⁻¹:
 - self-coupling seems
 feasible with
 λ_{HH} ~ 3σ/expt.

measuring.higgs@cern.ch Flavor of Higgs 2014

88

First things first: the mass

First things first: the mass

Combinations of the high-resolution channels.

More on mass

92

93

More on mass

[arXiv:1312.5353]

[ATL-PHYS-PUB-2011-11, CMS NOTE-2011/005]

	Test statistic	Profiled?	Test statistic sampling	
LEP	$q_{\mu} = -2 \ln rac{\mathcal{L}(data \mu, ilde{ heta})}{\mathcal{L}(data 0, ilde{ heta})}$	no	Bayesian-frequentist hybrid	
Tevatron	$q_{\mu} \;=\; -2\lnrac{\mathcal{L}(data \mu,\hat{ heta}_{\mu})}{\mathcal{L}(data 0,\hat{ heta}_{0})}$	yes	Bayesian-frequentist hybrid	
LHC	$\widetilde{q}_{\mu} \;=\; -2\lnrac{\mathcal{L}(data \mu,\hat{ heta}_{\mu})}{\mathcal{L}(data \hat{\mu},\hat{ heta})}$	$yes (0 \le \hat{\mu} \le \mu)$	frequentist	

- **LEP:** nuisances parameters (θ) kept at nominal values (~).
- **Tevatron:** maximise likelihood against nuisances (^).
 - Denominator considers **background-only hypothesis** ($\mu = 0$).
- □ LHC: frequentist profiled likelihood.
 - Denominator considers global best-fit likelihood with floating signal strength.
 - Nice asymptotic properties, savings in computational power.

Resolving SM contributions

[CMS-PAS-HIG-13-005]

103

"C6" vs "resolved C6"

Generic coupling fit

- Assume custodial symmetry (K v = K w = K z).
- Loops treated
 effectively (K_γ, K_g).
- □ Option to allow BSM decays, forcing $K_V \le 1$.

Resolved coupling fit

- Keep W and Z separate.
- Loops assuming SM structure:
 - $\square \mathcal{K}_{g}(\mathcal{K}_{b},\mathcal{K}_{t}).$
 - $\overset{\bullet}{} \mathcal{K}_{\gamma} (\mathcal{K}_{W}, \mathcal{K}_{b}, \mathcal{K}_{t}, \mathcal{K}_{t}).$
- Only SM-like decays.

Probing possible 2HDM

107 [CMS-PAS-HIG-13-005]

108	

CMS: channel compatibility

109

...and ATLAS obliged

111 [ATLAS-CONF-NOTE-2014-010]

measuring.higgs@cern.ch Flavor of Higgs 2014

 κ_V

ATLAS: combination 0^+ vs. 2^+_m

112 [arXiv:1307.1432]

Delayed unitarization: until when?

[http://cern.ch/go/q8Gq]

Assume that WW scattering is $\delta^{-1/2}$ that of SM.

- Things can look like the SM for a long time.
 - **Time** ~ Energy.

