

ACCURATE, AUTOMATIC, AUGMENTING MC'S FOR THE LHC

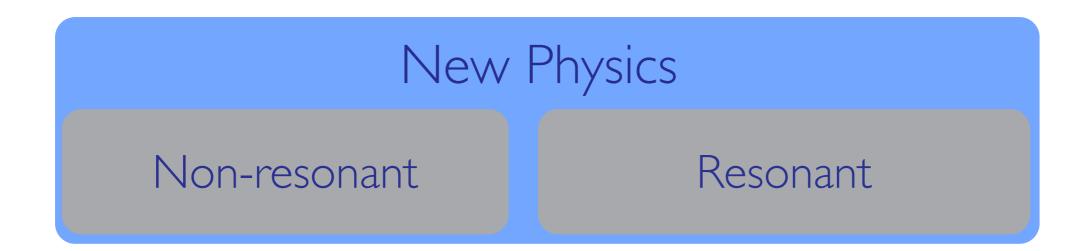
FABIO MALTONI

CENTRE FOR COSMOLOGY, PARTICLE PHYSICS AND PHENOMENOLOGY

WEIZMANN INSTITUTE OF SCIENCE 23 JUNE 2014

The flavor of the Higgs, 23-26 June 2014, WIS, Israel

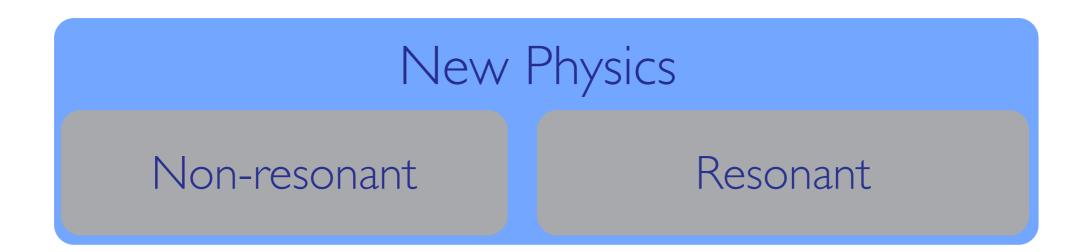
Tuesday 24 June 2014

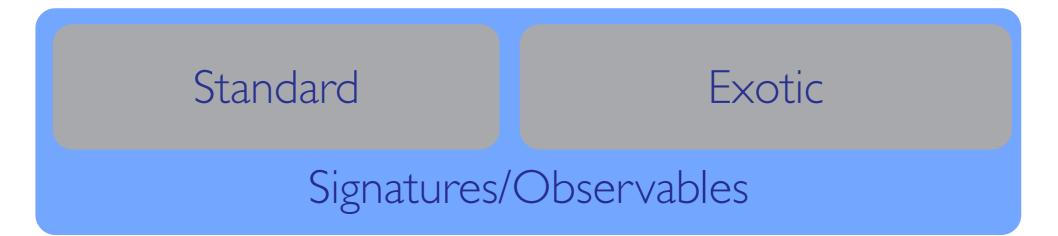

NEW PHYSICS SEARCHES

The flavor of the Higgs, 23-26 June 2014, WIS, Israel

Tuesday 24 June 2014

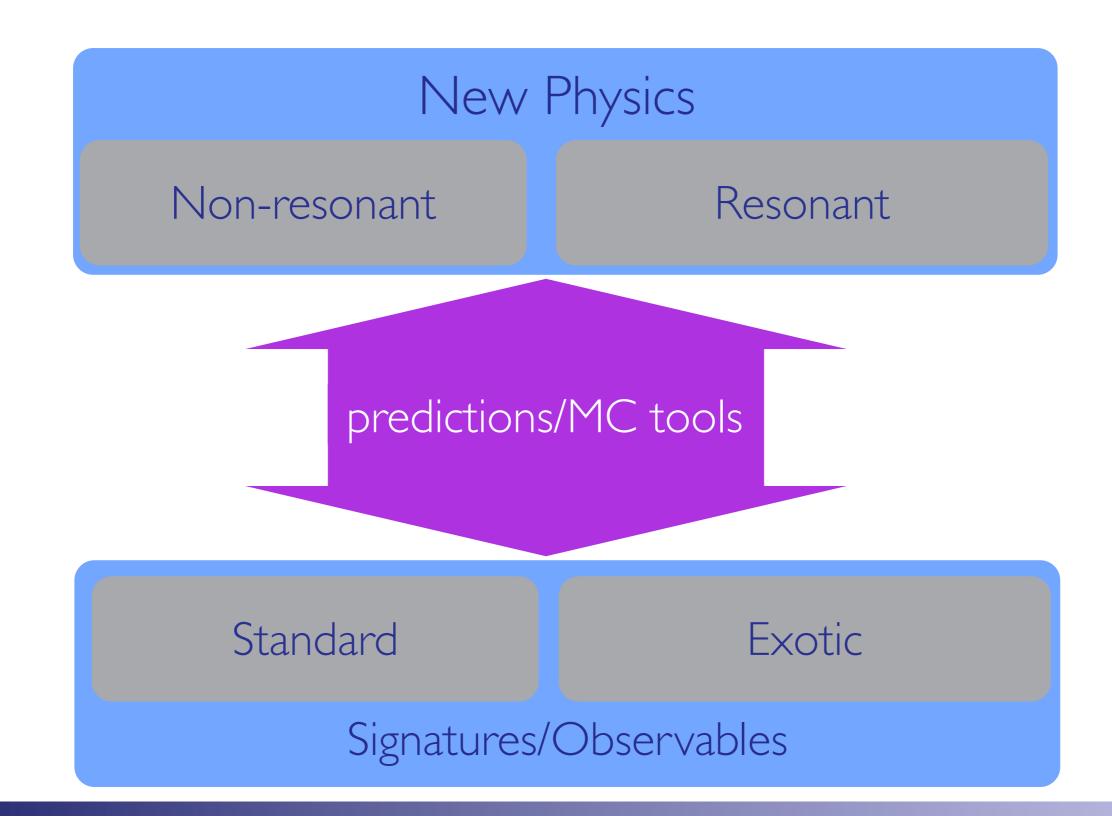
NEW PHYSICS SEARCHES




The flavor of the Higgs, 23-26 June 2014, WIS, Israel

Tuesday 24 June 2014

NEW PHYSICS SEARCHES

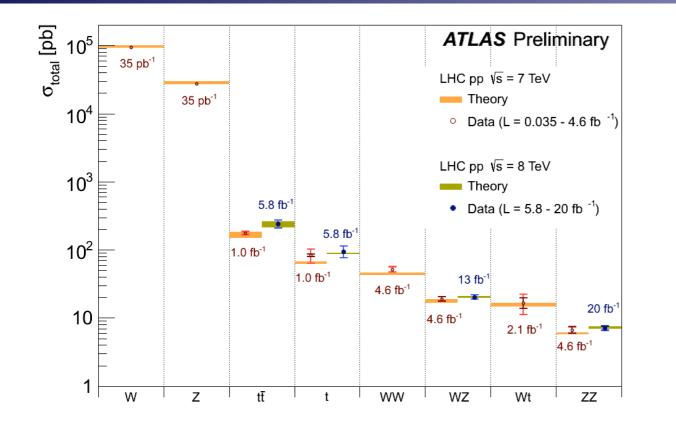


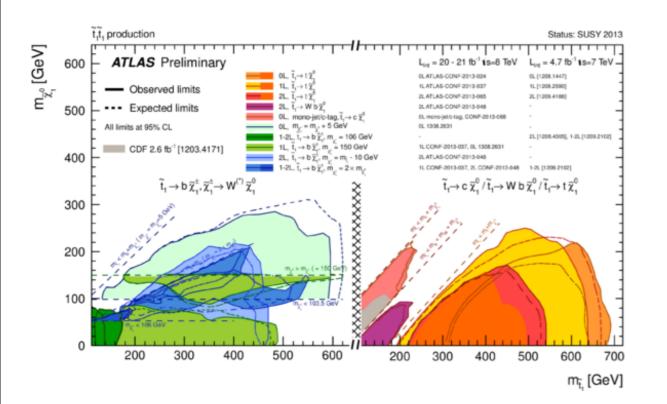
The flavor of the Higgs, 23-26 June 2014, WIS, Israel

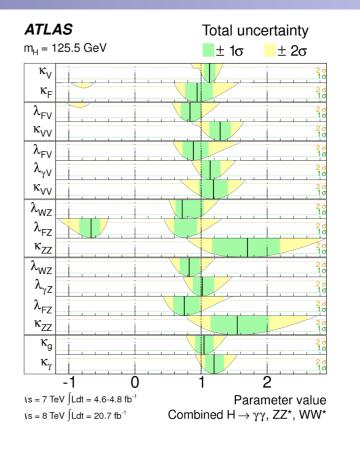
Tuesday 24 June 2014

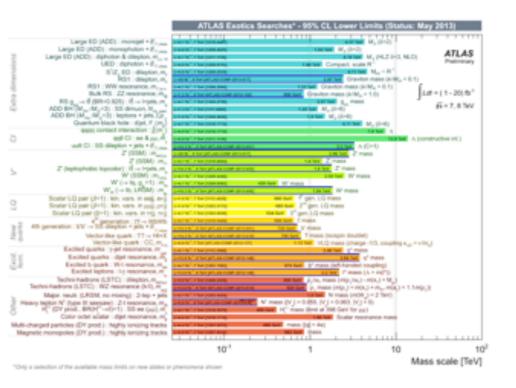
Université catholique de Louvain

NEW PHYSICS SEARCHES

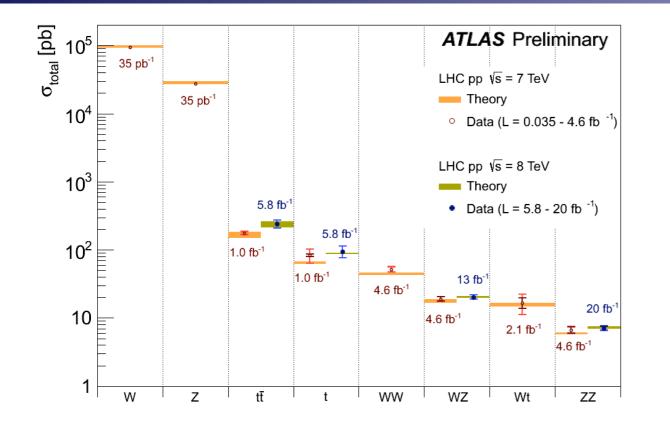

The flavor of the Higgs, 23-26 June 2014, WIS, Israel

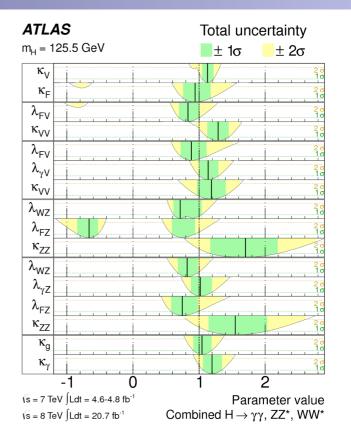

Tuesday 24 June 2014



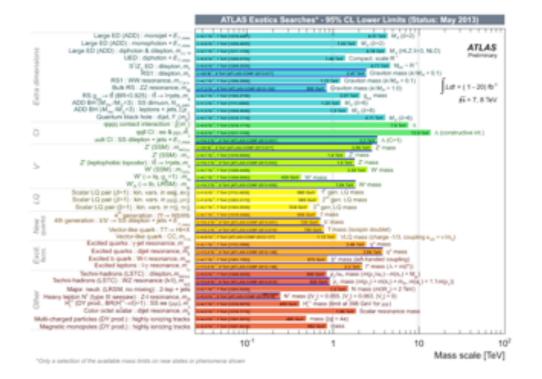

The flavor of the Higgs, 23-26 June 2014, WIS, Israel

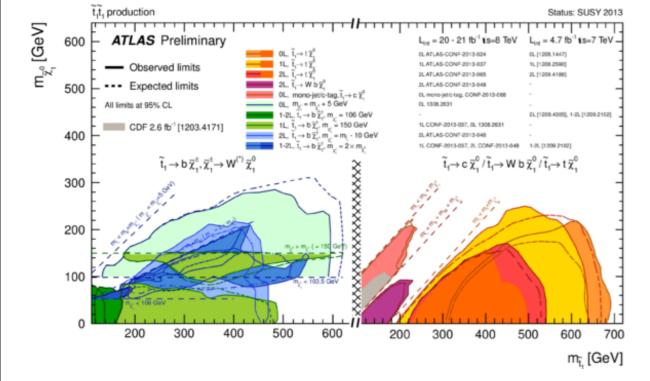
Tuesday 24 June 2014





The flavor of the Higgs, 23-26 June 2014, WIS, Israel


Tuesday 24 June 2014



NO SIGN OF NEW PHYSICS (SO FAR)!

MC developer

The flavor of the Higgs, 23-26 June 2014, WIS, Israel

• **Optimism**: New Physics could be hiding there already, just need to dig it out.

The flavor of the Higgs, 23-26 June 2014, WIS, Israel

- **Optimism**: New Physics could be hiding there already, just need to dig it out.
- **Democratization**: No evidence of most beaten BSM proposals, means more and more room for diversification. Possibility for small teams to make a big discovery.

- **Optimism**: New Physics could be hiding there already, just need to dig it out.
- **Democratization**: No evidence of most beaten BSM proposals, means more and more room for diversification. Possibility for small teams to make a big discovery.
- Ingenuity/Creativity: From new signatures to smart and new analysis techniques (MVA), and combination with non-collider searches (DM, Flavor...).

- **Optimism**: New Physics could be hiding there already, just need to dig it out.
- **Democratization**: No evidence of most beaten BSM proposals, means more and more room for diversification. Possibility for small teams to make a big discovery.
- Ingenuity/Creativity: From new signatures to smart and new analysis techniques (MVA), and combination with non-collider searches (DM, Flavor...).
- **Massification** (the practice of making luxury products available to the mass market) : MC's in the hands of every th/exp might turn out to be the best overall strategy for discovering the Unexpected.

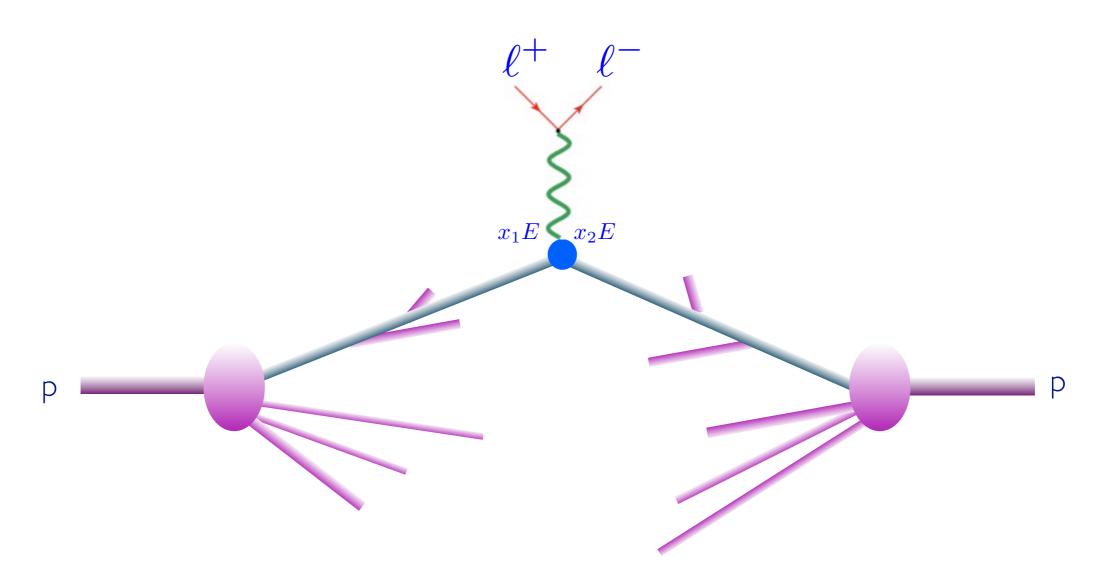
- **Optimism**: New Physics could be hiding there already, just need to dig it out.
- **Democratization**: No evidence of most beaten BSM proposals, means more and more room for diversification. Possibility for small teams to make a big discovery.
- Ingenuity/Creativity: From new signatures to smart and new analysis techniques (MVA), and combination with non-collider searches (DM, Flavor...).
- Massification (the practice of making luxury products available to the mass market) : MC's in the hands of every th/exp might turn out to be the best overall strategy for discovering the Unexpected.
- Flexibility: We need MC that are able to predict the pheno of the Unexpected.

- **Optimism**: New Physics could be hiding there already, just need to dig it out.
- **Democratization**: No evidence of most beaten BSM proposals, means more and more room for diversification. Possibility for small teams to make a big discovery.
- Ingenuity/Creativity: From new signatures to smart and new analysis techniques (MVA), and combination with non-collider searches (DM, Flavor...).
- Massification (the practice of making luxury products available to the mass market) : MC's in the hands of every th/exp might turn out to be the best overall strategy for discovering the Unexpected.
- Flexibility: We need MC that are able to predict the pheno of the Unexpected.
- Accuracy: accurate simulations for both SM and BSM are a must.

...SO HOW WE (USED TO) MAKE PREDICTIONS AT HADRON COLLIDERS?

The flavor of the Higgs, 23-26 June 2014, WIS, Israel

Tuesday 24 June 2014

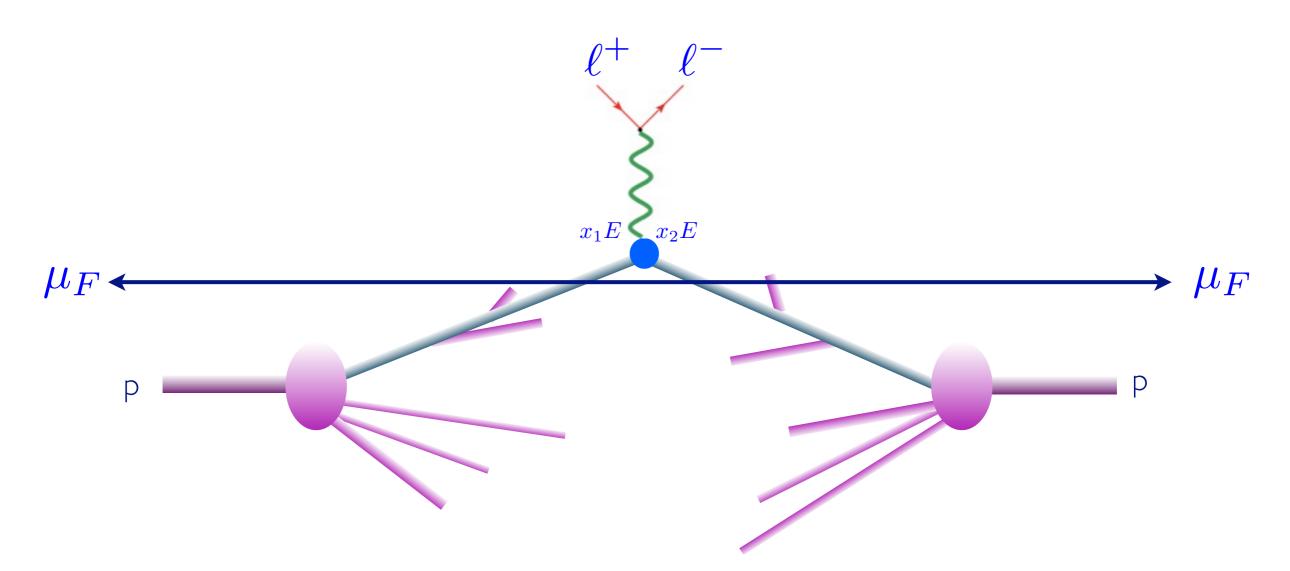

LHC MASTER FORMULA

The flavor of the Higgs, 23-26 June 2014, WIS, Israel

Tuesday 24 June 2014

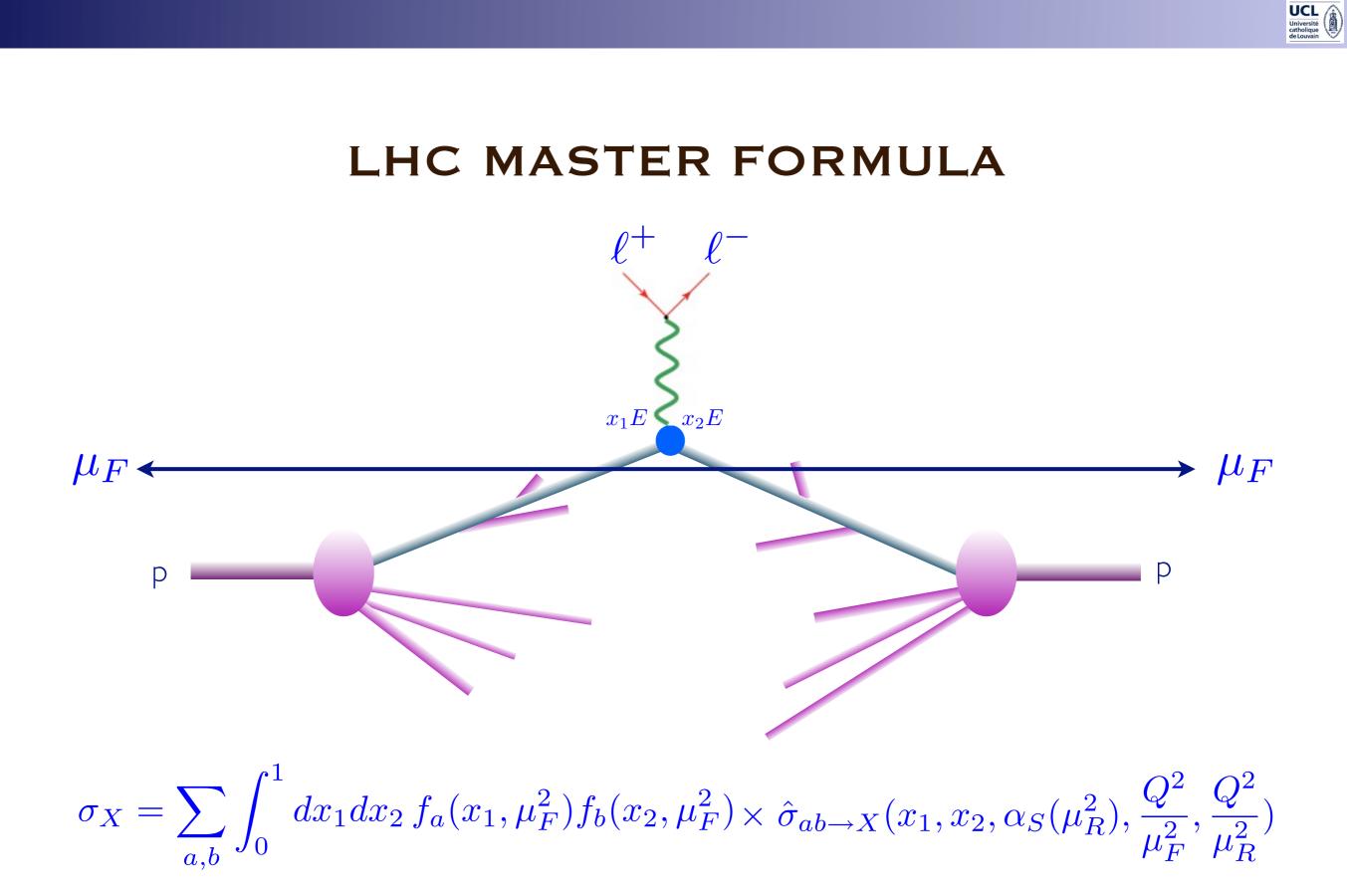
UCL Université catholique de Louvain

LHC MASTER FORMULA

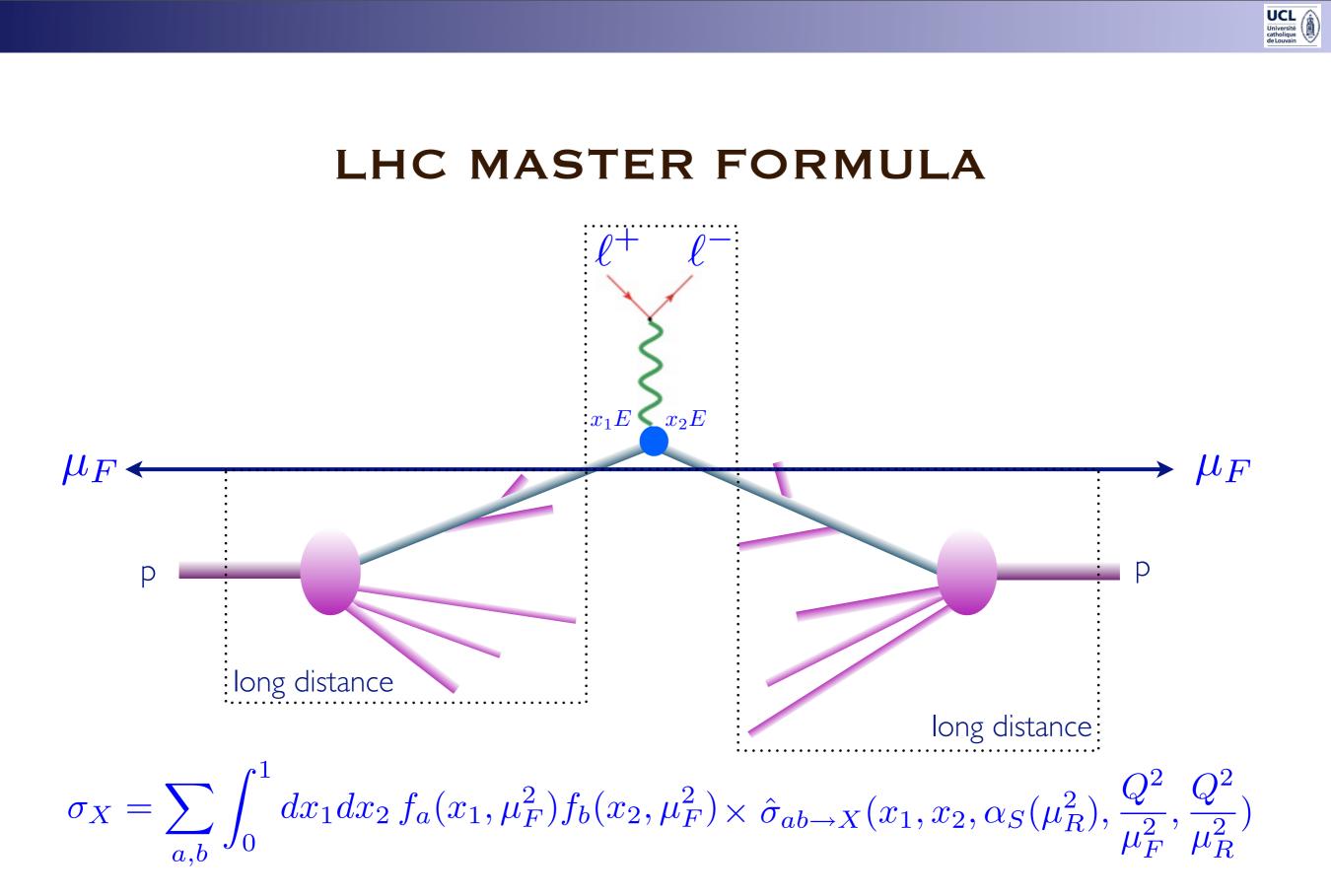


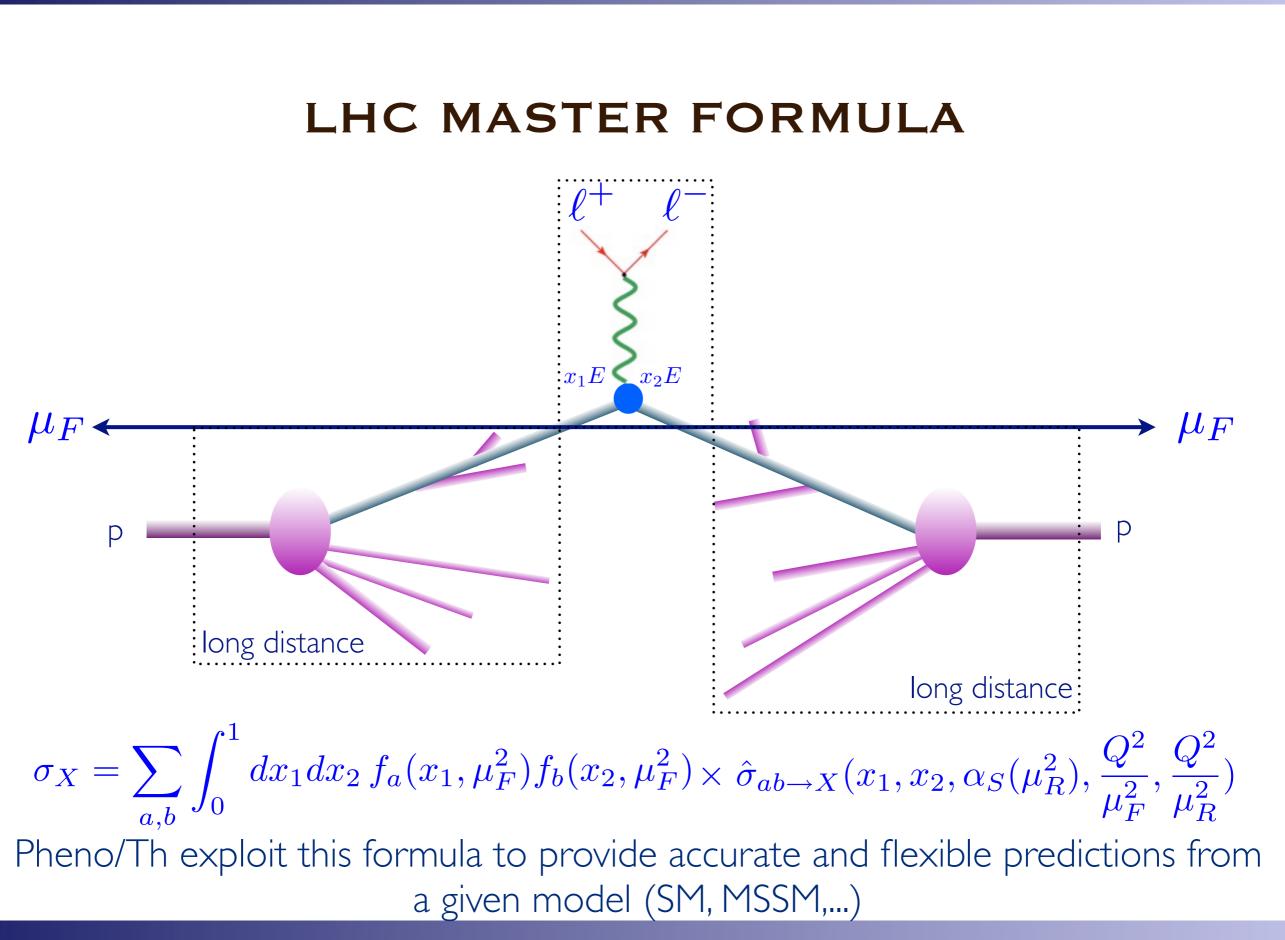
The flavor of the Higgs, 23-26 June 2014, WIS, Israel

Tuesday 24 June 2014



LHC MASTER FORMULA




The flavor of the Higgs, 23-26 June 2014, WIS, Israel

Tuesday 24 June 2014

The flavor of the Higgs, 23-26 June 2014, WIS, Israel

The flavor of the Higgs, 23-26 June 2014, WIS, Israel

UCL Université catholique de Louvain

HOW WE (USED TO) MAKE PREDICTIONS?

First way:

 \Rightarrow

For low multiplicity include higher order terms in our fixed-order calculations (LO→NLO→NNLO...)

$$\hat{\sigma}_{ab\to X} = \sigma_0 + \alpha_S \sigma_1 + \alpha_S^2 \sigma_2 + \dots$$

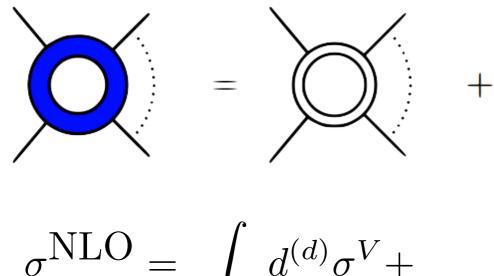
Université

• For high multiplicity use the tree-level results

Comments:

- I. The theoretical errors systematically decrease.
- 2. Pure theoretical point of view.
- 3. A lot of new techniques and universal algorithms have been developed.
 4. Final description only in terms of partons and calculation of IR safe observables ⇒ not directly useful for simulations

NLO contributions have three parts

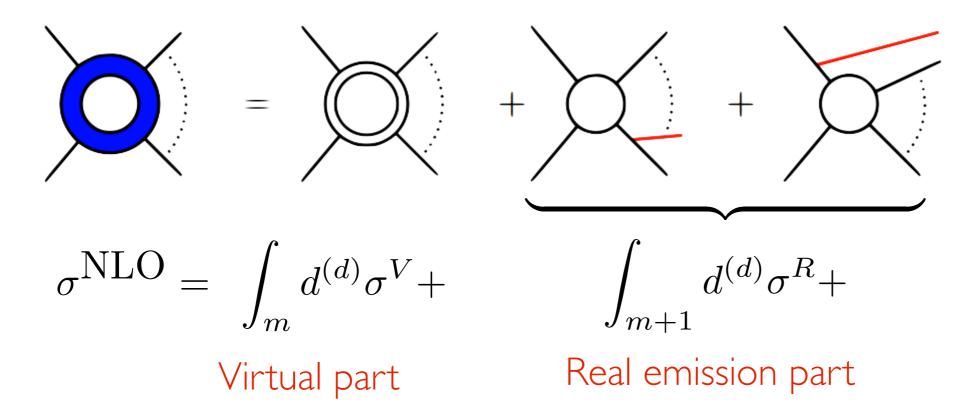

The flavor of the Higgs, 23-26 June 2014, WIS, Israel

Tuesday 24 June 2014

UCL Université catholique de Louvain

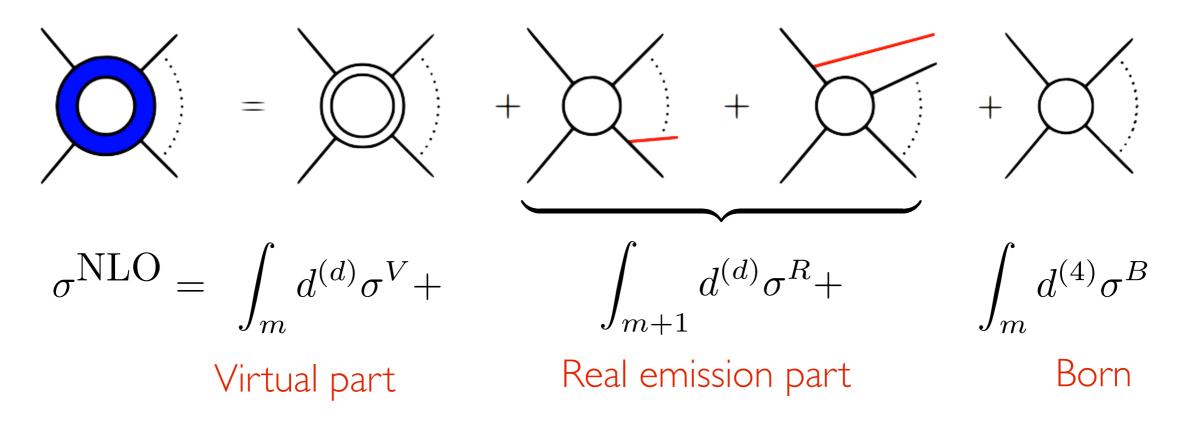
NLO BASICS

NLO contributions have three parts

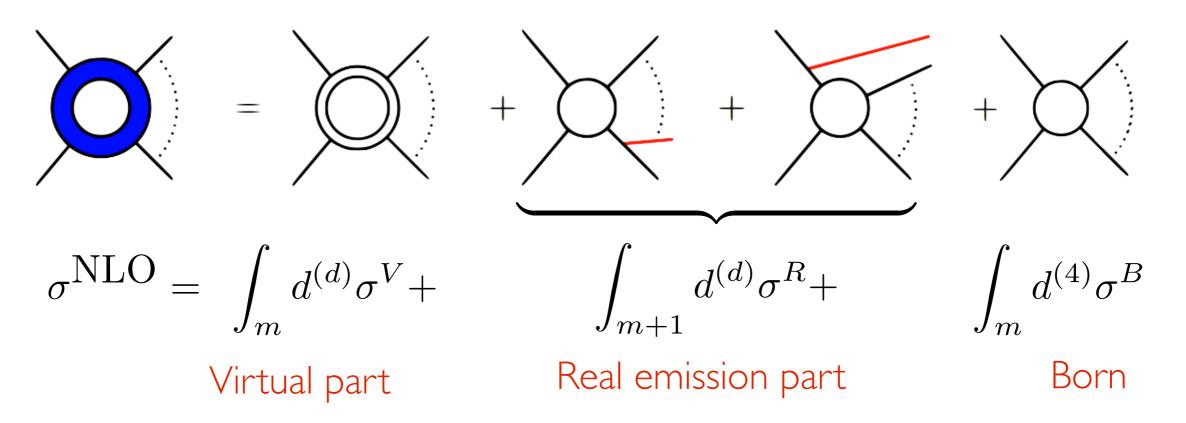

$$\sigma^{\text{NLO}} = \int_m d^{(d)} \sigma^V +$$

Virtual part

The flavor of the Higgs, 23-26 June 2014, WIS, Israel


NLO contributions have three parts

The flavor of the Higgs, 23-26 June 2014, WIS, Israel



NLO contributions have three parts


NLO contributions have three parts

- ✤ Loops have been for long the bottleneck of NLO computations
- Virtuals and Reals are each divergent and subtraction scheme need to be used (Dipoles, FKS, Antenna's)
- ✤ A lot of work is necessary for each computation

NLO contributions have three parts

- ✤ Loops have been for long the bottleneck of NLO computations
- Virtuals and Reals are each divergent and subtraction scheme need to be used (Dipoles, FKS, Antenna's)
- ✤ A lot of work is necessary for each computation

The cost of a new prediction at NLO used to exceed 100k€.

The flavor of the Higgs, 23-26 June 2014, WIS, Israel

LOOP TECHNIQUES

modified by the speaker

The flavor of the Higgs, 23-26 June 2014, WIS, Israel

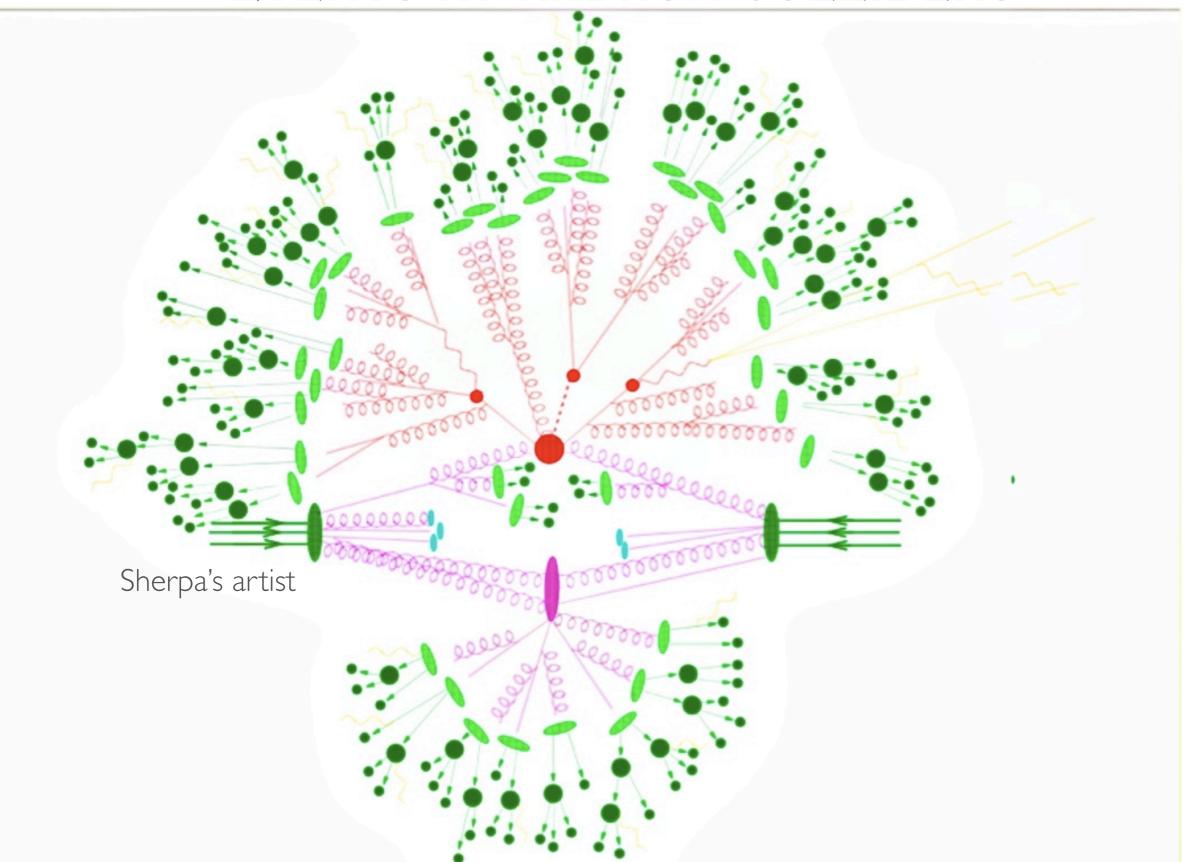
BEST EXAMPLE: MCFM

Downloadable general purpose NLO code [Campbell, Ellis, Williams+collaborators]

Final state	Notes	Reference
W/Z		
diboson (W/Z/γ)	photon fragmentation, anomalous couplings	hep-ph/9905386, arXiv:1105.0020
Wbb	massless b-quark massive b quark	hep-ph/9810489 arXiv:1011.6647
Zbb	massless b-quark	hep-ph/0006304
W/Z+I jet		
W/Z+2 jets		hep-ph/0202176, hep-ph/0308195
Wc	massive c-quark	hep-ph/0506289
Zb	5-flavour scheme	hep-ph/0312024
Zb+jet	5-flavour scheme	hep-ph/0510362

Final state	Notes	Reference
H (gluon fusion)		
H+I jet (g.f.)	effective coupling	
H+2 jets (g.f.)	effective coupling	hep-ph/0608194, arXiv:1001.4495
WH/ZH		
H (WBF)		hep-ph/0403194
Hb	5-flavour scheme	hep-ph/0204093
t	s- and t-channel (5F), top decay included	hep-ph/0408158
t	t-channel (4F)	arXiv:0903.0005, arXiv:0907.3933
Wt	5-flavour scheme	hep-ph/0506289
top pairs	top decay included	

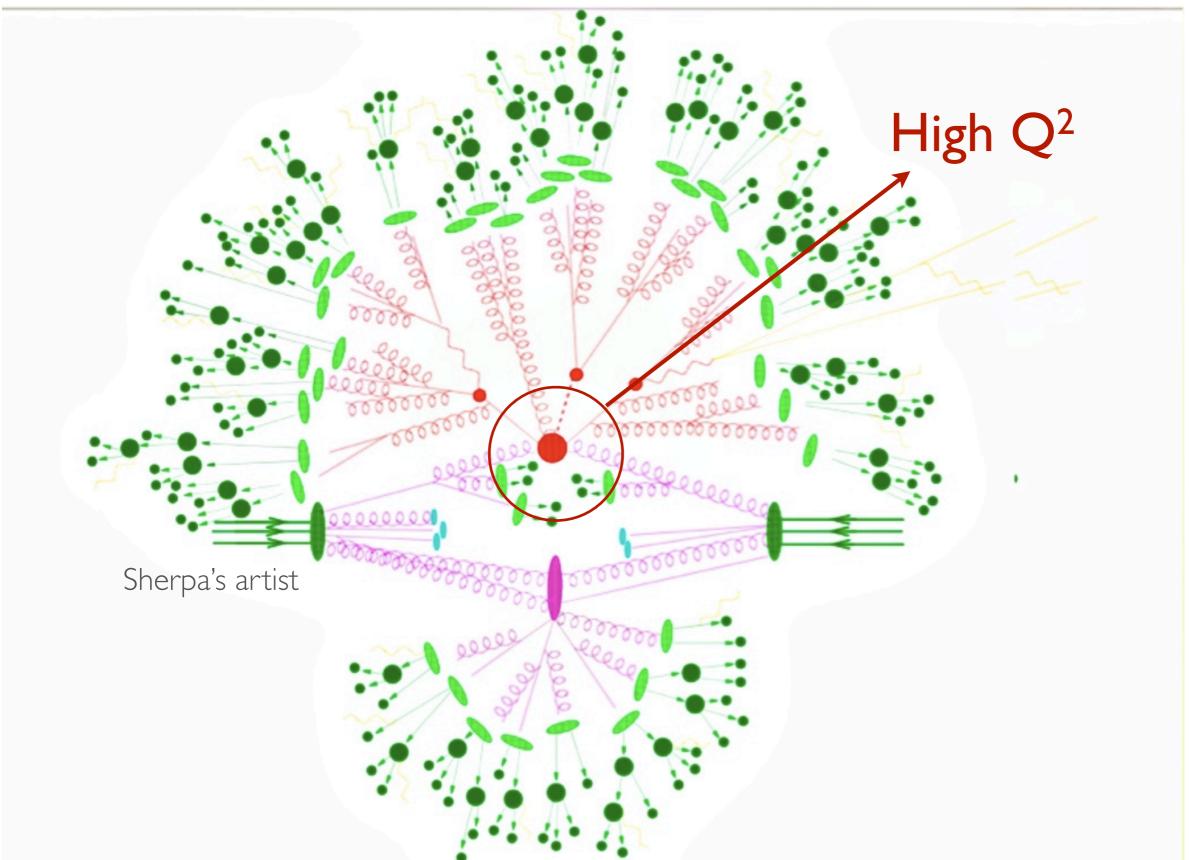
+ recent additions, overall 30+ processes


First results implemented in 1998 ...this is 13 years worth of work of several people (~5M\$)

© Cross sections and parton-level distributions at NLO are provided

© One framework, however, each process implemented by hand.

The flavor of the Higgs, 23-26 June 2014, WIS, Israel


EVENTS AT HADRON COLLIDERS

The flavor of the Higgs, 23-26 June 2014, WIS, Israel

Université catholique de Louvain

EVENTS AT HADRON COLLIDERS

The flavor of the Higgs, 23-26 June 2014, WIS, Israel

Université catholique de Louvain

HOW WE (USED TO) MAKE PREDICTIONS?

Second way:

Describe final states with high multiplicities starting from
 2 → 1 or 2 → 2 procs, using parton showers, and then an hadronization model.

Université catholique

Comments:

Fully exclusive final state description for detector simulations
 Normalization is very uncertain
 Very crude kinematic distributions for multi-parton final states
 Improvements are only at the model level.

most known and used : PYTHIA, HERWIG, SHERPA

The flavor of the Higgs, 23-26 June 2014, WIS, Israel

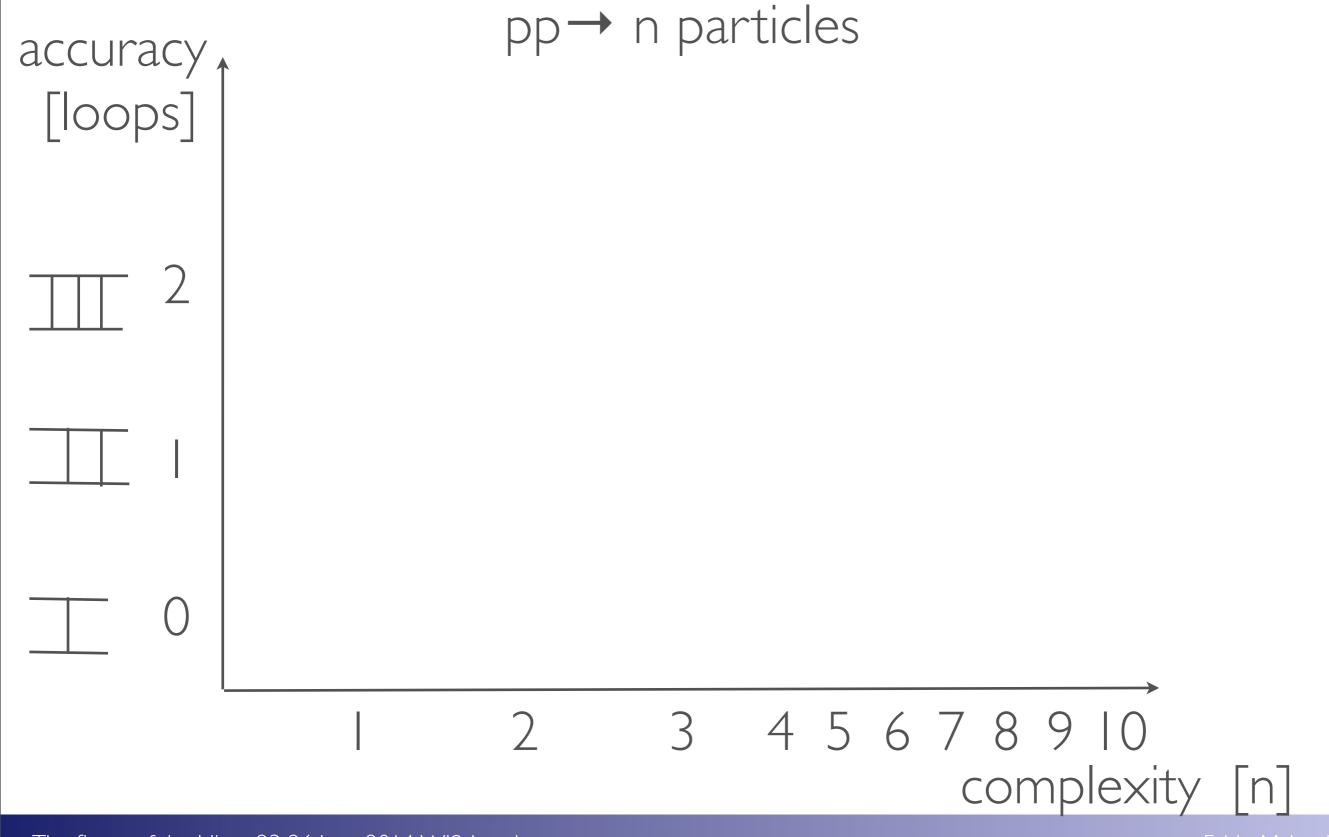
SM STATUS 10 YEARS AGO

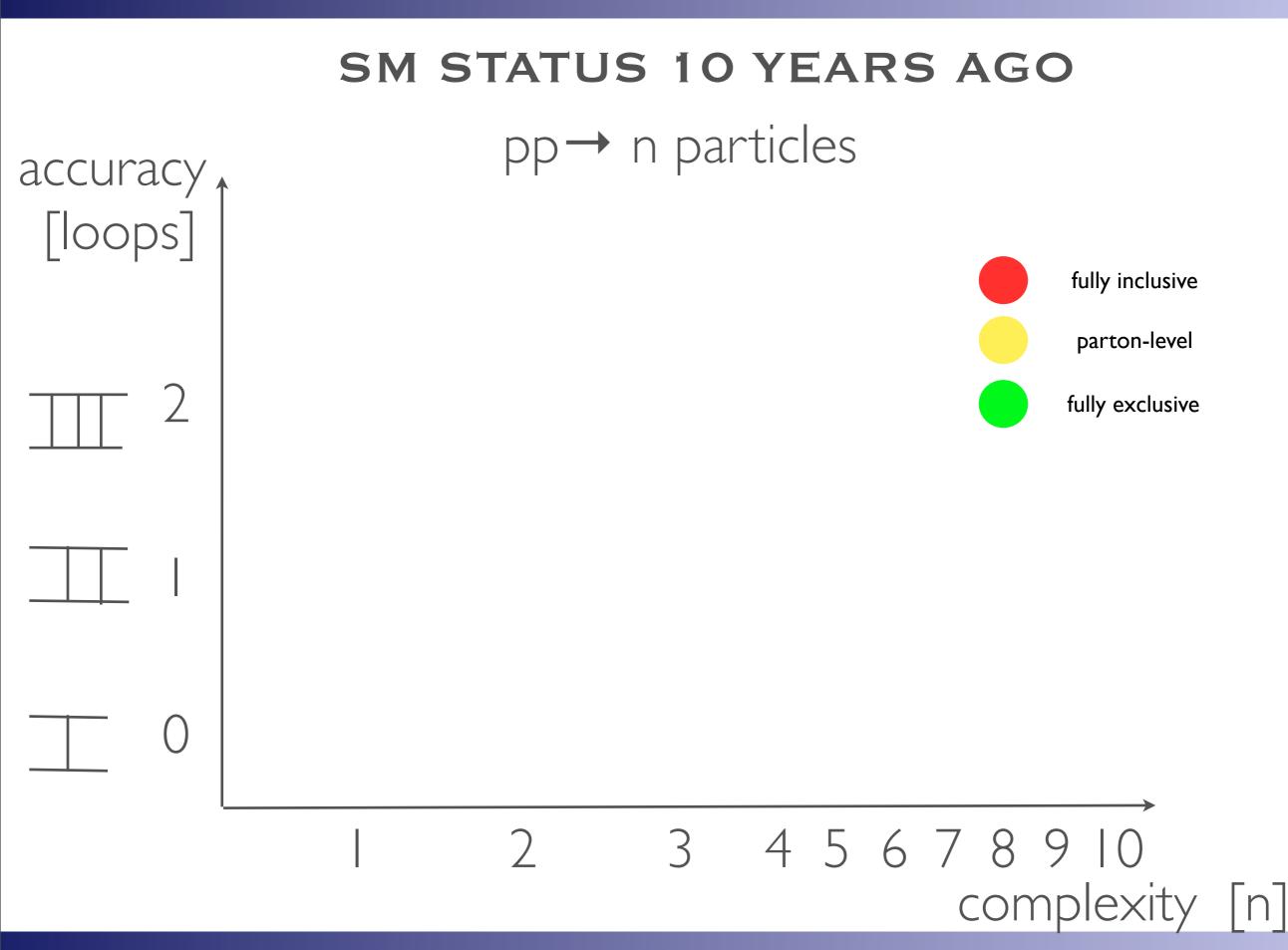
pp→ n particles

The flavor of the Higgs, 23-26 June 2014, WIS, Israel

Tuesday 24 June 2014

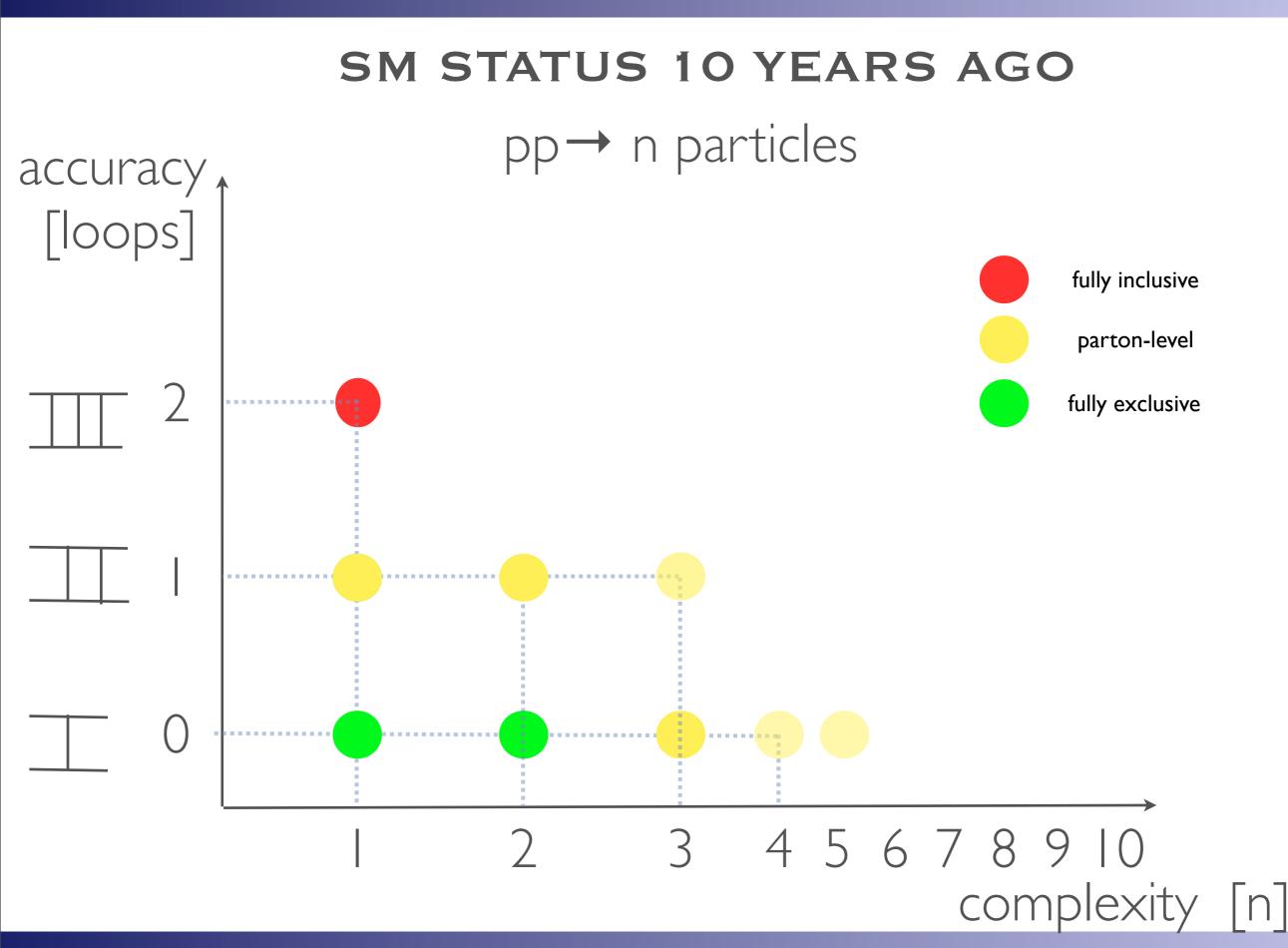
SM STATUS 10 YEARS AGO


pp→ n particles


The flavor of the Higgs, 23-26 June 2014, WIS, Israel

SM STATUS 10 YEARS AGO

The flavor of the Higgs, 23-26 June 2014, WIS, Israel

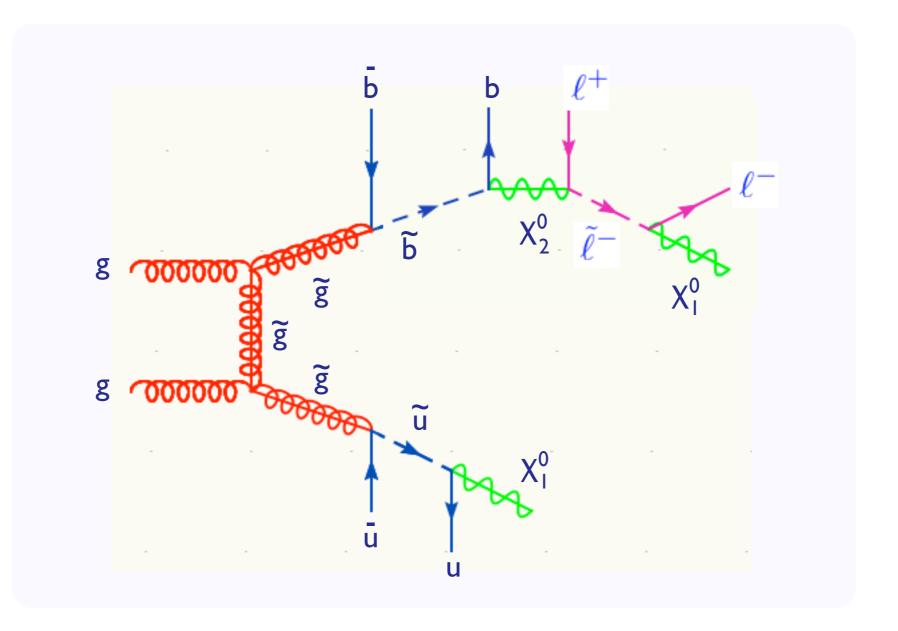


The flavor of the Higgs, 23-26 June 2014, WIS, Israel

Tuesday 24 June 2014

Fabio Maltoni

UCL Université catholique de Louvain

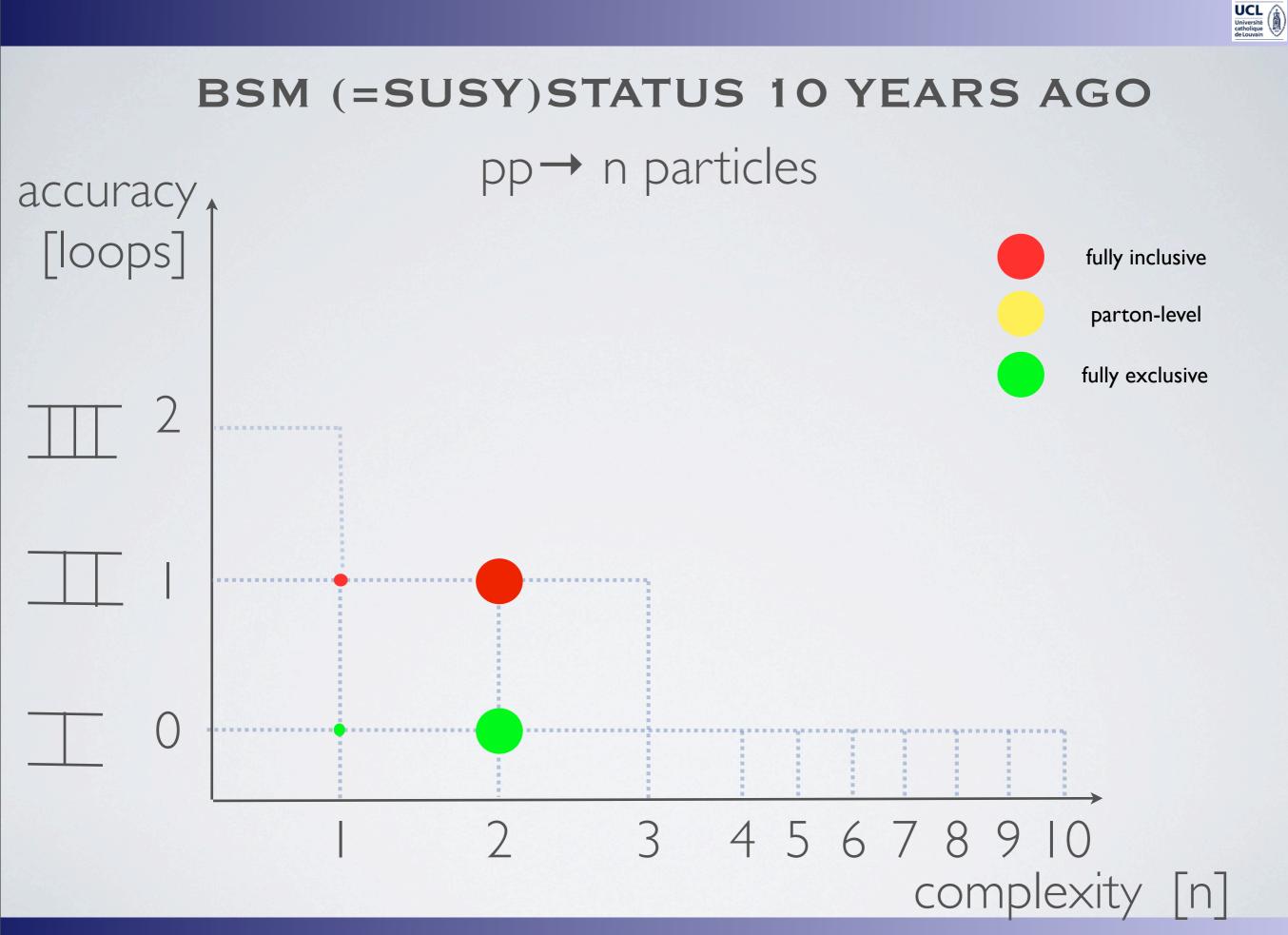

The flavor of the Higgs, 23-26 June 2014, WIS, Israel

Tuesday 24 June 2014

Fabio Maltoni

UCL Université catholique de Louvain

WHAT ABOUT NEW PHYSICS?



The flavor of the Higgs, 23-26 June 2014, WIS, Israel

Tuesday 24 June 2014

Fabio Maltoni

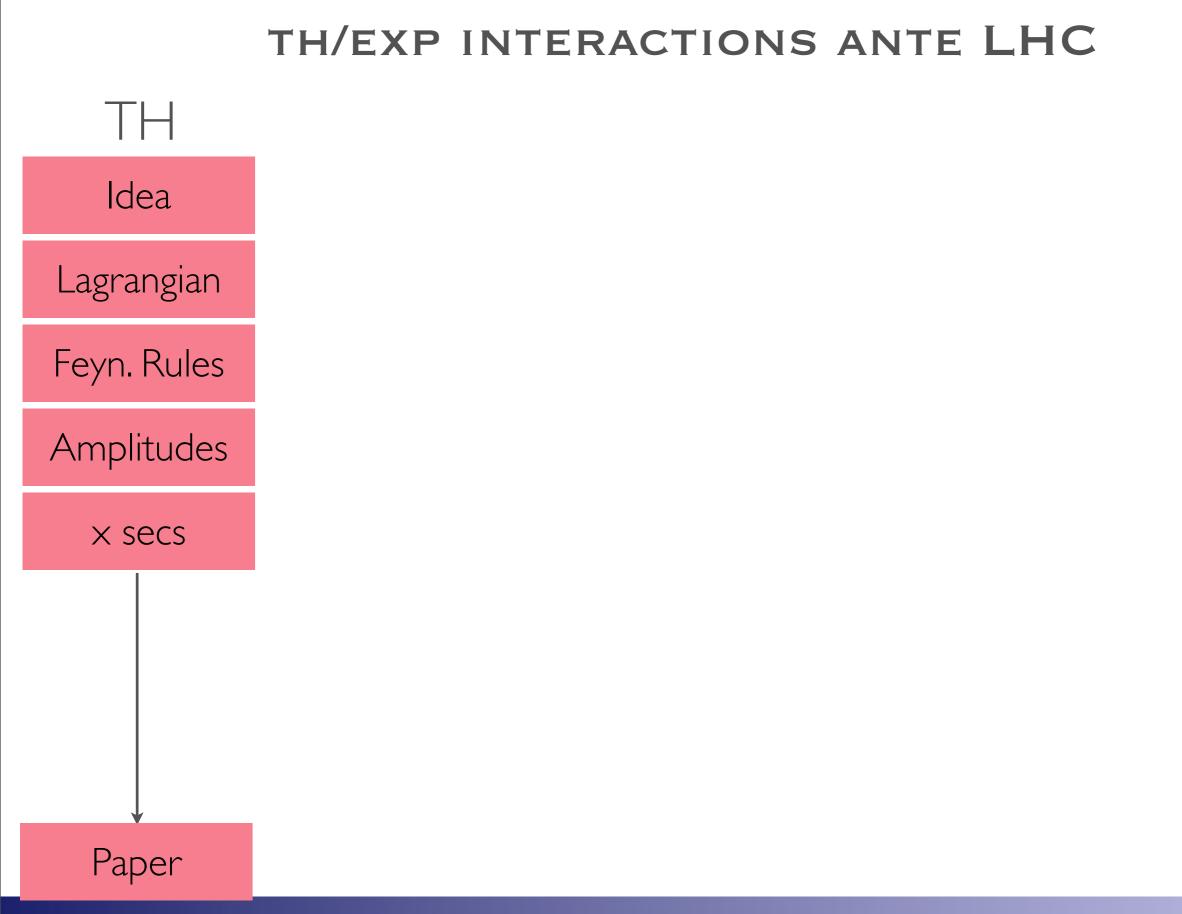
Université catholique de Louvain

The flavor of the Higgs, 23-26 June 2014, WIS, Israel

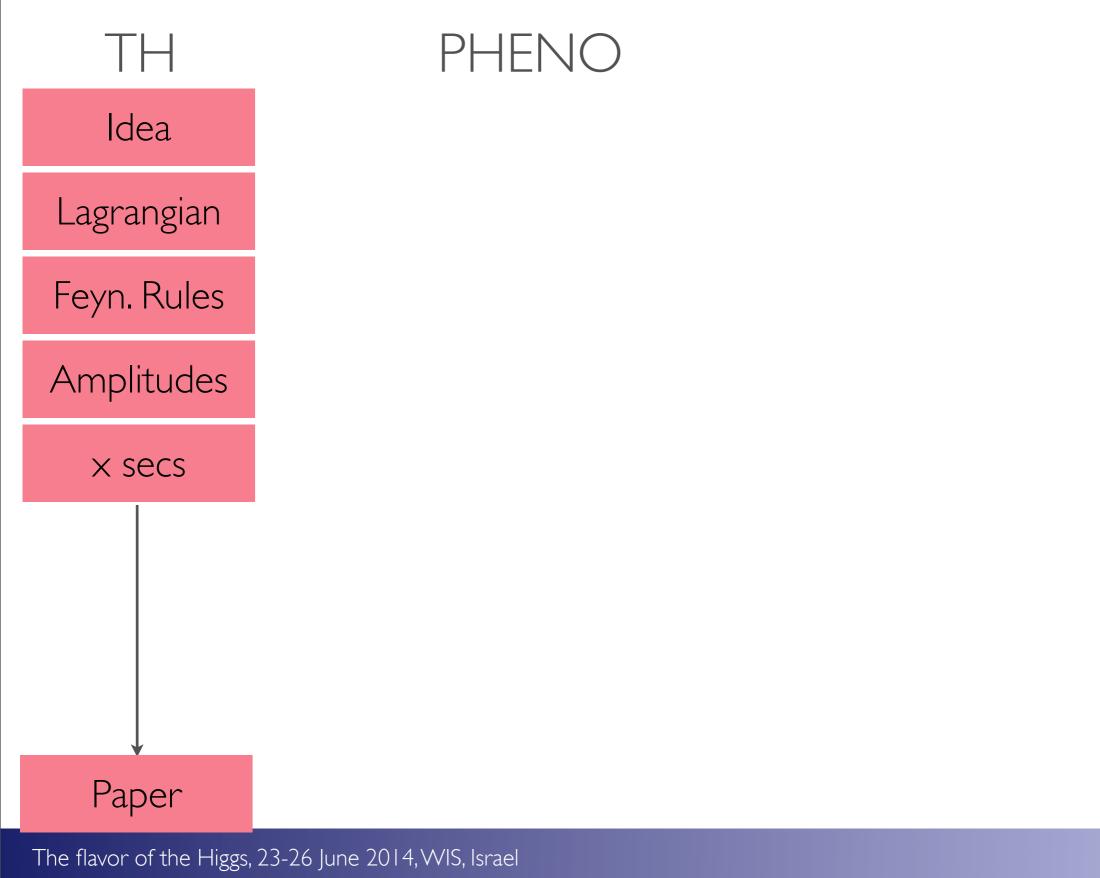
Tuesday 24 June 2014

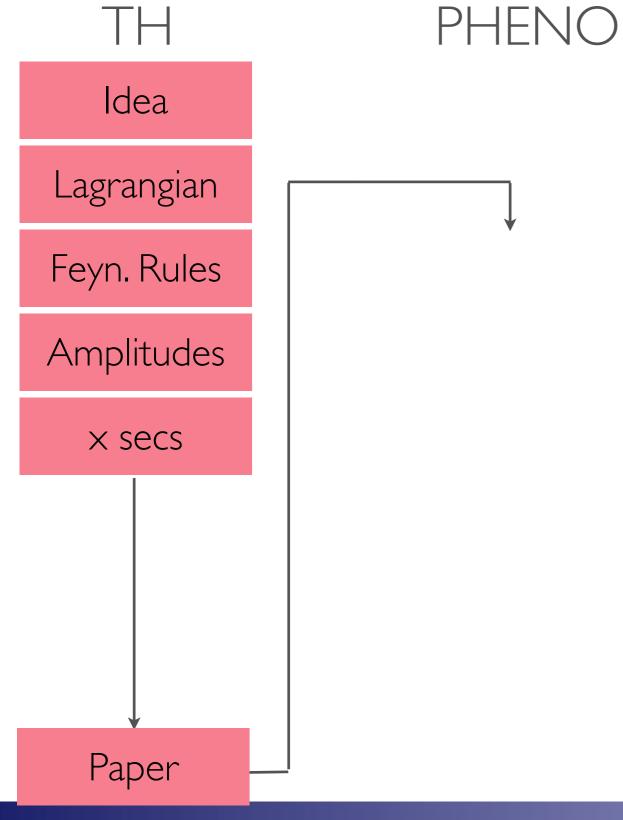
The flavor of the Higgs, 23-26 June 2014, WIS, Israel

Tuesday 24 June 2014

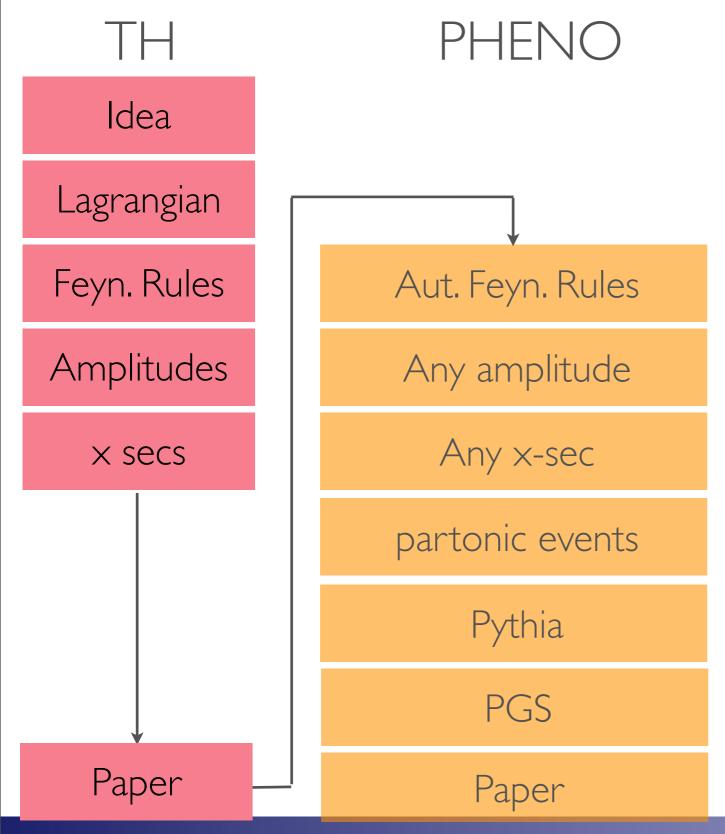


Idea


The flavor of the Higgs, 23-26 June 2014, WIS, Israel

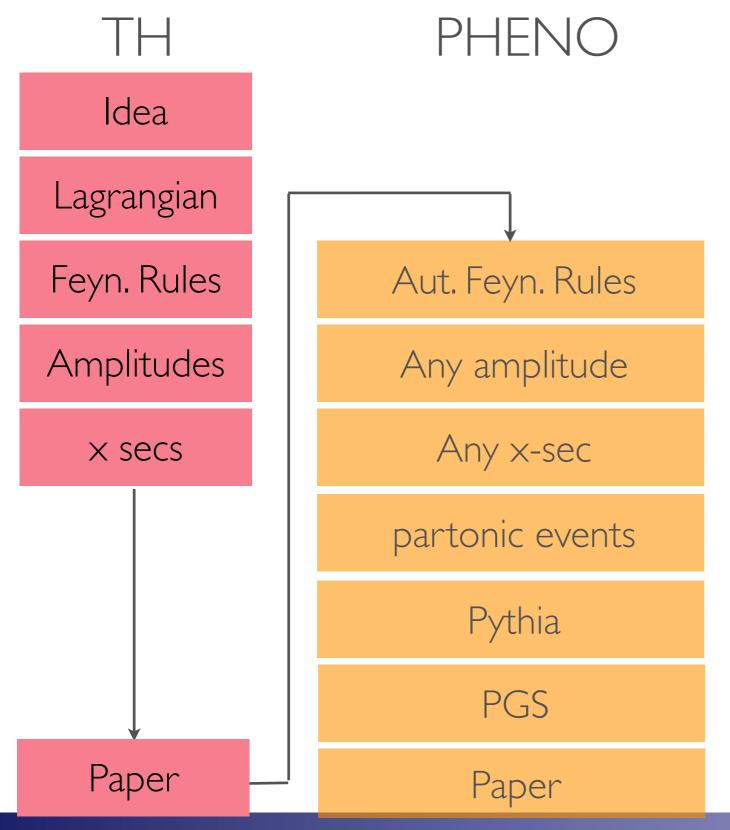

The flavor of the Higgs, 23-26 June 2014, WIS, Israel

Fadio Maito

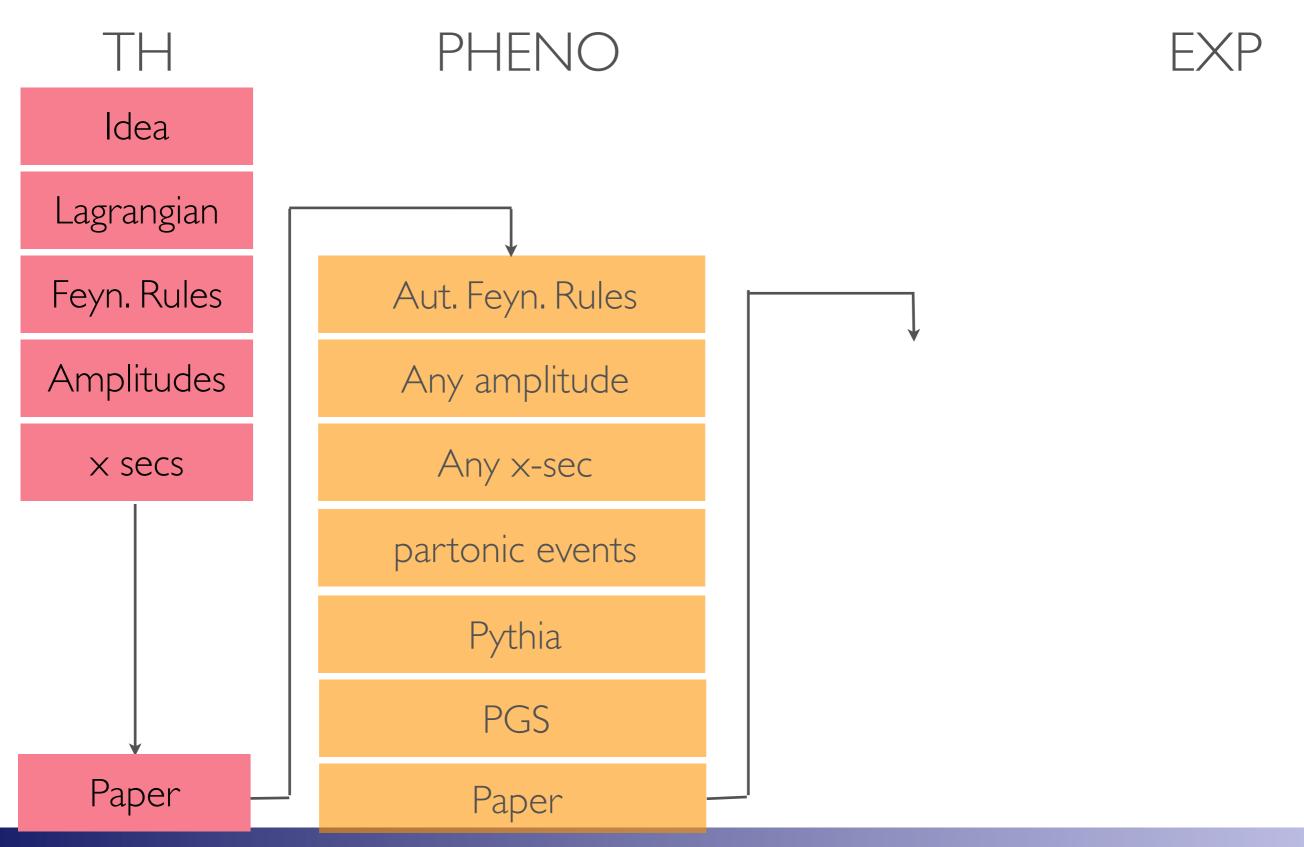


The flavor of the Higgs, 23-26 June 2014, WIS, Israel

Tuesday 24 June 2014

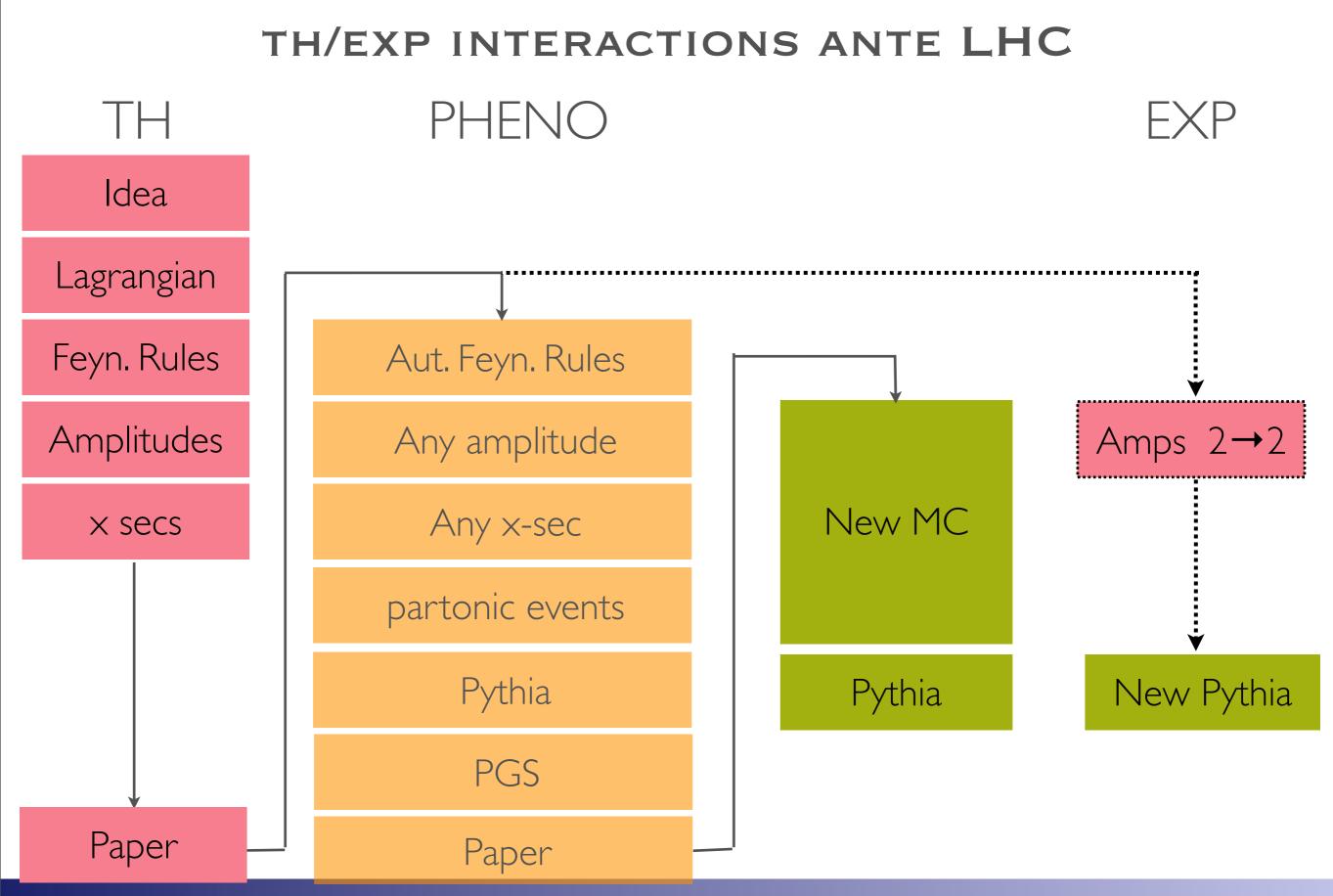


The flavor of the Higgs, 23-26 June 2014, WIS, Israel

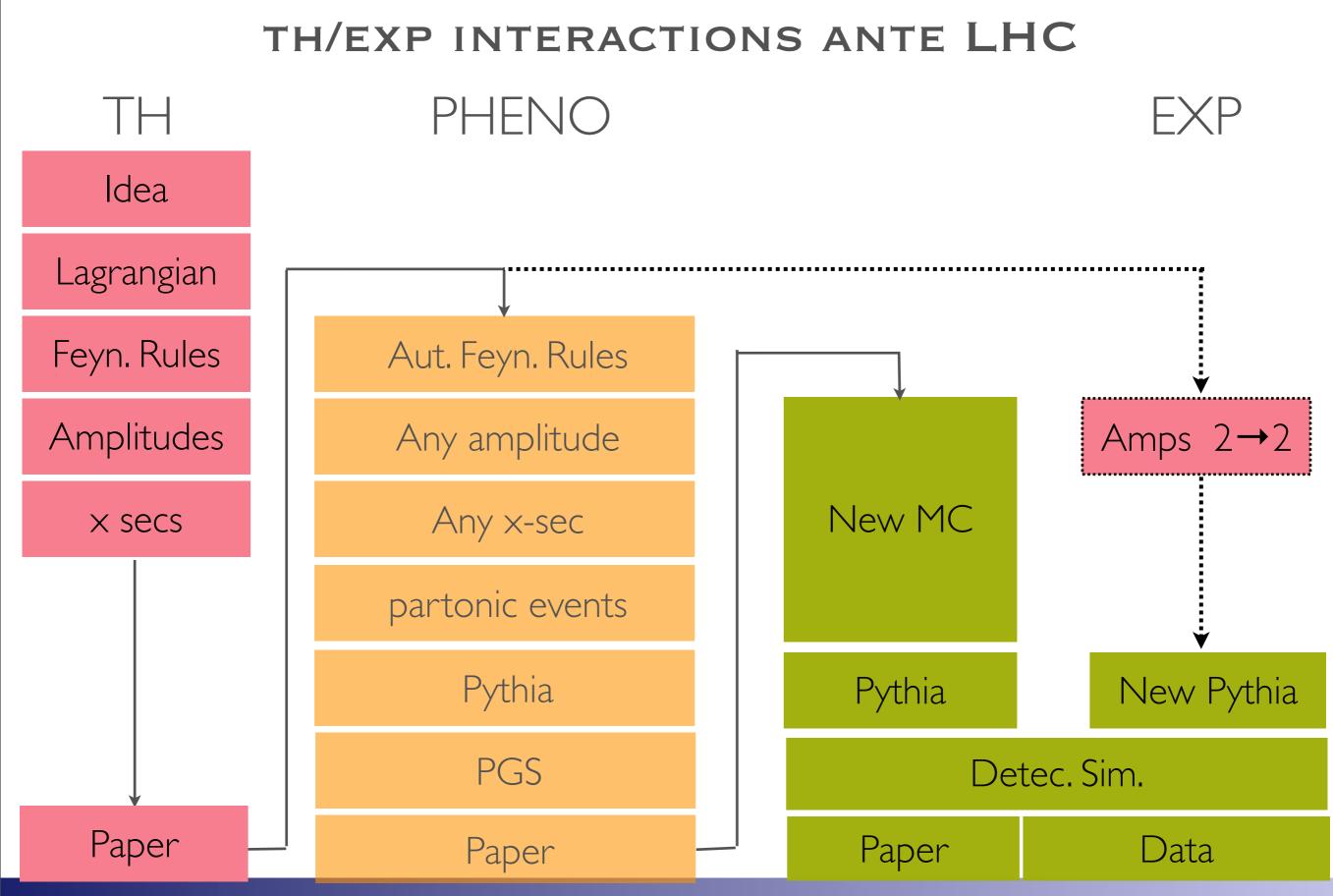

FXP

TH/EXP INTERACTIONS ANTE LHC

The flavor of the Higgs, 23-26 June 2014, WIS, Israel


The flavor of the Higgs, 23-26 June 2014, WIS, Israel

The flavor of the Higgs, 23-26 June 2014, WIS, Israel



The flavor of the Higgs, 23-26 June 2014, WIS, Israel

Tuesday 24 June 2014

The flavor of the Higgs, 23-26 June 2014, WIS, Israel

Tuesday 24 June 2014

BSM TH/EXP INTERACTIONS : THE OLD WAY

- Workload is tripled!
- Long delays due to localized expertise and error prone. Painful validations are necessary at each step.
- It leads to a proliferation of private MC tools/sample productions impossible to maintain, document and reproduce on the mid- and long- term.
- Just publications is a very inefficient way of communicating between TH/PHENO/EXP.

We would like to:

The flavor of the Higgs, 23-26 June 2014, WIS, Israel

We would like to:

The flavor of the Higgs, 23-26 June 2014, WIS, Israel

We would like to:

I.have the possibility of making collider studies for any BSM theory by knowing the Lagrangian (and benchmarks).

- I.have the possibility of making collider studies for any BSM theory by knowing the Lagrangian (and benchmarks).
- 2.that our EXP/TH results could be directly used by the TH/EXP colleagues.

- I.have the possibility of making collider studies for any BSM theory by knowing the Lagrangian (and benchmarks).
- 2.that our EXP/TH results could be directly used by the TH/EXP colleagues.
- 3.have the needed accuracy of NLO prediction with the flexibility of parton shower/hadronization.

- I.have the possibility of making collider studies for any BSM theory by knowing the Lagrangian (and benchmarks).
- 2.that our EXP/TH results could be directly used by the TH/EXP colleagues.
- 3.have the needed accuracy of NLO prediction with the flexibility of parton shower/hadronization.
- 4. have the above for ANY SM background as well as for ANY BSM signals.

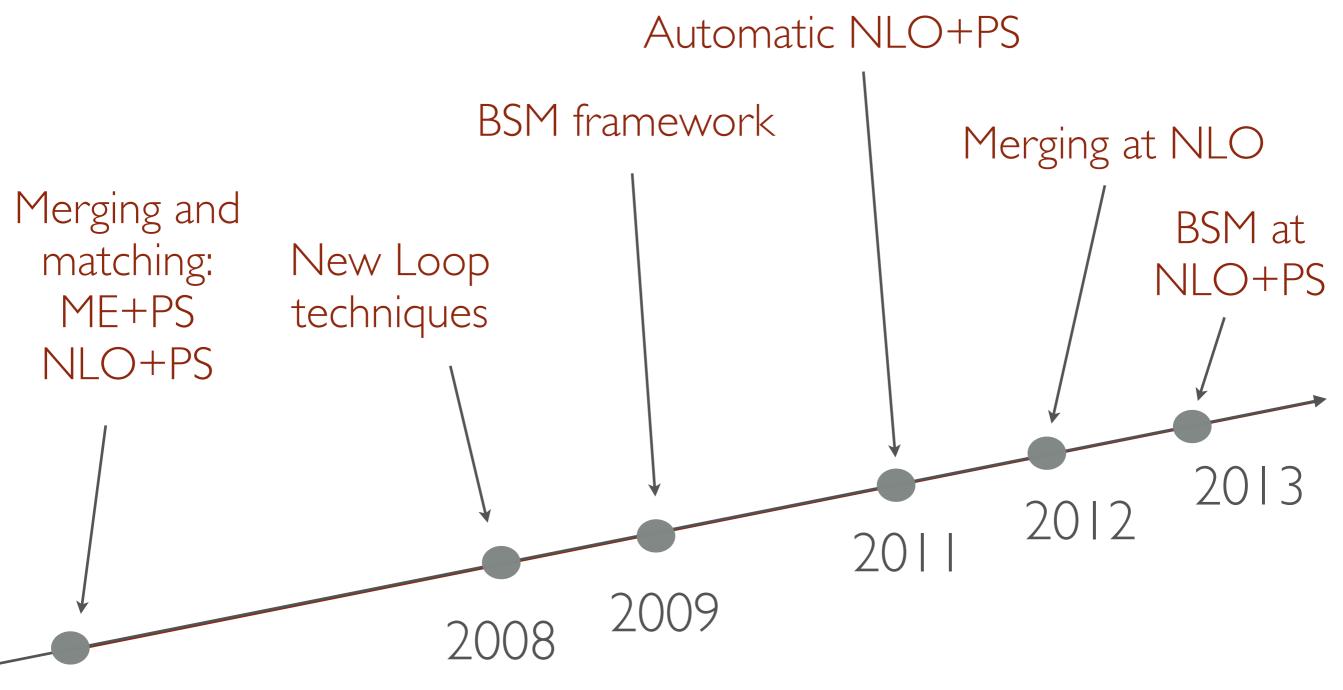
- I.have the possibility of making collider studies for any BSM theory by knowing the Lagrangian (and benchmarks).
- 2.that our EXP/TH results could be directly used by the TH/EXP colleagues.
- 3.have the needed accuracy of NLO prediction with the flexibility of parton shower/hadronization.
- 4. have the above for ANY SM background as well as for ANY BSM signals.
- 5. have them all available at the touch of a button.

We would like to:

- I.have the possibility of making collider studies for any BSM theory by knowing the Lagrangian (and benchmarks).
- 2.that our EXP/TH results could be directly used by the TH/EXP colleagues.
- 3.have the needed accuracy of NLO prediction with the flexibility of parton shower/hadronization.
- 4. have the above for ANY SM background as well as for ANY BSM signals.
- 5. have them all available at the touch of a button.

OK?

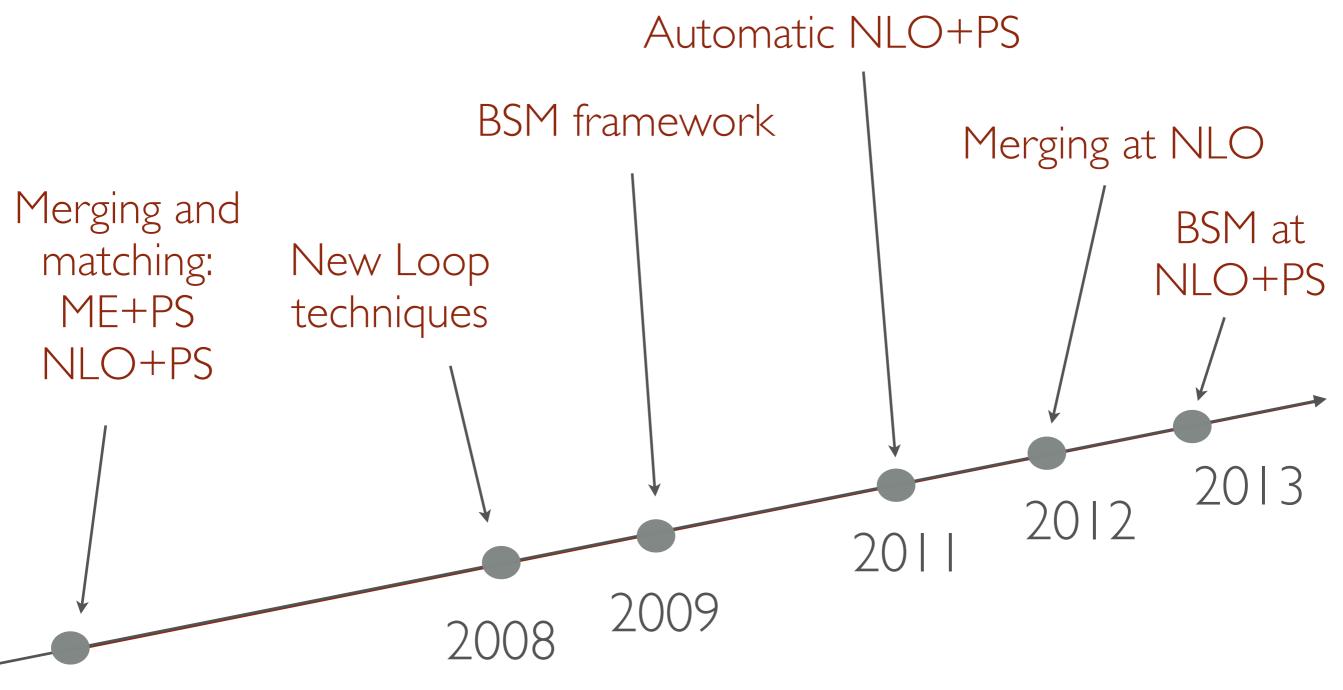
The flavor of the Higgs, 23-26 June 2014, WIS, Israel



The flavor of the Higgs, 23-26 June 2014, WIS, Israel

UCL Université catholique de Louvain

PREDICTIVE MC (SIMPLIFIED) PROGRESS

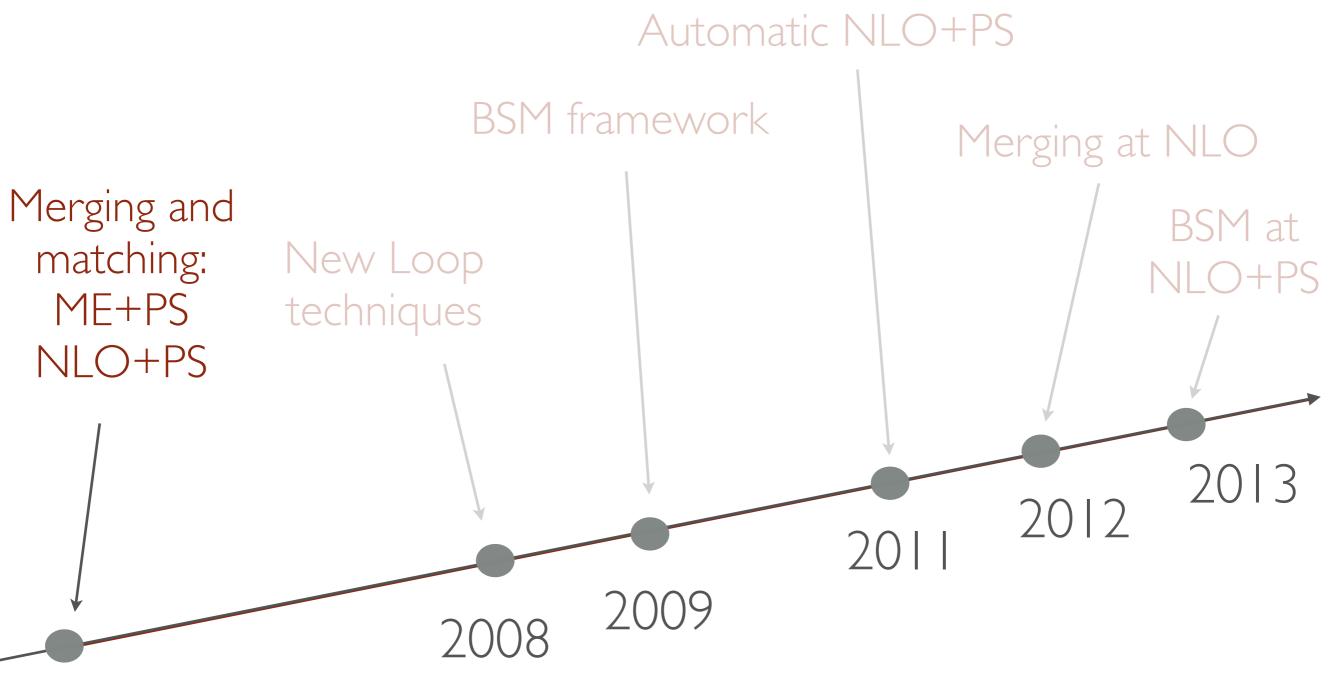


2002

The flavor of the Higgs, 23-26 June 2014, WIS, Israel

UCL Université catholique de Louvain

PREDICTIVE MC (SIMPLIFIED) PROGRESS



2002

The flavor of the Higgs, 23-26 June 2014, WIS, Israel

Université catholique de Louvain

PREDICTIVE MC (SIMPLIFIED) PROGRESS

2002

The flavor of the Higgs, 23-26 June 2014, WIS, Israel

ME WITH PS

[Mangano] [Catani, Krauss, Kuhn, Webber] [Frixione, Nason, Webber]

Matrix Element

- 2. fixed order calculation
- 3. quantum interference exact
- 4. valid when partons are hard and well separated
- 5. needed for multi-jet description

Shower MC

- 2. resums large logs
- 3. quantum interference through angular ordering
- 4. valid when partons are collinear and/or soft
- 5. nedeed for realistic studies

ME WITH PS

[Mangano] [Catani, Krauss, Kuhn, Webber] [Frixione, Nason, Webber]

Matrix Element

- I. parton-level description
- 2. fixed order calculation
- 3. quantum interference exact
- 4. valid when partons are hard and well separated
- 5. needed for multi-jet description

Shower MC

- 2. resums large logs
- 3. quantum interference through angular ordering
- 4. valid when partons are collinear and/or soft
- 5. nedeed for realistic studies

Approaches are complementary: merge them!

The flavor of the Higgs, 23-26 June 2014, WIS, Israel

Université catholique de Louvain

ME WITH PS

[Mangano] [Catani, Krauss, Kuhn, Webber] [Frixione, Nason, Webber]

Matrix Element

- 2. fixed order calculation
- 3. quantum interference exact
- 4. valid when partons are hard and well separated
- 5. needed for multi-jet description

Shower MC

- 2. resums large logs
- 3. quantum interference through angular ordering
- 4. valid when partons are collinear and/or soft
- 5. nedeed for realistic studies

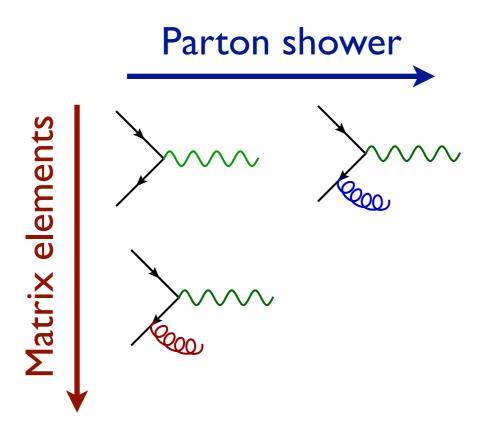
Approaches are complementary: merge them! Difficulty: avoid double counting

The flavor of the Higgs, 23-26 June 2014, WIS, Israel

MERGING FIXED ORDER WITH PS

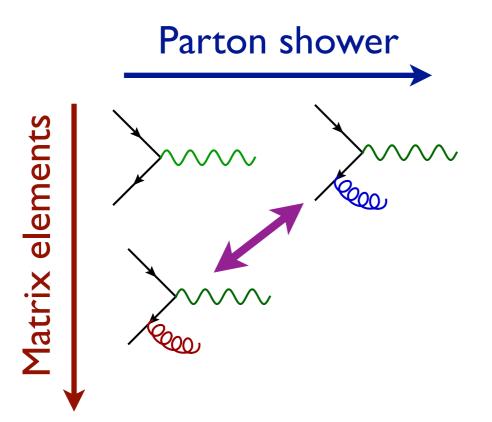
The flavor of the Higgs, 23-26 June 2014, WIS, Israel

Tuesday 24 June 2014


MERGING FIXED ORDER WITH PS

The flavor of the Higgs, 23-26 June 2014, WIS, Israel

Tuesday 24 June 2014

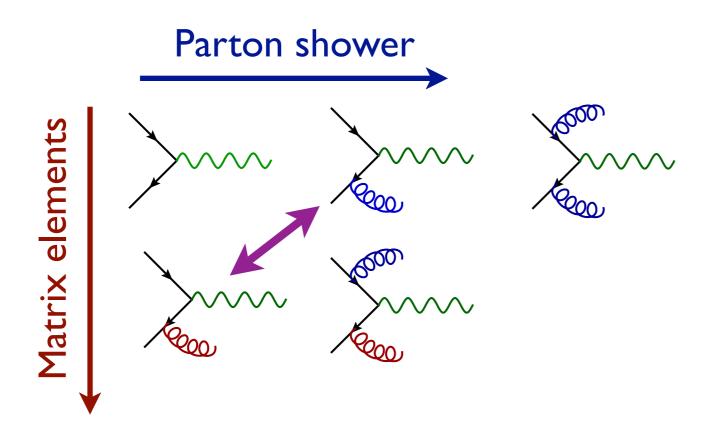


The flavor of the Higgs, 23-26 June 2014, WIS, Israel

Tuesday 24 June 2014

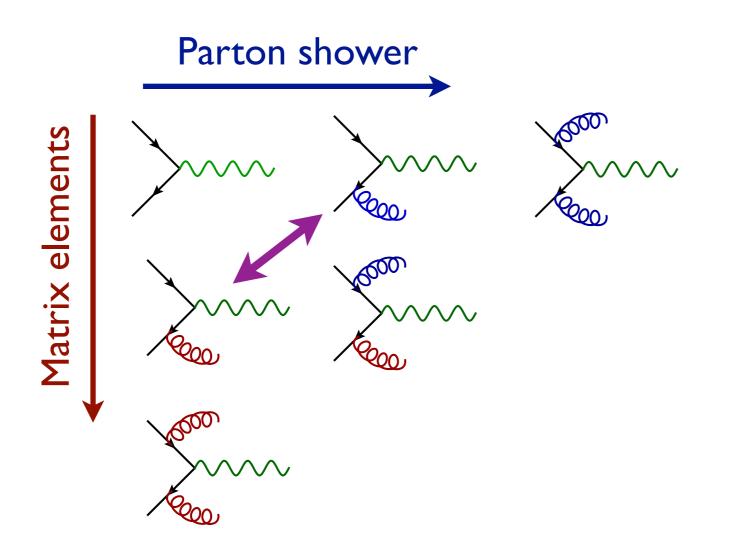
The flavor of the Higgs, 23-26 June 2014, WIS, Israel

Tuesday 24 June 2014



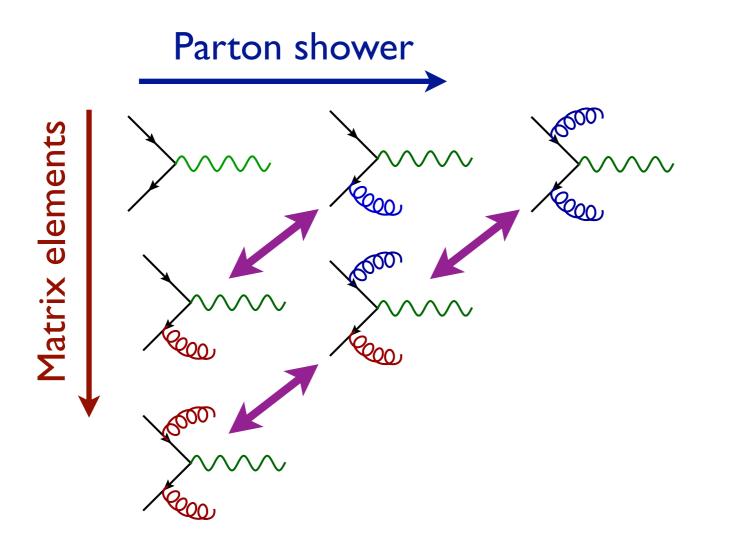
The flavor of the Higgs, 23-26 June 2014, WIS, Israel

Tuesday 24 June 2014



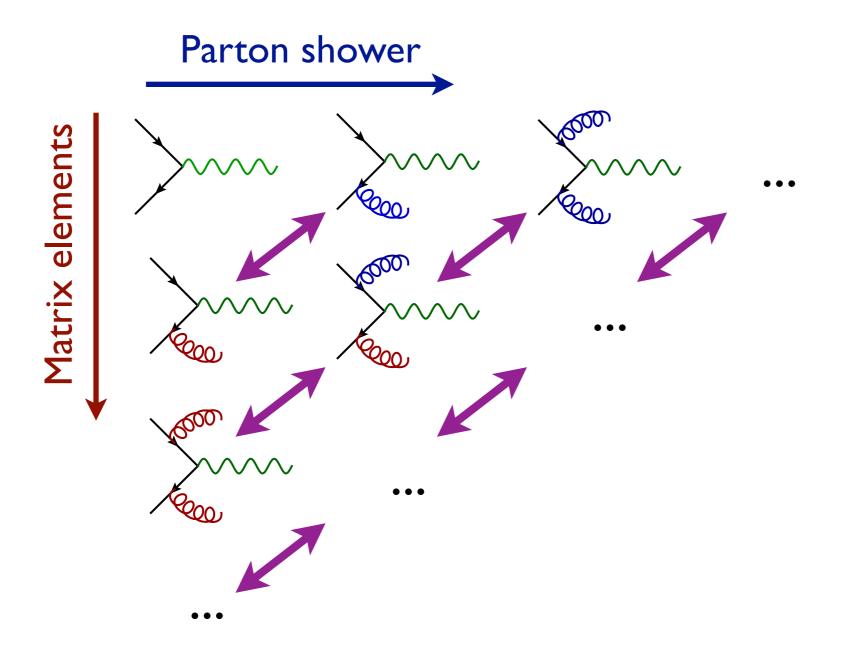
The flavor of the Higgs, 23-26 June 2014, WIS, Israel

Tuesday 24 June 2014



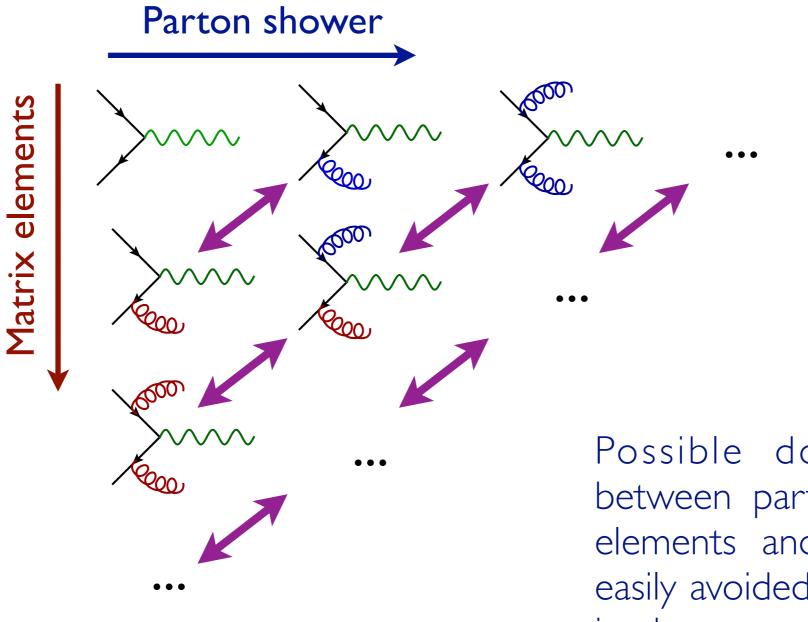
The flavor of the Higgs, 23-26 June 2014, WIS, Israel

Tuesday 24 June 2014

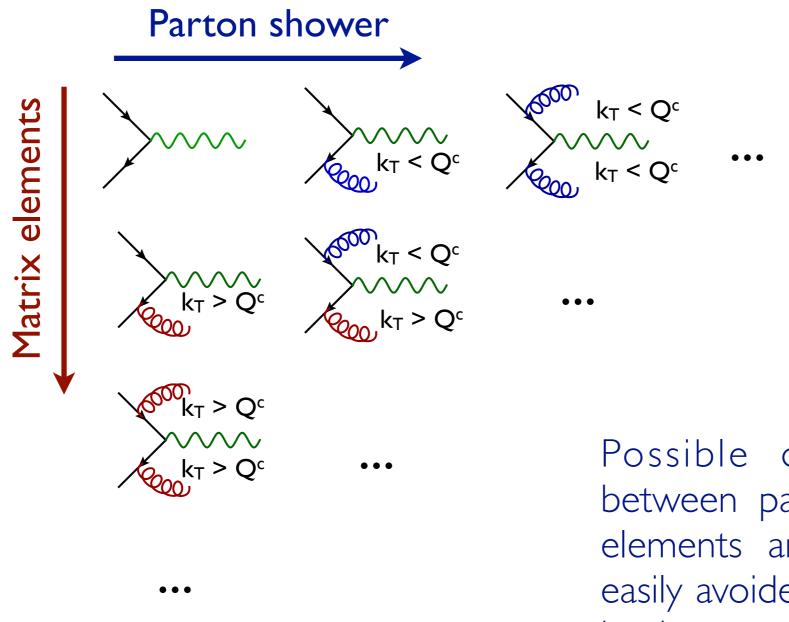


The flavor of the Higgs, 23-26 June 2014, WIS, Israel

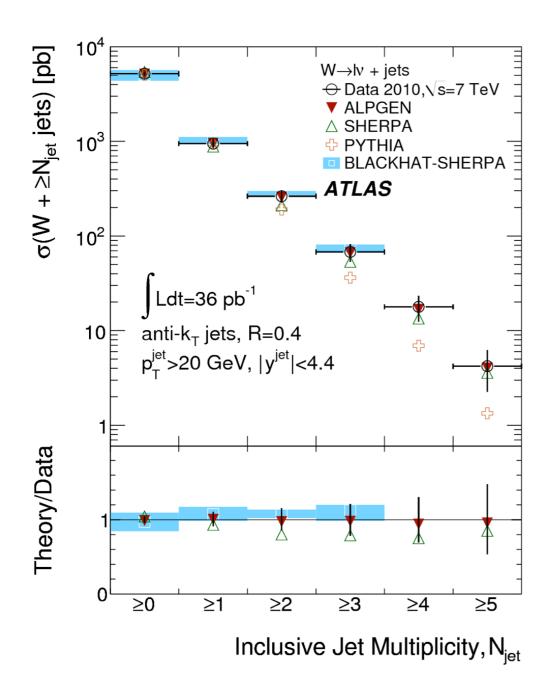
Tuesday 24 June 2014



The flavor of the Higgs, 23-26 June 2014, WIS, Israel

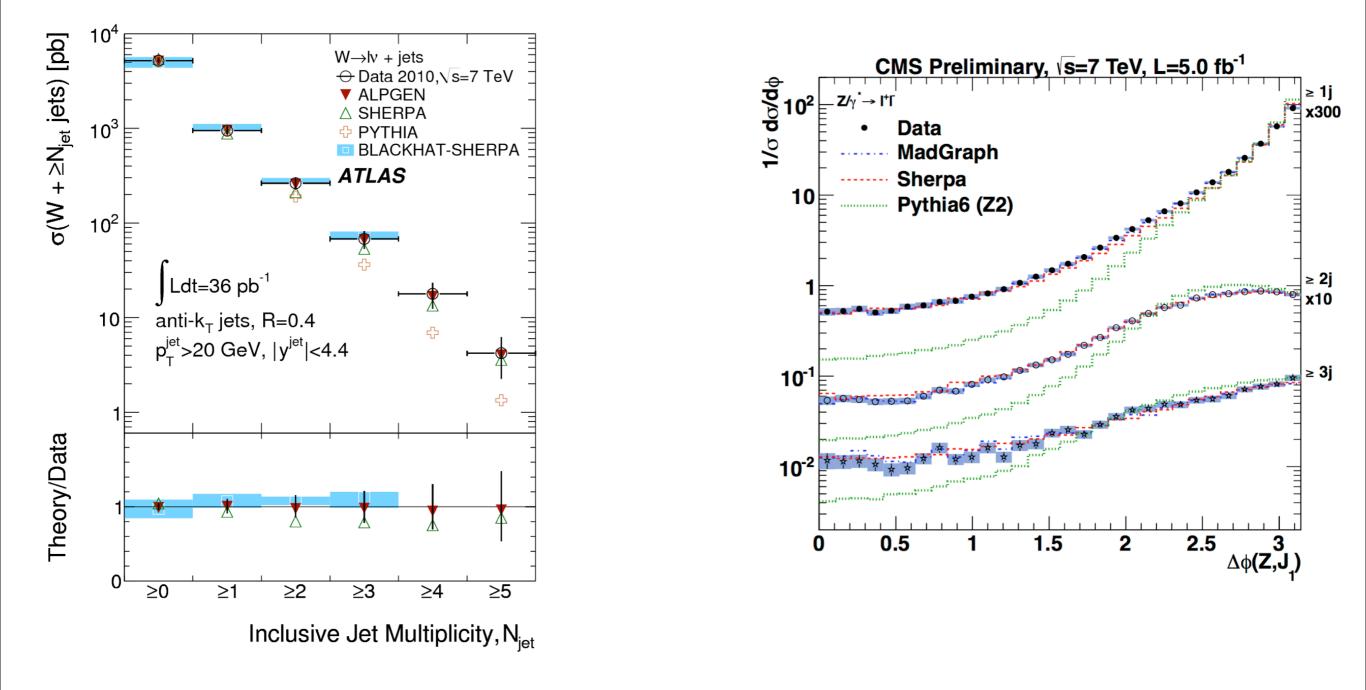

Tuesday 24 June 2014

Possible double counting between partons from matrix elements and parton shower easily avoided by applying a cut in phase space



Possible double counting between partons from matrix elements and parton shower easily avoided by applying a cut in phase space

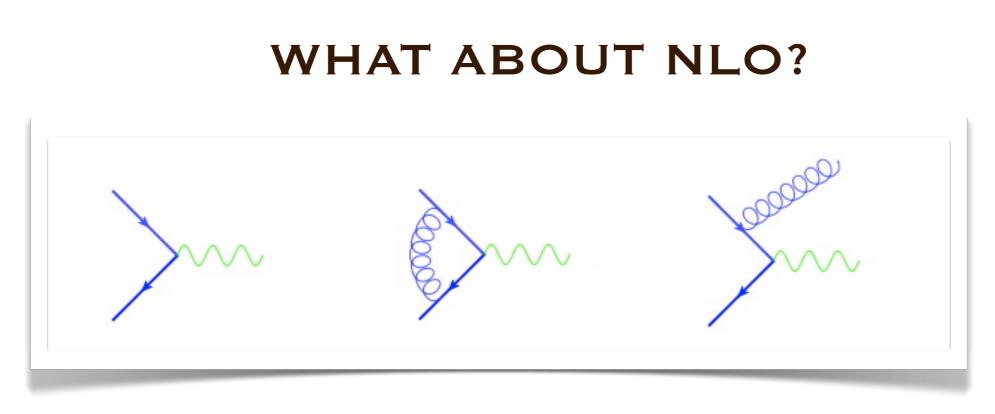
V+JETS AT THE LHC


Working amazingly well!

The flavor of the Higgs, 23-26 June 2014, WIS, Israel

Tuesday 24 June 2014

V+JETS AT THE LHC

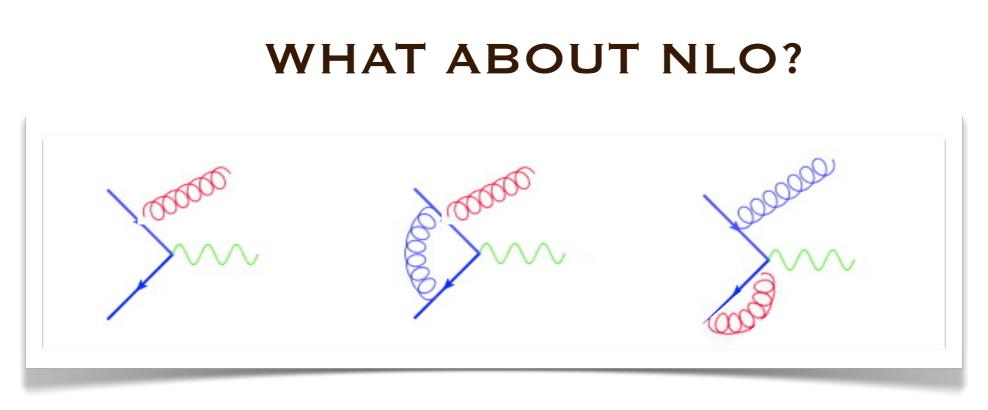


Working amazingly well!

The flavor of the Higgs, 23-26 June 2014, WIS, Israel

Tuesday 24 June 2014

 $d\sigma_{\text{NAIVE}}^{\text{NLOwPS}} = \left[d\Phi_B (B(\Phi_B) + V + S_{\text{ct}}^{\text{int}}) \right] I_{\text{MC}}^n + \left[d\Phi_B d\Phi_{R|B} (R - S_{ct}) \right] I_{\text{MC}}^{n+1}$


This simple approach does not work:

- Instability: weights associated to I_{MC}^{n} and I_{MC}^{n+1} are divergent pointwise (infinite weights).
- Double counting: $d\sigma^{naive}_{NLOWPS}$ expanded at NLO does not coincide with NLO rate. Some configurations are dealt with by both the NLO and the PSMC.

Currently, two solutions available

The flavor of the Higgs, 23-26 June 2014, WIS, Israel

 $d\sigma_{\text{NAIVE}}^{\text{NLOwPS}} = \left[d\Phi_B (B(\Phi_B) + V + S_{\text{ct}}^{\text{int}}) \right] I_{\text{MC}}^n + \left[d\Phi_B d\Phi_{R|B} (R - S_{ct}) \right] I_{\text{MC}}^{n+1}$

This simple approach does not work:

- Instability: weights associated to I_{MC}^{n} and I_{MC}^{n+1} are divergent pointwise (infinite weights).
- Double counting: $d\sigma^{naive}_{NLOWPS}$ expanded at NLO does not coincide with NLO rate. Some configurations are dealt with by both the NLO and the PSMC.

Currently, two solutions available

The flavor of the Higgs, 23-26 June 2014, WIS, Israel

NLO+PS IN A NUTSHELL

$$d\sigma^{\text{NLO}+\text{PS}} = d\Phi_B \bar{B}^s(\Phi_B) \begin{bmatrix} \Delta^s(p_{\perp}^{\min}) + d\Phi_{R|B} \frac{R^s(\Phi_R)}{B(\Phi_B)} \Delta^s(p_T(\Phi)) \end{bmatrix} + d\Phi_R R^f(\Phi_R)$$

with integrates to I (unitarity)
$$\bar{B}^s = B(\Phi_B) + \begin{bmatrix} V(\Phi_B) + \int d\Phi_{R|B} R^s(\Phi_{R|B}) \end{bmatrix} \quad \stackrel{\text{Full cross section (if F=1) at fixed Born}}{\text{kinematics}}$$
$$R(\Phi_R) = R^s(\Phi_R) + R^f(\Phi_R)$$

This formula is valid both for both MC@NLO and POWHEG

MC@NLO: $R^{s}(\Phi) = P(\Phi_{R|B}) B(\Phi_{B})$ Needs exact mapping $(\Phi_{B}, \Phi_{R}) \rightarrow \Phi$ POWHEG: $R^{s}(\Phi) = FR(\Phi), R^{f}(\Phi) = (1 - F)R(\Phi)$ F=I = Exponentiates the Real. It can be damped by hand.

MC@NLO AND POWHEG

The flavor of the Higgs, 23-26 June 2014, WIS, Israel

Tuesday 24 June 2014

MC@NLO AND POWHEG

MC@NLO

[Frixione, Webber, 2002; Frixione, Nason, Webber, 2003]

- Matches NLO to HERWIG and HERWIG++ angular-ordered PS.

- Some events have negative weights.

- Large and well tested library of processes.

- Now available also for Pythia8, HW++ [Torrielli, Frixione, 1002.4293]

- Now automatized [Frederix, Frixione, Torrielli]
- Available in aMC@NLO (see later) and also in SHERPA

MC@NLO AND POWHEG

MC@NLO

[Frixione, Webber, 2002; Frixione, Nason, Webber, 2003]

- Matches NLO to HERWIG and HERWIG++ angular-ordered PS.
- Some events have negative weights.
- Large and well tested library of processes.

- Now available also for Pythia8, HW++ [Torrielli, Frixione, 1002.4293]

- Now automatized [Frederix, Frixione, Torrielli]
- Available in aMC@NLO (see later) and also in SHERPA

POWHEG

[Nason 2004; Frixione, Nason, Oleari, 2007]

- Is independent* of the PS. It can be interfaced to PYTHIA and HERWIG
- Generates only* positive unit weights.
- Can use existing NLO results via the POWHEG-Box [Aioli, Nason, Oleari, Re et al. 2009]

Université catholique de louvain

The flavor of the Higgs, 23-26 June 2014, WIS, Israel

Tuesday 24 June 2014

GENIUS: 1% INSPIRATION AND 99% PERSPIRATION. [Thomas Edison]

The flavor of the Higgs, 23-26 June 2014, WIS, Israel

Tuesday 24 June 2014

GENIUS: 1% INSPIRATION AND 99% PERSPIRATION. [Thomas Edison]

TRUE, BUT PERSPIRATION CAN BE AUTOMATED!

The flavor of the Higgs, 23-26 June 2014, WIS, Israel

Tuesday 24 June 2014

The flavor of the Higgs, 23-26 June 2014, WIS, Israel

Tuesday 24 June 2014

UCL Université catholique de Louvain

AUTOMATION

COST SAVING

Trade human time and expertise spent on computing one process at the time with time on physics and pheno.

UCL Université catholique de Louvain

AUTOMATION

Cost saving

Trade human time and expertise spent on computing one process at the time with time on physics and pheno.

ROBUSTNESS

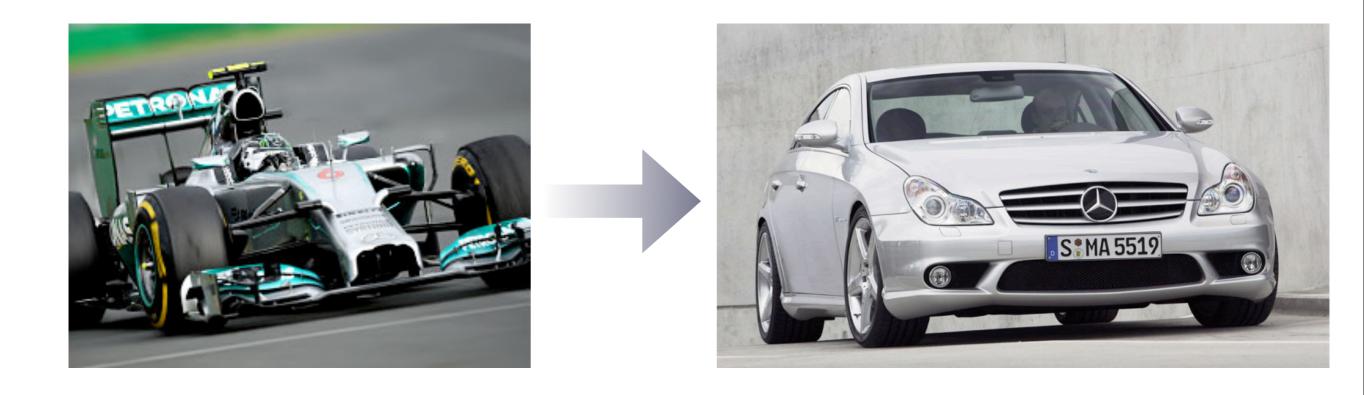
Programs are modular and computations based on elements that can be systematically and extensively checked. Trust can be easily built.

UCL Université catholique de Louvain

AUTOMATION

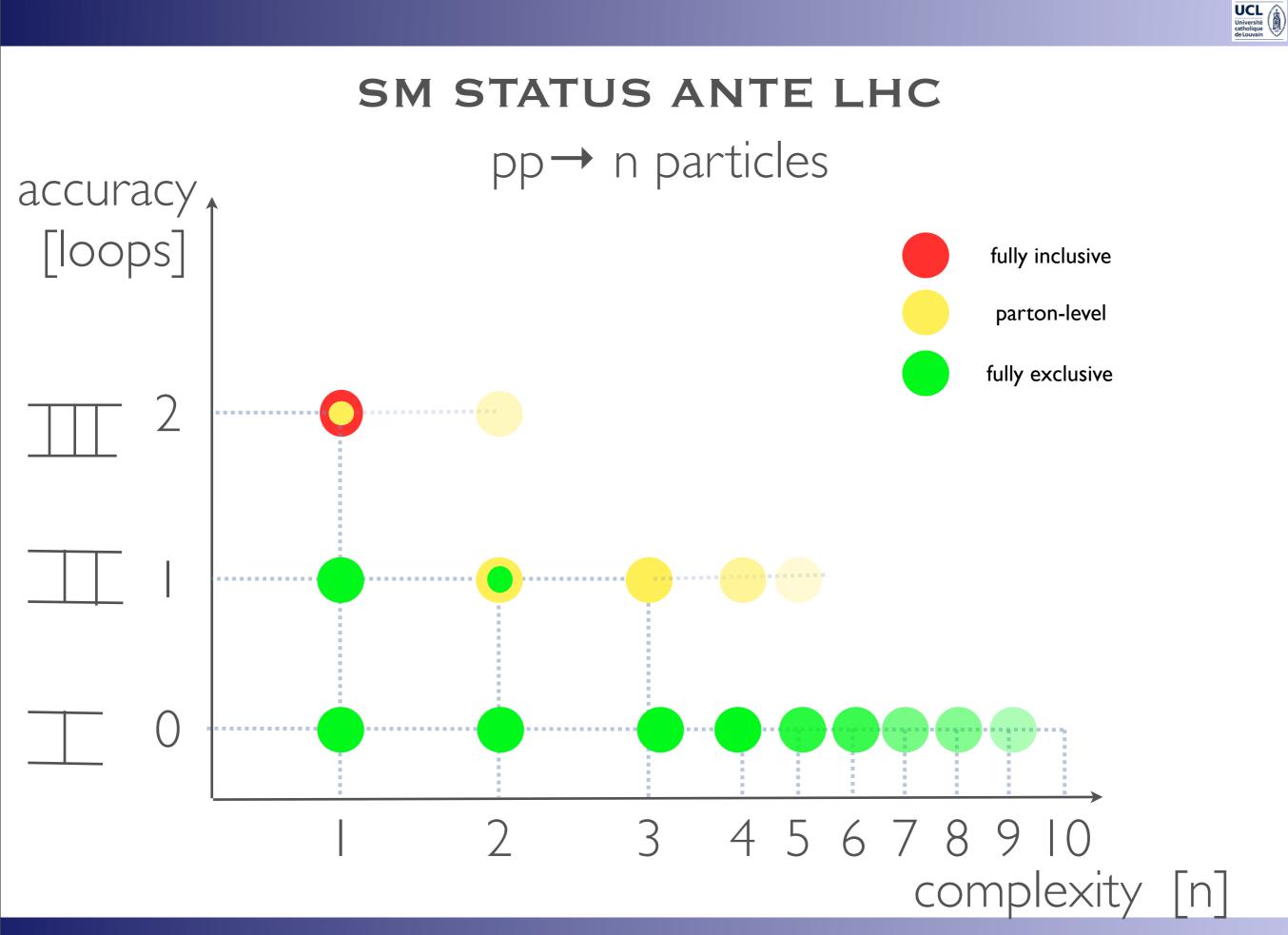
Cost saving

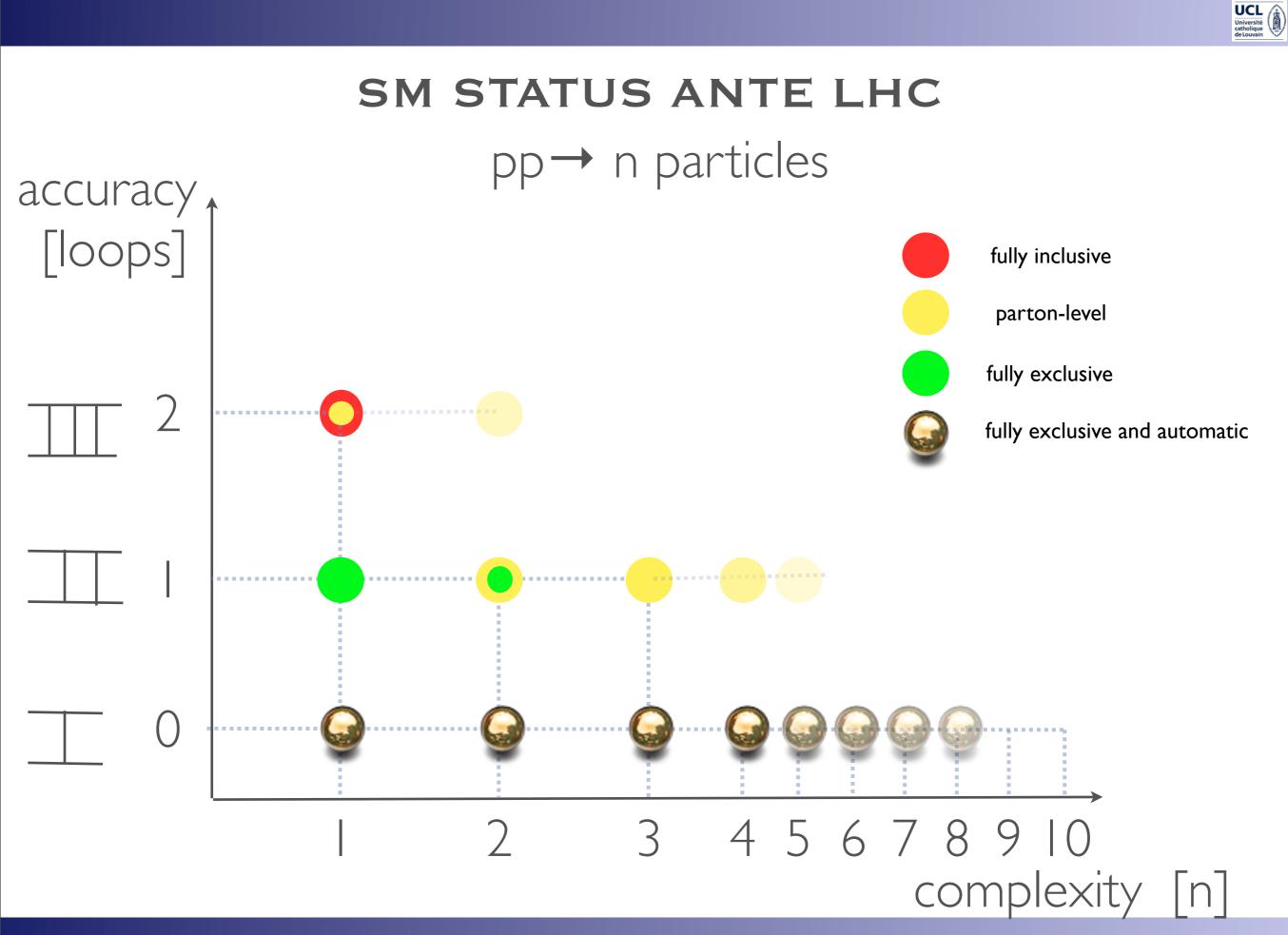
Trade human time and expertise spent on computing one process at the time with time on physics and pheno.


ROBUSTNESS

Programs are modular and computations based on elements that can be systematically and extensively checked. Trust can be easily built.

WIDE ACCESSIBILITY

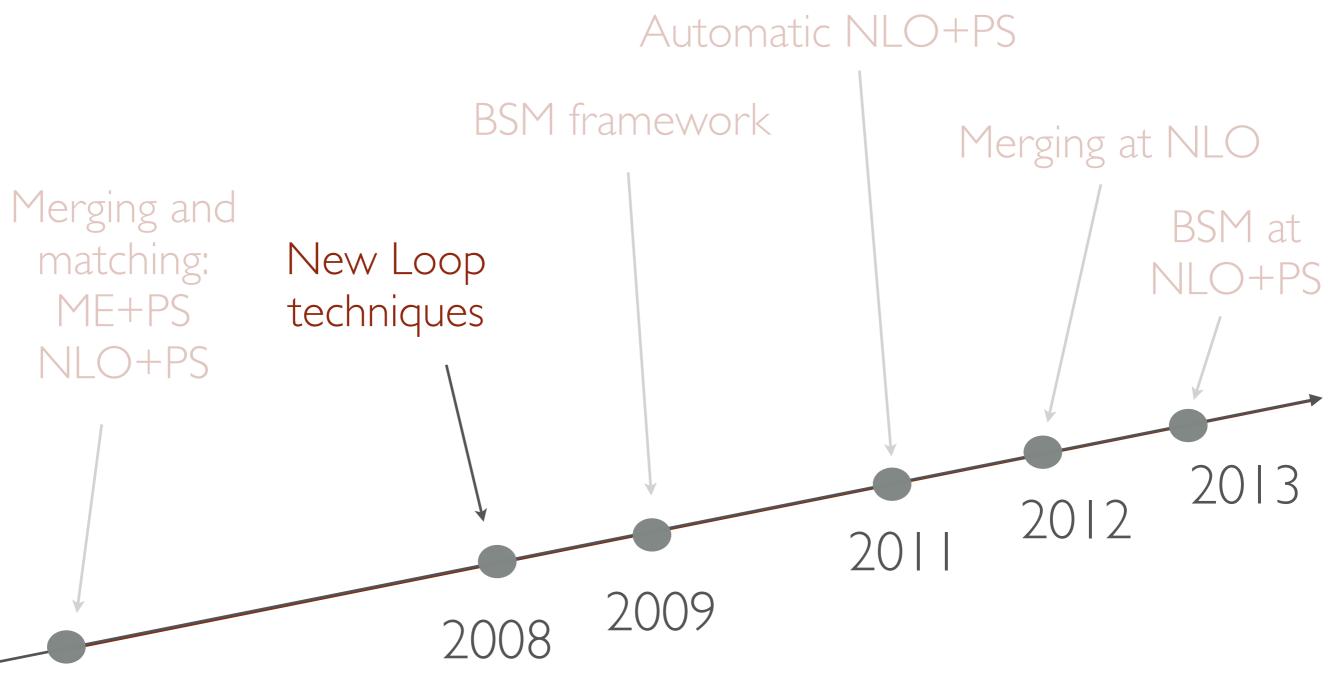

One framework for all. Available to everybody for an unlimited set of applications for all. Augmented TH/EXP collaboration.


The flavor of the Higgs, 23-26 June 2014, WIS, Israel

Tuesday 24 June 2014

The flavor of the Higgs, 23-26 June 2014, WIS, Israel

Tuesday 24 June 2014



The flavor of the Higgs, 23-26 June 2014, WIS, Israel

Tuesday 24 June 2014

Université catholique de Louvain

PREDICTIVE MC (SIMPLIFIED) PROGRESS

2002

The flavor of the Higgs, 23-26 June 2014, WIS, Israel

Tuesday 24 June 2014

NEW LOOP TECHNIQUES

For the calculation of one-loop matrix elements, several methods are now established :

• Generalized Unitarity (ex. BlackHat, Rocket,...) [Bern, Dixon, Dunbar, Kosower, hep-ph/9403226 +; Ellis, Giele, Kunszt 0708.2398, +Melnikov 0806.3467]

• Integrand Reduction (ex. CutTools, Samurai) [Ossola, Papadopolulos, Pittau, hep-ph/0609007; del Aguila, Pittau, hep-ph/0404120; Mastrolia, Ossola, Reiter, Tramontano, 1006.0710]

• Tensor Reduction (ex. Golem, GoSam) [Passarino,Veltman, 1979; Denner, Dittmaier, hep-ph/0509141, Binoth, Guillet, Heinrivh, Pilon, Reiter 0810.0092]

PREDICTIONS AT NLO

The flavor of the Higgs, 23-26 June 2014, WIS, Israel

Tuesday 24 June 2014

PREDICTIONS AT NLO

Generalized Unitarity (ex. BlackHat, Rocket,...)

Integrand Reduction (ex. CutTools, Samurai)

Tensor Reduction (ex. GoSam)

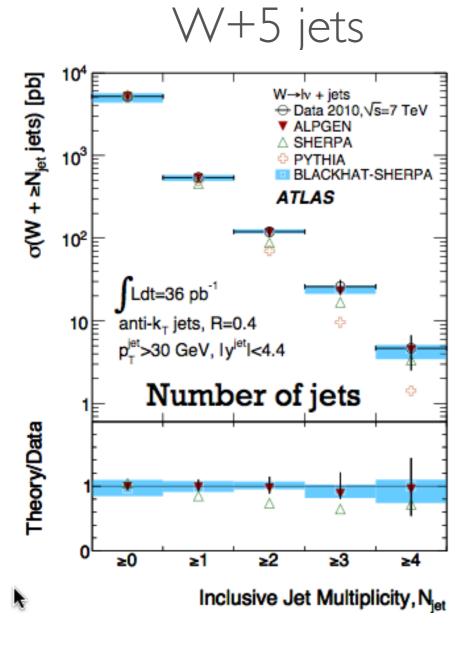
UCL Université catholique de Louvain

PREDICTIONS AT NLO

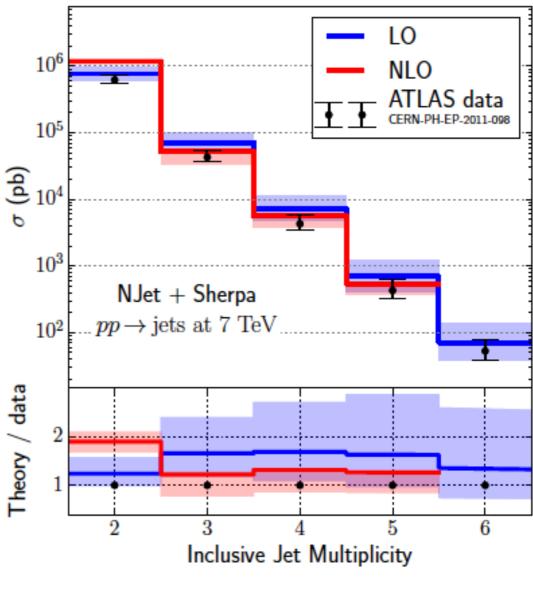
Generalized Unitarity (ex. BlackHat, Rocket,...)

Integrand Reduction (ex. CutTools, Samurai)

Tensor Reduction (ex. GoSam)

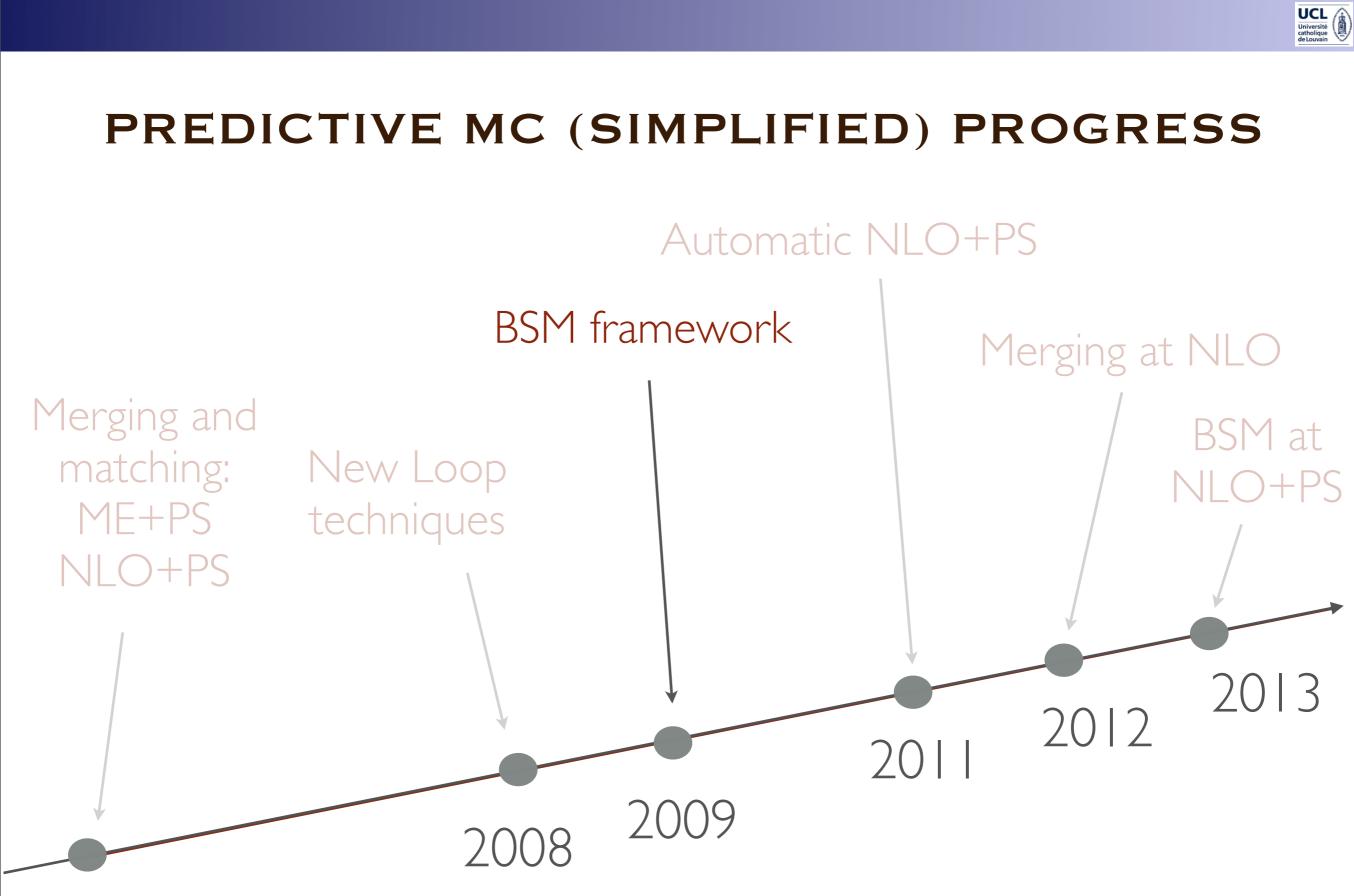

Thanks to new amazing results, some of them inspired by string theory developments, now the computation of loops has been extended to high-multiplicity processes or/and automated.

UCL Université de Louvain



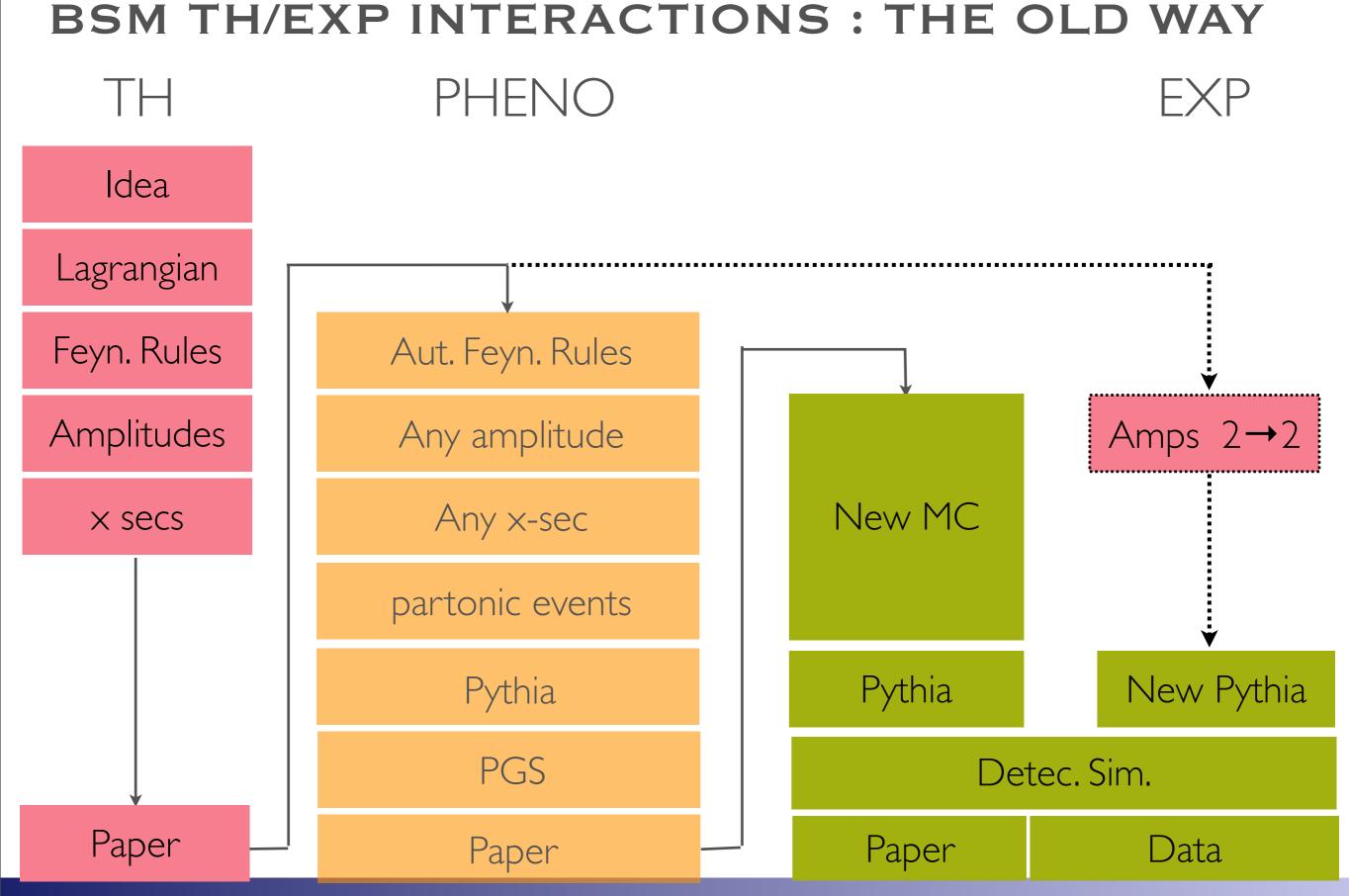
Université catholique de Louvain

THE RACEHORSES


[Bern et al., 1304.1253]

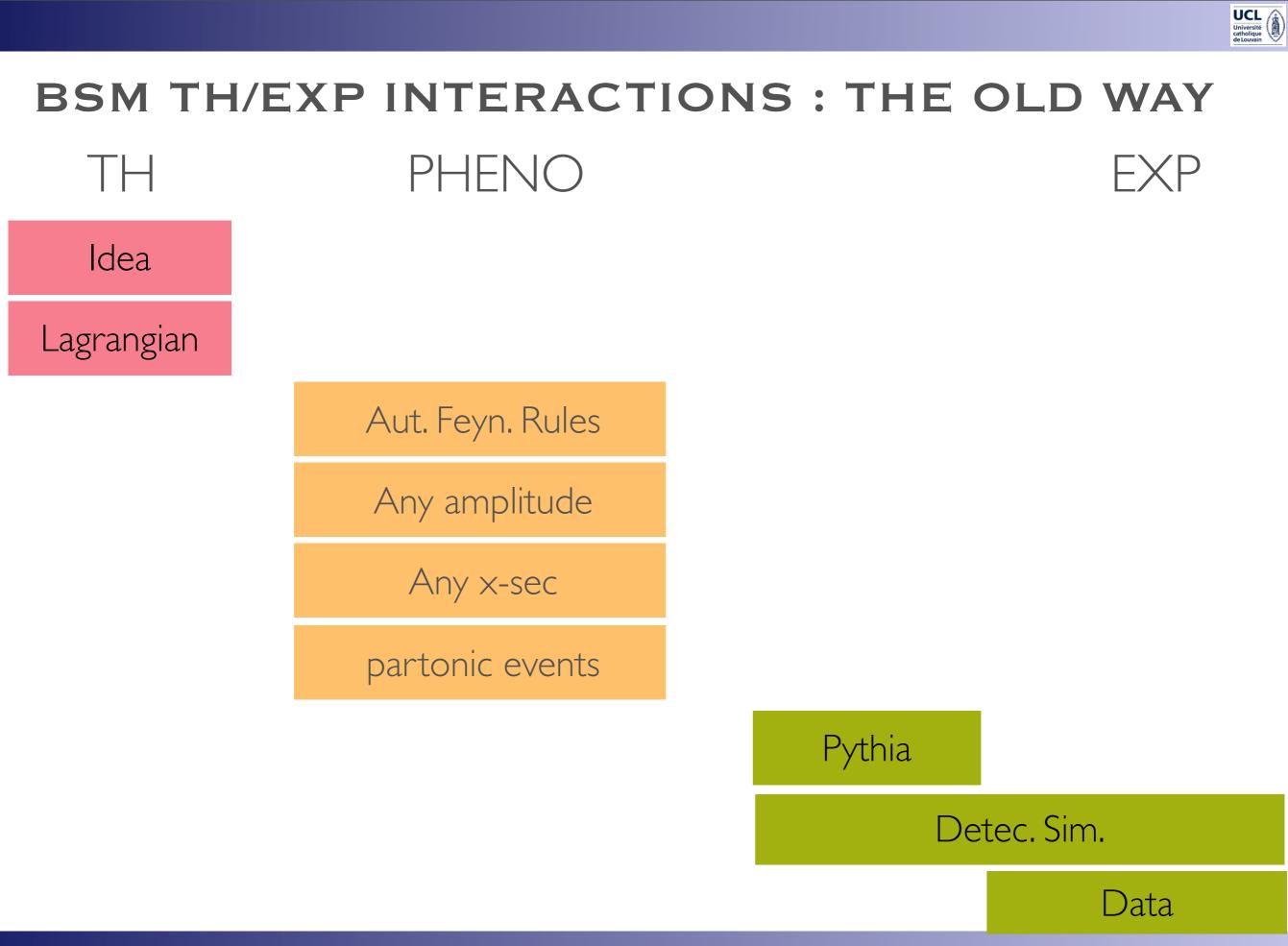
5 jets

[Badger et al. | 309.6585]

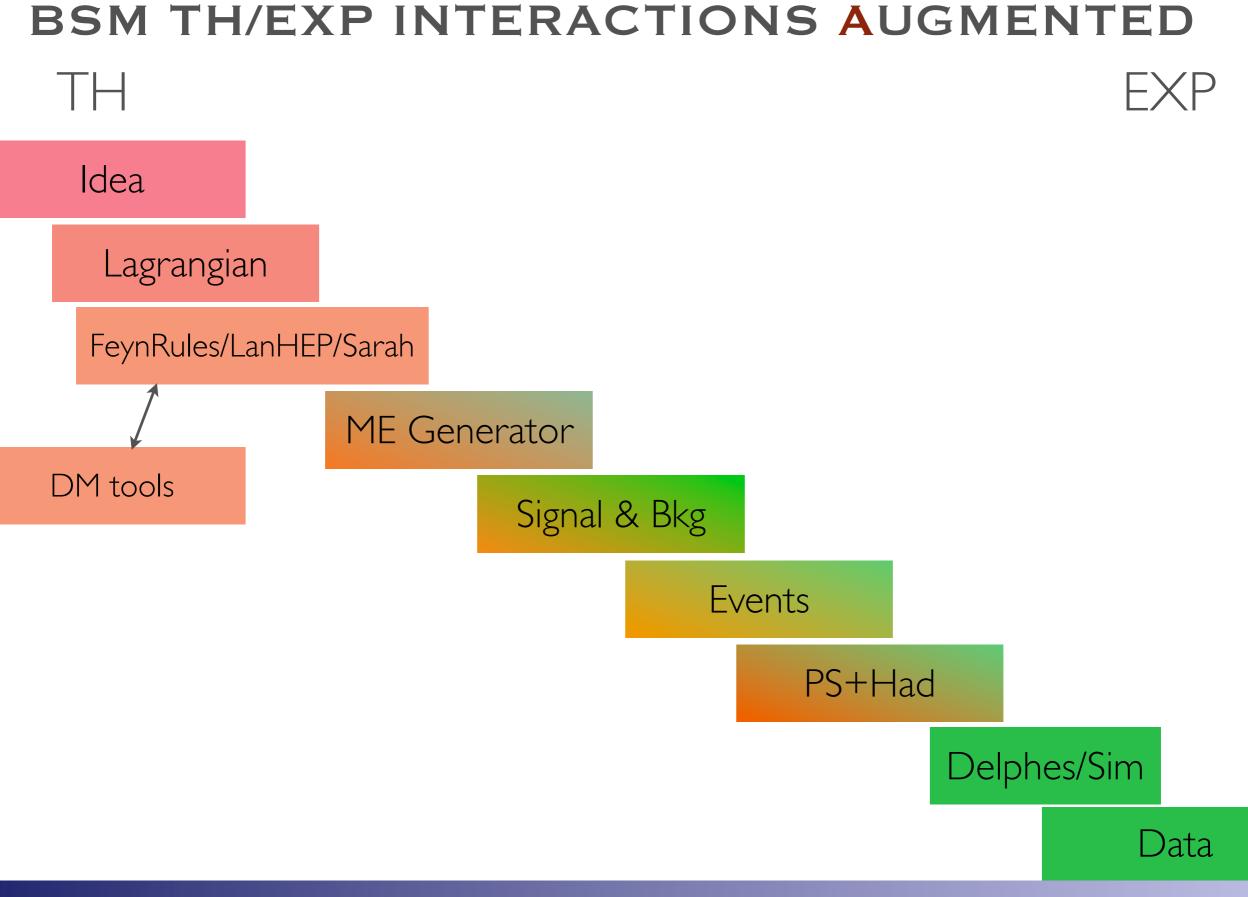


2002

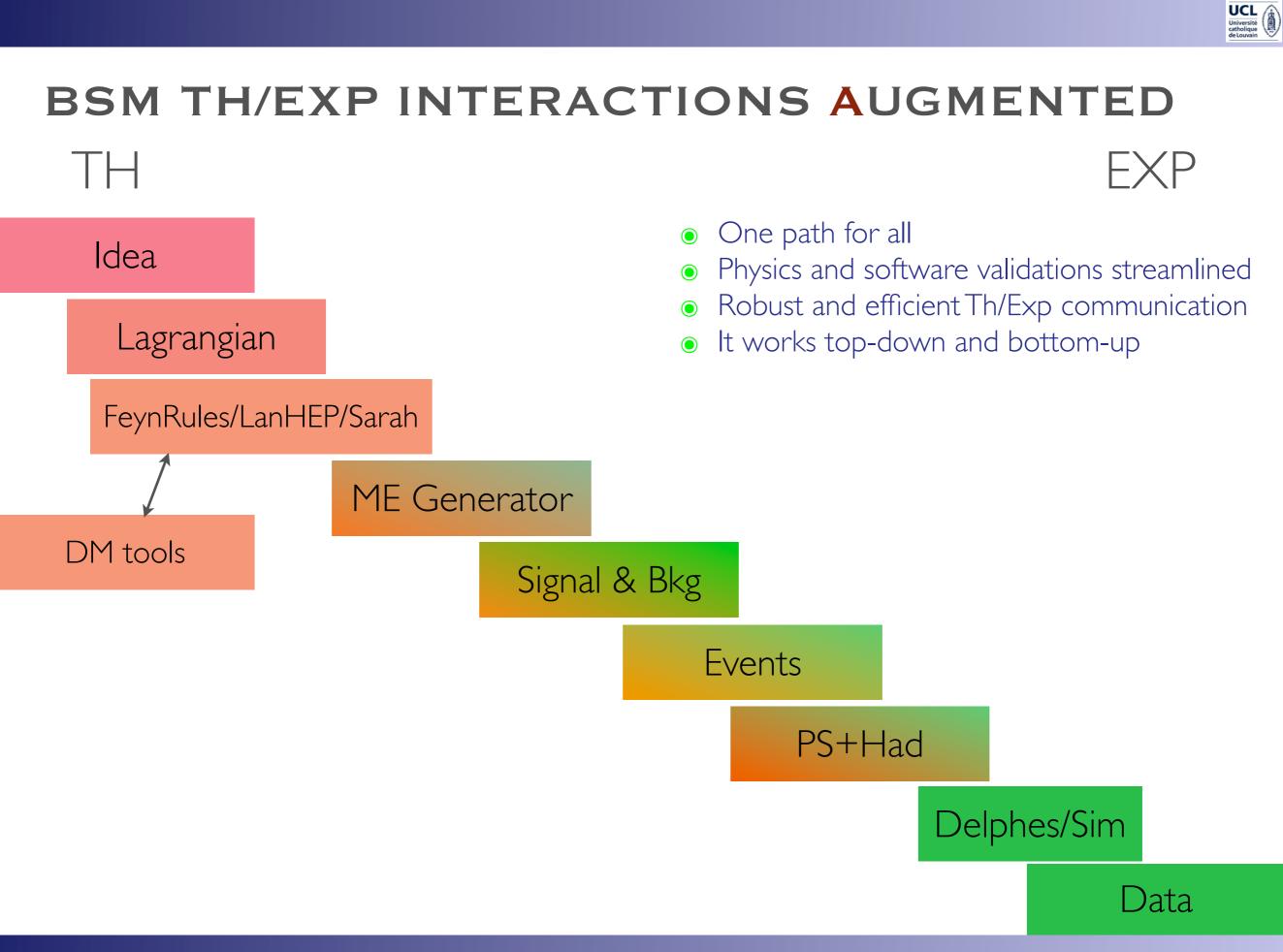
The flavor of the Higgs, 23-26 June 2014, WIS, Israel

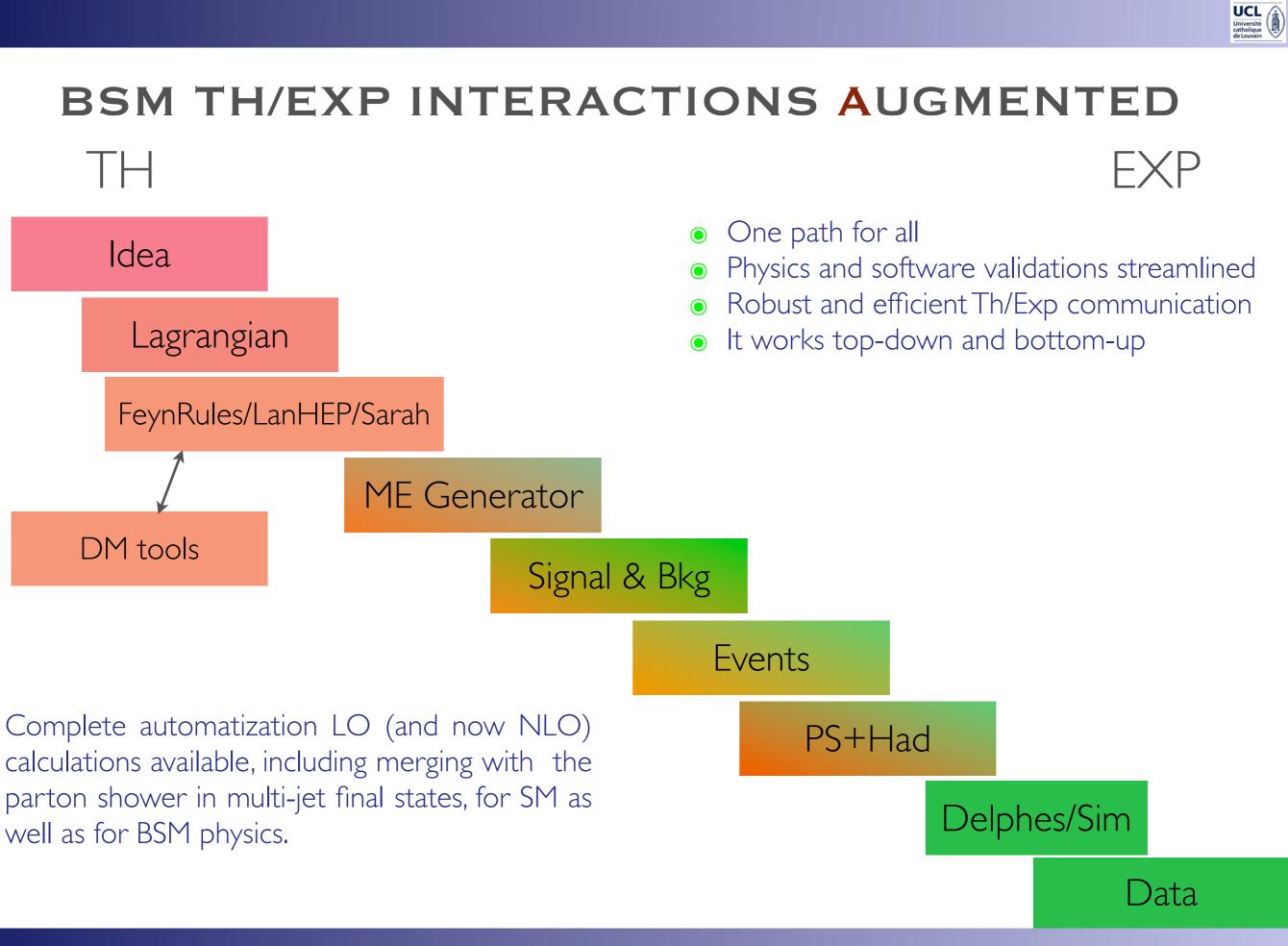

Tuesday 24 June 2014

The flavor of the Higgs, 23-26 June 2014, WIS, Israel


Tuesday 24 June 2014

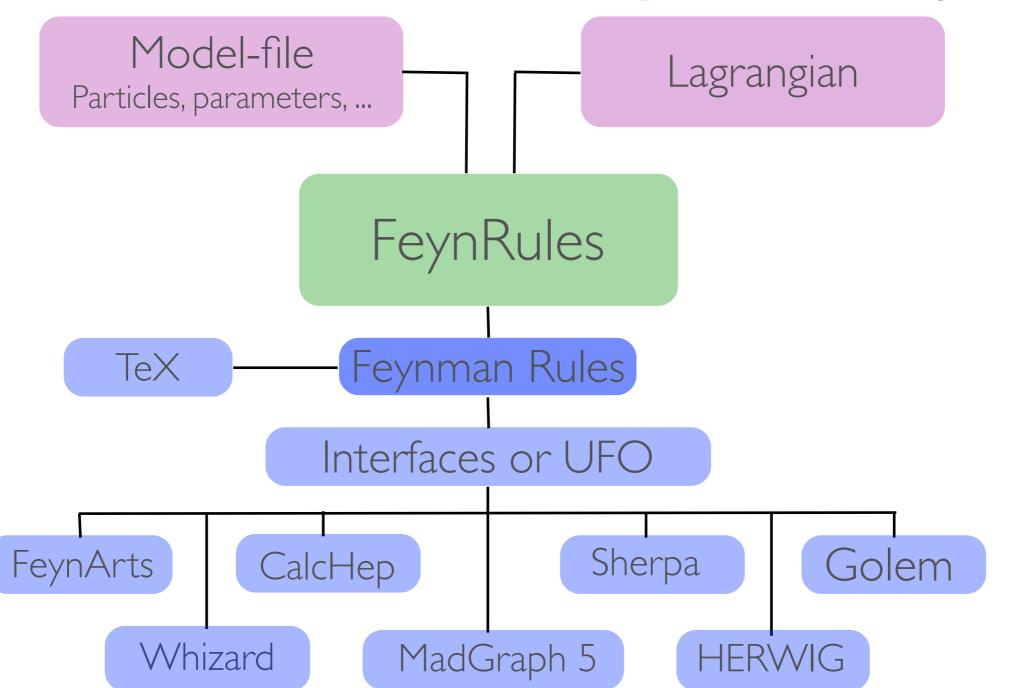
The flavor of the Higgs, 23-26 June 2014, WIS, Israel


Tuesday 24 June 2014



Tuesday 24 June 2014

Fabio Maltoni



Tuesday 24 June 2014

Fabio Maltoni

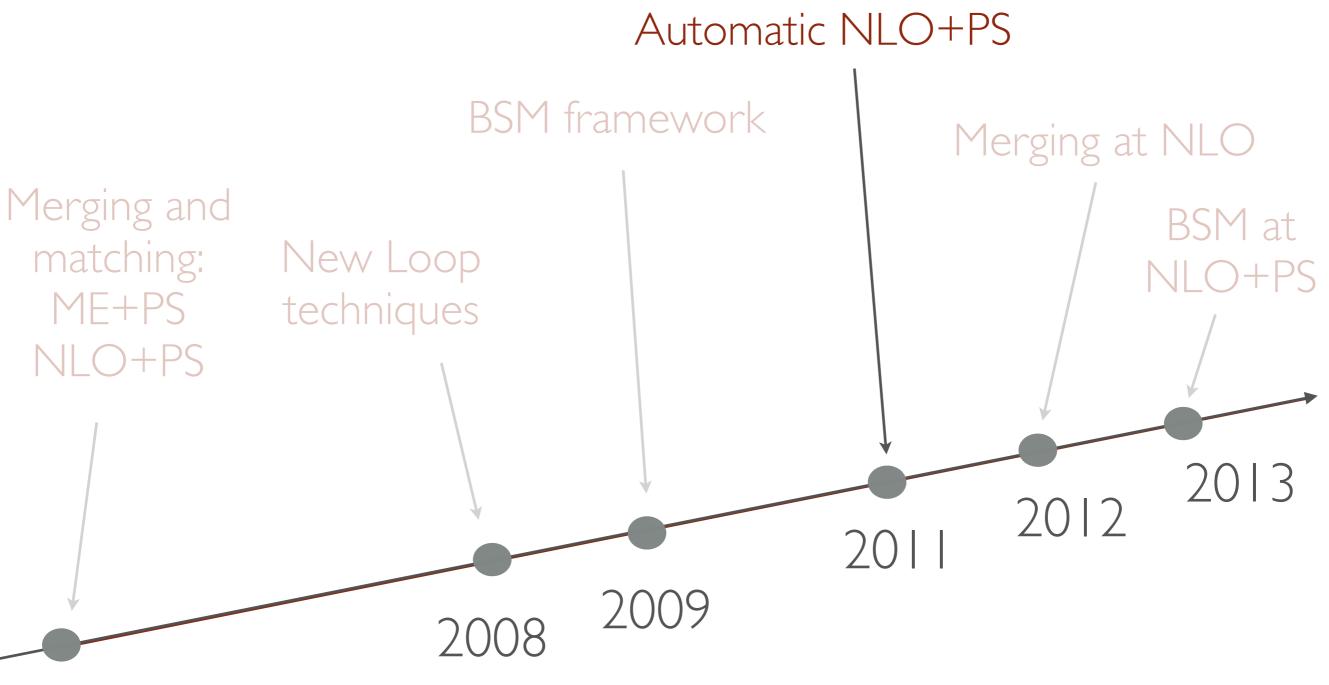
THE FEYNRULES PROJECT

[Alloul, Christensen, Degrande, Duhr, Fuks]

THE FEYNRULES PROJECT

Available models

Standard Model	The SM implementation of FeynRules, included into the distribution of the FeynRules package.
Simple extensions of the SM (18)	Several models based on the SM that include one or more additional particles, like a 4th generation, a second Higgs doublet or additional colored scalars.
Supersymmetric Models (5)	Various supersymmetric extensions of the SM, including the MSSM, the NMSSM and many more.
Extra-dimensional Models (4)	Extensions of the SM including KK excitations of the SM particles.
Strongly coupled and effective field theories (8)	Including Technicolor, Little Higgs, as well as SM higher-dimensional operators, vector-like quarks.
Miscellaneous (0)	


THE FEYNRULES PROJECT

Available models

Standard	Model		The SM implementation of FeynRules, included into the distribution of the FeynRules package.						
Simple ex	xtensions of the SM (18)	$\mathbf{)}$	Several models based on the SM that include one or more additional particles, like a 4th generation, a second Higgs doublet or additional colored scalars.						
Supersym	nmetric Models (5)		Various supersymmetric extensions of the SM, including the MSSM, the NMSSM a	nd many more.					
Extra-dim	appelanal Madala (4)		Extensions of the CM including KK excitations of the CM particles						
Strongly	Model	Short	Description	Contact	Status				
heories	Axigluon model	The S	M plus a scalar gluon field.	S. Krastanov	Availabl				
Miscellan	DY SM extension	The S at the	M plus new spin-0, -1, and -2 bosons that contribute to Drell-Yan production of leptons LHC.	N. Christensen	Availabl				
	FCNC Higgs interactions	The S	M plus higher-dimensional flavor changing Higgs interactions.	S. Krastanov	Availab				
	Fourth generation model	A four	th generation model including a t' and a b'	C. Duhr Ava					
	General 2HDM	The m	nost general 2HDM, including all flavor violation and mixing terms.	C. Duhr, M. Herquet	Availab				
	Hidden Abelian Higgs Model		nodel where the Z' interacts with the SM through mixings, leading to very small non-SM ' couplings.	C. Duhr	Availab				
	HiggsCharacterisation	The m	nodel file for the spin/parity characterisation of a 125 GeV resonance.	P. de Aquino, K. Mawatari	Availab				
	Higgs effective theory	An ad	d-on for the SM implementation containing the dimension 5 gluon fusion operator.	C. Duhr	Availab				
	Higgs Effective Lagrangian	Higgs	effective Lagrangian including operators up-to dimension 6.	A. Alloul, B. Fuks and V. Sanz	Availab				
	Hill Model	A mod	del with an unusual extension of the SM Higgs sector.	P. de Aquino, C. Duhr	Availab				
	Inert Doublet Model		del with an additional complex scalar SU(2)L doublet and an unbroken Z2 symmetry which all SM particles are even while the extra doublet is odd.	A. Goudelis, B. Herrmann, O. Stal	Availab				
	Minimal Zp models	The m	ninimal Z' extension of the SM.	L. Basso	Availab				
	Monotops	The S	M plus monotop effective Lagrangian.	B. Fuks	Availab				
	Sextet diquarks	The S	M plus sextet diquark scalars.	J. Alwall, C. Duhr	Availab				
	Standard model + Scalars		M, together with a set of singlet scalar particles coupling only to the SM Higgs, and ng it to decay invisibly into this new scalar sector.	C. Duhr	Availab				
lavor	Triplet diquarks	The S	M plus triplet diquark scalars.	J. Alwall, C. Duhr	Availab				
		_							

Th

PREDICTIVE MC (SIMPLIFIED) PROGRESS

2002

The flavor of the Higgs, 23-26 June 2014, WIS, Israel

NEW CODES FOR AUTOMATIC LOOP AMPLITUDES

- MadLoop : Hirschi et al., **I 103.0621**, based on MadGraph + CutTools
- HELAC-NLO : Bevilacqua et al., III0.I499, based on HELAC + CutTools
- GoSam : Cullen et al., IIII.6534 , based on QGRAF+SAMURAI+Golem
- Open Loops : Cascioli et al., IIII.5206, based on the combination of several approaches

NEW CODES FOR AUTOMATIC LOOP AMPLITUDES

- MadLoop : Hirschi et al., **I 103.0621**, based on MadGraph + CutTools
- HELAC-NLO : Bevilacqua et al., III0.I499, based on HELAC + CutTools
- GoSam : Cullen et al., IIII.6534 , based on QGRAF+SAMURAI+Golem
- Open Loops : Cascioli et al., IIII.5206, based on the combination of several approaches

Limitations on applications (i.e. number of external partons or BSM) are systematically and quickly overcome: 'the wave function of the automatic loop effort has collapsed!'

The flavor of the Higgs, 23-26 June 2014, WIS, Israel

NEW NLO+PS FRAMEWORKS

• **POWHEG-BOX** and applications: Alioli et al, 1002.2581, 1009.2450, 1009.5594, 1012.3380, 1102.4846, 1105.4488, 1107.5051, 1108.0909:

Framework which allows to promote a standard NLO calculation into a MC at NLO generator. Very popular choice. More than ~20 processes implemented in the last two years. Similar in spirit to MCFM.

• NEW SHERPA Hoeche et al, 1008.5399, 1009.1127, 1111.1220 :

Flexible framework having both MC@NLO and POWHEG methods based on CS dipoles, needs virtuals. Fully automatic except for virtuals.

HERWIG++ D'Errico et Richardson 1106.2983,1106.3939, Hamilton et al. 0806.0290, 0903.4345, 1004.1764, 1009.5391:

POWHEG method, several processes implemented. Need the NLO elements.

• **POWHEL** Papadopoulous, Garzelli, Kardos Trocsanyi, 1108.0387,1111.1444:

HELAC-NLO + POWHEG-Box

The flavor of the Higgs, 23-26 June 2014, WIS, Israel

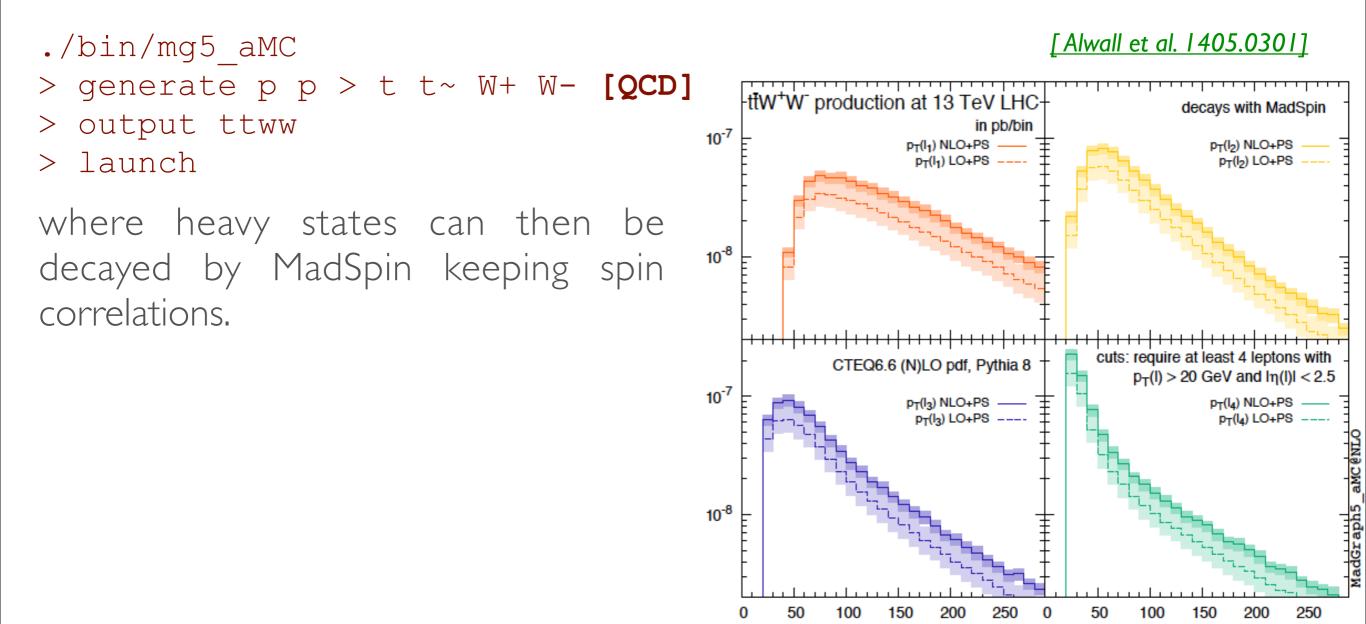
MadGraph5_aMC@NLO

UCL Université catholique de Louvain

Suppose now you are interested in multi-lepton backgrounds to SUSY. You might want to check:

- ./bin/mg5_aMC
- > generate p p > t t~ W+ W- [QCD]
- > output ttww
- > launch

where heavy states can then be decayed by MadSpin keeping spin correlations. [Alwall et al. 1405.0301]



p_T [GeV]

UCL Université de Louvain

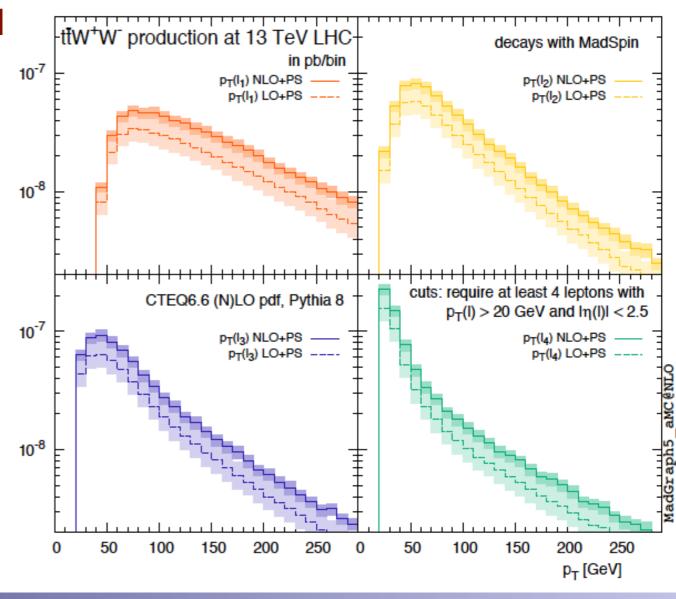
MadGraph5_aMC@NLO

Suppose now you are interested in multi-lepton backgrounds to SUSY. You might want to check:

The flavor of the Higgs, 23-26 June 2014, WIS, Israel

UCL Université catholique

MadGraph5_aMC@NLO


Suppose now you are interested in multi-lepton backgrounds to SUSY. You might want to check:

- ./bin/mg5_aMC
- > generate p p > t t~ W+ W- [QCD]
- > output ttww
- > launch

where heavy states can then be decayed by MadSpin keeping spin correlations.

Uncertainties from scale variation and pdfs **are automatically computed** (at no extra cost) and associated to each of the **unweighted events** (=any distribution will have the corresponding uncertainty band)

[Alwall et al. 1405.0301]

AUTOMATIC NLO IN SM (2014)

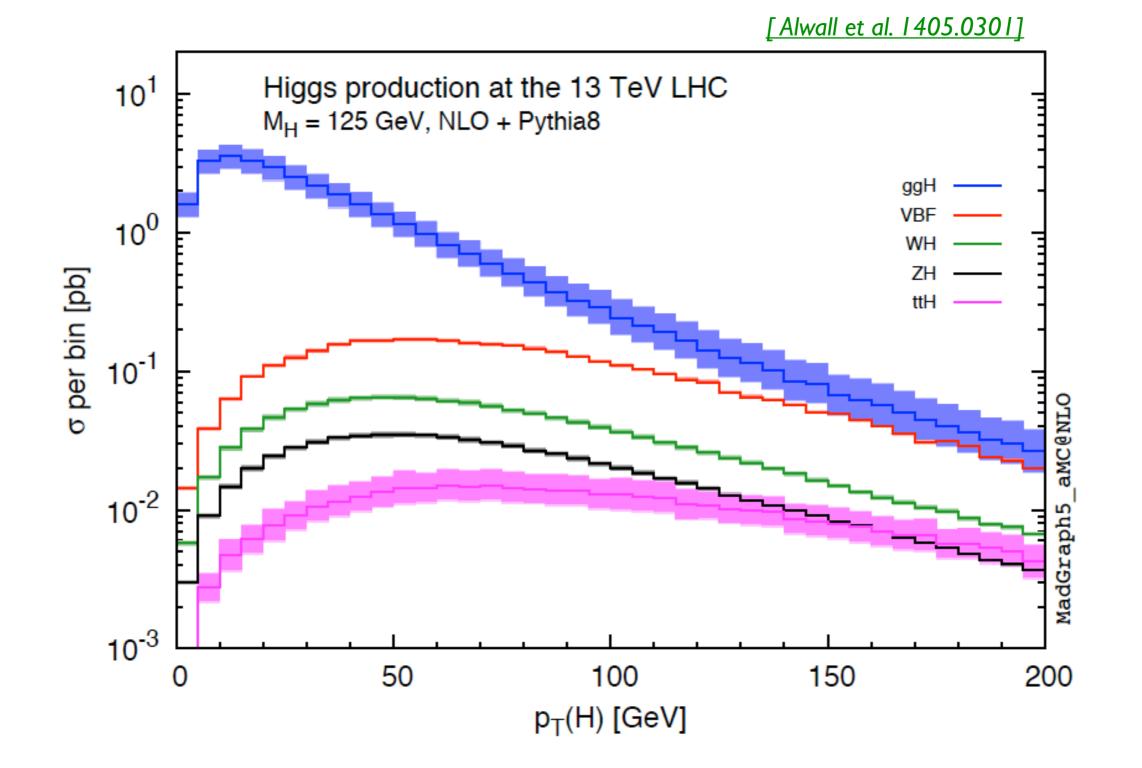
		-							
Process	Quere a	action (ph)	Process	Syntax		Cross section (pb)			
Vector boson +jets	Syntax Cross s LO 13 TeV	ection (pb) NLO 13 TeV	Vector-boson pair +jets		LO 13 TeV	Process NLO 13	^{IeV} Syntax	(Cross section (pb)
a.1 $pp \rightarrow W^{\pm}$	p p > wpm $1.375 \pm 0.002 \cdot 10^5 + 15.4\% + 2.0\% - 16.6\% - 1.6\%$	$1.773 \pm 0.007 \cdot 10^5 {}^{+5.2\%}_{-9.4\%} {}^{+1.9\%}_{-1.6\%}$	b.1 $pp \rightarrow W^+W^-$ (4f)	p p > w+ w-	$7.355 \pm 0.005 \cdot 10^{1} {}^{+ 5.0 \% }_{- 6.1 \% }$	$^{+2}_{-1.5\%}$ Heavy quarks and jets 0^2		LO 13 TeV	NLO 13 TeV
a.2 $pp \rightarrow W^{\pm}j$	p p > wpm j $2.045 \pm 0.001 \cdot 10^4 + \frac{+19.7\%}{-17.2\%} + \frac{+1.4\%}{-1.1\%}$	$2.843 \pm 0.010 \cdot 10^4 \pm 5.9\% \pm 1.3\%$	b.2 $pp \rightarrow ZZ$	p p > z z	$1.097 \pm 0.002 \cdot 10^{1} {}^{+ 4.5 \% }_{- 5.6 \% }$	-1.4% $m \rightarrow 22$	+3.1% +1.8% -3.7p p ^{1.5%} j j	$1.162 \pm 0.001 \cdot 10^{6} + 24.9\% - 18.8\%$	$^{+0.8\%}_{-0.9\%}$ 1.580 \pm 0.007 \cdot 10 ⁶ $^{+8.4\%}_{-9.0\%}$ $^{+0.7\%}_{-9.0\%}$
a.3 $pp \rightarrow W^{\pm} jj$	p p > wpm j j $6.805 \pm 0.015 \cdot 10^3 + 24.5\% + 0.8\% - 1.8.6\% - 0.7\%$		b.3 $pp \rightarrow ZW^{\pm}$	p p > z wpm	$2.777 \pm 0.003 \cdot 10^{1} + 3.6\%$	$^{+2.0\%}_{-1}$ $d.2$ $pp \rightarrow jjj$ J_{-1}^{J} $d.2$ $pp \rightarrow jjj$	+4.45 f1.7% j j j	8 040 + 0.021 104 +43.8%	+1.2% 7 701 + 0.027 104 +2.1% +1.1%
a.4 $pp \rightarrow W^{\pm} jjj$	p p > wpm j j j $1.821 \pm 0.002 \cdot 10^3 + 41.0\% + 0.5\% - 27.1\% - 0.5\%$	$2.005 \pm 0.008 \cdot 10 = -6.7\% = 0.5\%$	b.4 $pp \rightarrow \gamma \gamma$	pp>aa	$2.510 \pm 0.002 \cdot 10^{1} {}^{+22.19}_{-22.49}$	$\% + 2.4\% = 6.593 \pm 0.021 \cdot 10^{1}$	-18.8% -1.9%	-20.470	-1.4/0 -2.5.2/0 -1.5/0
a.5 $pp \rightarrow Z$	p p > z $4.248 \pm 0.005 \cdot 10^4 + 14.6\% + 2.0\%$ -15.8% -1.6%		b.5 $pp \rightarrow \gamma Z$	pp>az		$+ \frac{1}{6} $	+5.4p p ≫6 b b~ -7.1% -1.4%	$3.743 \pm 0.004 \cdot 10^3 + 25.2\% - 18.9\%$	-1.8% 0.438 ± 0.028 · 10 -13.3% -1.7%
a.6 $pp \rightarrow Zj$ a.7 $pp \rightarrow Zjj$	p p > z j $7.209 \pm 0.005 \cdot 10^3 + 12.3\% + 12.3\% + 12.3\% + 12.3\% + 12.3\% + 10.5\% + 10.7\% + 10.$	2.665 ± 0.010 , 10^3 $+2.5\%$ $+0.7\%$ -	b.6 $pp \rightarrow \gamma W^{\pm}$	p p > a wpm		+d.4* $pp \rightarrow b\bar{b}j$ 0.026 · 10 ¹	+9.7 p p .≫6 b b~ j	$1.050 \pm 0.002 \cdot 10 -28.5\%$	-1.8% $1.327 \pm 0.007 \cdot 10$ -11.6% -1.8%
a.7 $pp \rightarrow Zjj$ a.8 $pp \rightarrow Zjjj$	$\begin{array}{cccccccc} p & p & > z & j & j & 2.348 \pm 0.006 \cdot 10^{-5} & -18.5\% & -0.6\% \\ p & p & > z & j & j & 6.314 \pm 0.008 \cdot 10^{2} & +40.8\% & +0.5\% \\ \end{array}$	-6.0% -0.1% $6.006 \pm 0.028 + 102 + 1.1\% + 0.5\%$	b.7 $pp \rightarrow W^+W^-j$ (4f)	p p > w+ w- j	$2.865 \pm 0.003 \cdot 10^{1} {}^{+ 11.69}_{- 10.09}$		_{+4.9} ₽.₽.≥%b b~ j j -4.9% -0.8%	$1.652 \pm 0.000 \cdot 10$ -35.6%	-2.4% $2.471 \pm 0.012 \cdot 10$ $-16.4\% -2.3\%$
a.9 $pp \rightarrow \gamma j$	$1.064 \pm 0.001 \cdot 104 \pm 31.2\% \pm 1.7\%$	5.218 ± 0.025 , $104 \pm 24.5\% \pm 1.4\%$	b.8 $pp \rightarrow ZZj$	pp>zzj	$3.662 \pm 0.003 \cdot 10^{0} {}^{+ 10.99}_{- 9.3\%}$	$d.6 \qquad pp \rightarrow bbbb = 0.016 \cdot 10^{\circ}$	+5.0 p .p. ≯ b b~ b b~	$5.050 \pm 0.007 \cdot 10^{-1} {}^{+ 61.7 \% }_{- 35.6 \% }$	$ \begin{smallmatrix} +2.9\% \\ 6 & -3.4\% \end{smallmatrix} \ 8.736 \pm 0.034 \cdot 10^{-1} \begin{smallmatrix} +20.9\% \\ -22.0\% \\ -3.4\% \end{smallmatrix} $
a.10 $pp \rightarrow \gamma jj$	p p > a j j $7.815 \pm 0.001 \cdot 10^{-26.0\%} - 26.0\% - 1.8\%$	1.004 ± 0.004 , $104 \pm 5.9\% \pm 0.8\%$	b.9 $pp \rightarrow ZW^{\pm}j$	p p > z wpm j	$\begin{array}{rrr} 1.605 \pm 0.005 \cdot 10^{1} & {}^{+ 11.69}_{- 10.09} \end{array}$	$d.7$ $pp \rightarrow t\bar{t} = 0.007 \cdot 10^1$	-4.8p p > t t~	$4.584 \pm 0.003 \cdot 10^{2} {}^{+ 29.0 \% }_{- 21.1 \% }$	$\substack{+1.8\% \\ -2.0\%} 6.741 \pm 0.023 \cdot 10^2 \substack{+9.8\% \\ -10.9\% -2.1\%} +1.8\%$
			b.10 $pp \rightarrow \gamma \gamma j$	pp>aaj	$1.022 \pm 0.001 \cdot 10^{1} {}^{+ 20.39}_{- 17.79}$	d_{a}^{+1} d_{b}^{-2} pp^{2} $t\bar{t}j$ $0.010 \cdot 10^{1}$	^{+17.2%} +10% −15. p p >1% t t ~ j	$3.135 \pm 0.002 \cdot 10^{2} {}^{+ 45.1 \% }_{- 29.0 \% }$	$\substack{+2.2\% \\ -2.5\%} 4.106 \pm 0.015 \cdot 10^2 \substack{+8.1\% \\ -12.2\% -2.5\%} +2.1\% $
Process	Syntax Cross sectio	n (pb)	b.11* $pp \rightarrow \gamma Z j$	pp>azj		$d.9 pp \xrightarrow{22} t\bar{t}jj$.005 · 10 ¹	+7.3% +0.9% -7.4p p0.≫%t t~ j j	$1.361 \pm 0.001 \cdot 10^{2} {}^{+ 61.4 \% }_{- 35.6 \% }$	-3.0% 1.795 ± 0.000 · 10 $-16.1%$ $-2.9%$
Three vector bosons +jet	LO 13 TeV	NLO 13 TeV	b.12* $pp \rightarrow \gamma W^{\pm} j$	p p > a wpm j	2.540 ± 0.010 • 10 -12.19	$^{\%}_{\%} + 0.9\% = ^{3}_{pp} \stackrel{713}{\to} t\bar{t}t\bar{t}^{0.015} \cdot 10^{1}$	-7.1p pl.%t t~ t t~	$4.505 \pm 0.005 \cdot 10^{-3} {}^{+ 63.8 \% }_{- 36.5 \% }$	$^{+5.4\%}_{-5.7\%}$ 9.201 \pm 0.028 \cdot 10 ⁻³ $^{+30.8\%}_{-25.6\%}$ $^{+5.5\%}_{-5.9\%}$
c.1 $pp \rightarrow W^+W^-W^{\pm}$ (4f)	-0.370 -1.370	-4.170 -1.270	b.13 $pp \rightarrow W^+W^+jj$	p p > w+ w+ j j	$\begin{array}{rrr} 1.484 \pm 0.006 \cdot 10^{-1} & {}^{+ 25.} \\ & - 18. \end{array}$		+10.5% +2.2% -1p6p > to t~ b b~	$6.119 \pm 0.004 \cdot 10^{0} {}^{+ 62.1\% }_{- 35.7\% }$	$^{+2.9\%}_{-3.5\%}$ 1.452 \pm 0.005 \cdot 10 ¹ $^{+37.6\%}_{-27.5\%}$ $^{+2.9\%}_{-3.5\%}$
c.2 $pp \rightarrow ZW^+W^-$ (4f)			b.14 $pp \rightarrow W^-W^-jj$	p p > w- w- j j	$6.752 \pm 0.007 \cdot 10^{-2}$	9% -1.7% 1.003 ± 0.003 · 10	+10.1% + 2.5% -10.4% - 1.8%	00.170	
c.3 $pp \rightarrow ZZW^{\pm}$ c.4 $pp \rightarrow ZZZ$		-5.5% -1.1%	b.15 $pp \rightarrow W^+W^-jj$ (4f)	p p > w+ w- j j	-19.93	$\% +0.7\% 1.396 \pm 0.005 \cdot 10^1 1.396 \pm 0.005 \cdot 10^1 1.005 \cdot 10^1 1$	+5.0% +0.7%		
c.4 $pp \rightarrow Z Z Z$ c.5 $pp \rightarrow \gamma W^+ W^-$ (4f)	P P Z Z Z 1.085 ± 0.002 · 10 -0.5% -1.5%	-2.1% - 1.5% $581 \pm 0.003 \cdot 10^{-1} \pm 5.4\% \pm 1.4\%$	b.16 $pp \rightarrow ZZjj$	pp>zzjj	$1 \mathbf{\tilde{P}_{rocess}^{44}} = 0.002 \cdot 10^{0} + 26.69}_{-19.69}$	$\% = 0.69$ Syntax $00 \pm 0.011 + 10$		Cross se	ection (pb)
c.6 $pp \rightarrow \gamma \gamma W^{\pm}$	-2.070 -1.370	-4.3% $-1.1%251 \pm 0.032 \cdot 10^{-2} +7.6\% +1.0\%$	b.17 $pp \rightarrow ZW^{\pm}jj$	pp>zwpmjj				LO 13 TeV	m NLO~13~TeV
c.7 $pp \rightarrow \gamma ZW^{\pm}$		$.117 \pm 0.004 \cdot 10^{-1}$ $^{+1.270}_{-5.9\%}$ $^{-0.9\%}_{-0.9\%}$	b.18 $pp \rightarrow \gamma \gamma jj$ b.19* $pp \rightarrow \gamma Z jj$	pp>aajj -	f.12 26mm → ti (t-channel)	^{« –1.0%} 7.501±0.032 · 10 ^{6 +0.6%} p p ≥2tt±j). \$\$ w t 0w	-10.1% -1.0% -+6.5% +0.6% 1.520 -	$\pm 0.001 \cdot 10^2 +9.4\% +0.4\% \\ -11.9\% -0.6\%$	$1.563 \pm 0.005 \cdot 10^2 {}^{+1.4\%}_{-1.8\%} {}^{+0.4\%}_{-0.6\%}$
c.8 $p \rightarrow \gamma Z Z$ Process		ross section (pb) = -2.9% = -1.4%	b.19 $pp \rightarrow \gamma Z J J$ b.20* $pp \rightarrow \gamma W^{\pm} j j$	pp>azjj		% -0.6% P P 4.2255⊥0.65% #20 # 1)+0.6% p p ≥4tt±a0.60%\$\$1%+		+0.014 . 10-1 +6.4% +0.9%	$1.003 \pm 0.003 \cdot 10^{-1.8\%} - 0.6\%$ $1.017 \pm 0.003 \cdot 10^{0} + 1.3\% + 0.8\%$
^{c.9} Heavy quarks+vector bo	p p > a a z $3.077 \pm 0.008 \cdot 10^{-2}$ $1.008 \cdot $	$571 \pm 0.017 \cdot 10^{-2}$ +4.2% +1.7% -NLO 13 TeV -	0.20 pp-7 pr JJ	ի ի չ զ տիա յ յ		el) pp>ttzj\$\$ w+		$ \begin{array}{c} -8.8\% & -1.0\% \\ \pm \ 0.007 \cdot 10^{-1} & +3.5\% & +0.9\% \\ -5.5\% & -1.0\% \end{array} $	$\begin{array}{c} 1.017 \pm 0.003 \cdot 10 & -1.2\% & -0.9\% \\ 6.993 \pm 0.021 \cdot 10^{-1} & +1.6\% & +0.9\% \\ & -1.1\% & -1.0\% \end{array}$
$\underbrace{e.1}_{c.11^*} \begin{array}{c} pp \rightarrow W^{\pm} b\overline{b} \\ pp \rightarrow W^{\pm}W^{-}W^{\pm} j \ (4f) \end{array}$	p p > wpm b b~ $3.074 \pm 0.002_{+1}10^2_{+2} + 42.3\%_{+2}$	$+2.0\%$ 8.162 \pm 0.034 \cdot 10 ² $+29.8\%$ $+1.5\%$ -1.6% 0.001 \pm 0.034 \cdot 10 ² -23.6% -1.2%	_					0 110 007 10 407	
$\begin{array}{c} c.11^{\circ} pp \to W W W = j \ (41) \\ e.2 pp \to Z \ b\overline{b} \\ c.12^{\circ} b\overline{b} \end{array}$	p p $\stackrel{>}{}$ v $\stackrel{=}{}$ v $\stackrel{=}{}$ b \sim 6.993 \pm 0.003, 10 ² $+$ 33.5% $+$ 24.4% $+$ 24.4%	+1.0% 1 235 + 0 004, 10 ³ +19.9% +1.0%			f.4 $pp \rightarrow tbj$ (t-channel	/		$\pm 0.000 \cdot 10^2 + 13.8\% + 0.4\% - 11.5\% - 0.5\% \pm 0.006 \cdot 10^{-1} + 16.8\% + 0.8\% - 13.5\% - 0.9\%$	$\begin{array}{ccc} 1.319 \pm 0.003 \cdot 10^2 & +5.8\% & \pm 0.4\% \\ & -5.2\% & -0.5\% \\ 8.612 \pm 0.025 \cdot 10^{-1} & \pm 6.2\% & \pm 0.8\% \\ & -6.6\% & \pm 0.9\% \end{array}$
$c.13$ e.3 $pp \rightarrow pp Z \partial \gamma b \bar{b}$	p p > p p > p p > p p > p p > p p > p p > p p > p p > p p > p p p > p	+1.6% $+171$ $+0.015$ $+0.0%$ $+33.7%$ $+1.4%$	Process	S_{3}	Intax	el) pp>tt bb j_a \$\$			
c.14 $^{*}_{\mathbf{e.4}}$, $pp \rightarrow pp \neq W^{\pm} bb j$	$\texttt{P} \ \texttt{P} \ \texttt{P} \ \breve{p} \ m \ m} \ \breve{p} \ m \ m \ m} \ m \ m \ m \ m \ m \ m \$	0.7% 0.0 3.957 \pm 0.013 $, 10^{2}$ $+27.0\%$ $+0.7\%$ -0.7% -0.6%	Four vector be	OSONS	f.6* $pp \rightarrow tbjZ$ (t-chann	$(el) \underline{P} = \underline{P} _{13} \underbrace{tt}_{10} \underbrace{bb j z \$}_{13}$	w+w- 3.934 - NLO 13 T	$\pm 0.002 \cdot 10^{-1}$ $^{+18.7\%}_{-14.7\%}$ $^{+1.0\%}_{-0.9\%}$	$5.657 \pm 0.014 \cdot 10^{-1} {}^{+ 7.7 \% }_{- 7.9 \% } {}^{+ 0.9 \% }_{- 0.9 \% }$
$^{\rm c.15*}{\rm e.5*}^{pp} \xrightarrow{\gamma W^+}{pp} \xrightarrow{Z} b\overline{b}^j j^{(4f)}$	$p p > a w^+ > z b b \sim j^{-182 \pm 0.001} 1.604 \pm 0.001^{-1134} 10^2 - 42.4\% = -27.6\%$	$+0.9\%$ $0.002.805 \pm 0.009 \cdot 10^2$ $+21.0\%$ $+0.8\%$ -17.6% -1.0%	c.21 [*] $pp \rightarrow W^+W$	W^+W^- (4f) p	f.7 $pp \rightarrow tb$ (s-channel)	±0.09.9.30±4> t-bs% p.p38	₩- 9.959 h 0.035 7.489 =	$\pm 0.007 + 10^{0}$ $^{+3.5\%}_{-4.4\%}$ $^{+1.9\%}_{-1.4\%}$	$\begin{array}{cccc} 1.001 \pm 0.004 \cdot 10^{1} & {}^{+ 3.7 \% }_{- 3.9 \% } {}^{+ 1.9 \% }_{- 1.5 \% } \end{array}$
$c.16 e.6^{*pp} \rightarrow \gamma p \overline{b} \overline{b} j$	$p p > a a p p > a b b \sim \frac{4.107 \pm 0.012 \pm 0.017 - 11.82}{7.812 \pm 0.017 - 102} - \frac{451.2\%}{-32.0\%} = -32.0\%$	$+1.0\% & 0.02\\-1.5\% & 1.233 \pm 0.004 \cdot 10^3 & +18.9\% & +1.0\%\\-19.9\% & -1.5\% & -15\% & -1.5\% &$	$-$ c.22* $pp \rightarrow W^+W$					$\pm 0.001 + 10^{-2}$ +1.2% +1.9% -1.8% -1.5%	$1.952 \pm 0.007 \cdot 10^{-2} {}^{+ 2.6 \% }_{- 2.3 \% } {}^{+ 1.7 \% }_{- 1.4 \% }$
c.18 e.7 pp Process c.18 e.7 pp Process c.18 e.7 pp Process c.18 e.7 pp Process	s p p > B E Z + L~ WPU.995 ± 0.013 - HOT (09) 7457 15:218.0%	$\substack{\substack{192, (9b)\\ -1.6\%}}{5,662} \pm 0.021 \cdot 10^{-1} \\ -10.6\% \\ -1.3\%$	c.23 [*] $pp \rightarrow W^+W$					$50.001 + 10^{-2} + 1.3\% + 2.0\% - 1.5\% - 1.6\%$	1.539 Groß 005 ior 10 b? +3.9% +1.9%
c.19 e.8 $pp_{\overline{j}} pp_{\overline{j}} p_{\overline{f}} p_{\overline{f}} z_{\overline{f}} \overline{f} - t \overline{t} H$	P P ≥	$\pm 1.8\%$ $+ 0.026$ $+ 0.026$ $+ 0.026$ $+ 0.026$ $+ 1.9\%$ $+ 1.9\%$ $- 11.1\%$ $- 2.2\%$	c.24 [*] $pp \rightarrow W^+W$		<u> </u>	-2.5% $-1.7%$	10p quarks + bosons	+7.0% +1.8%	LO I TEV NLO I TEV
c.20 e.9 pp j. $pp_{1} \rightarrow t\bar{t} \gamma = - t\bar{t}H_{3}$	p p >q b p -≫ tt t~ a j.031 ± 0.203 ± 0.0001 ± 110 ⁰ + ± 2£6% 2	$^{+1.6\%}_{-1.8\%}$ (10704 \pm 10.005 $^{+0.3\%}_{-1.2\%}$ (10.8% \pm 1.7% $^{+1.7\%}_{-1.2\%}$ (10.004 \pm 10.005 $^{+0.3\%}_{-1.2\%}$ (11.0% -2.0%	- c.25 [*] $pp \rightarrow W^+W$			$^{-4.1\%}$ $^{-1.7\%}$	j.17.10 e==-0.以代拍、10 j.21 A8e ⁺ e ⁻ 0→桃戸i 103	e+7e-2% t-1t6%h j 2.533±0.	$\begin{array}{cccc} .003 \cdot 10^{-3} & {}^{+0.0\%}_{-0.0\%} & 1.911 \pm 0.006 \cdot 10^{-3} & {}^{+0.4\%}_{-0.5\%} \\ .003 \cdot 10^{-4} & {}^{+9.2\%}_{-7.8\%} & 2.658 \pm 0.009 \cdot 10^{-4} & {}^{+0.5\%}_{-1.5\%} \end{array}$
e.10* $j.pp \rightarrow t\bar{t} V^{\pm} j.t\bar{t}\gamma$	g p->t t~ mj j 2.003 ± 0.004 · 10 - 148,9%	$\begin{array}{c} 3.278 \pm 0.017 + 10 & -5.7\% \\ \pm 1.3\% \pm 0.39494 \pm 0.001 \pm 0.4\% & -14.0\% & -14.0\% \\ \pm 0.39494 \pm 0.39494 \pm 0.001 \pm 0.4\% & -14.0\% & -0.9\% \end{array}$	c.26 [*] $pp \rightarrow W^+W$		-	-2.9% - 1.7% $3 \pm 0.012 \cdot 10^{-4}$ $+0.6\% + 2.1\%$ -0.9% - 1.6%	$i.3^* e^+e^- \rightarrow ttHii$	e+ e-> t t t h i i 2.663 ± 0.	$\begin{array}{c} .004 \cdot 10^{-5} & + \overset{+ 19.3\%}{-14.9\%} & 3.278 \pm 0.017 \cdot 10^{-5} & + \overset{+ 4.0\%}{-5.7\%} \\ .002 \cdot 10^{-2} & + \overset{+ 0.0\%}{-9.0\%} & 1.335 \pm 0.004 \cdot 10^{-2} & + \overset{- 5.7\%}{-5.5\%} \end{array}$
e.11 [*] $j \cdot \tilde{p}_{pp}^{*} \rightarrow t \tilde{t} Z \tilde{j} \rightarrow t \bar{t} \gamma j$ $j \cdot \tilde{b}^{*} = e^{+}_{-} e^{-} \rightarrow t \bar{t} \gamma j$	$\phi \neq \phi \rightarrow t = 2 \pm 3$ $3.955 \pm 0.0024 \cdot 10^{-31} + 3.462\%$	$\begin{array}{c} 237\% \pm 050074 \pm 0001 + 100^{-3} \\ \hline 30\% \pm 0.021 \pm 10^{-4} + 5.4\% \\ \hline -12.3\% - 2.9\% \end{array} + \begin{array}{c} +7.0\% + 2.5\% \\ -12.3\% - 2.9\% \\ \hline \end{array}$				10-5 $+5.1%$ $+2.4%$	$j.5^*$ $e^+e^- \rightarrow t\bar{t}\gamma j$ $10-4$	e+g3% ±107%a j 2.355±0.	
e.12* $j.pp \rightarrow t\bar{t}_{e}\gamma j \rightarrow t\bar{t}Z$	$ \begin{array}{c} \mathbf{P} \ \mathbf$	$\begin{array}{c} \begin{array}{c} 1 \\ + 2.3\% \\ + 2.96\% \\ + 2.96\% \\ + 0.014 \\ \end{array} , \begin{array}{c} 1.135 \\ + 0.004 \\ - 0.5\% \\ \end{array} , \begin{array}{c} 0.004 \\ - 0.5\% \\ - 12.2\% \\ - 2.5\% \\ \end{array} , \begin{array}{c} + 7.5\% \\ + 2.2\% \\ - 12.2\% \\ - 2.5\% \end{array} $	c.27* $pp \rightarrow W^{\pm}ZZ$	_	1 1	-4.770 -1.070			$\begin{array}{cccccccccccccccccccccccccccccccccccc$
e.13* $j.8^{\circ}_{j.9} \rightarrow tt W^{-}_{e^+e^-} \rightarrow tt Z_J^{+LZ}$		$\begin{array}{l} 6249 \pm 0.028 \\ 82499 \pm 0.051 \\ \pm 0.051 \\ \pm 10^{\circ} \\ 82499 \\ \pm 0.051 \\ \pm 10^{\circ} \\ \end{array} \begin{array}{l} 10^{-4} \\ \pm 2.0\% \\ \pm 0.051 \\ \pm 10^{\circ} \\ \pm 6.8\% \\ \end{array} \begin{array}{l} \pm 10.9\% \\ \pm 2.1\% \\ \pm 11.8\% \\ - 2.1\% \\ \pm 11.8\% \\ \end{array}$	- c.28 [*] $pp \rightarrow W^{\pm}Z2$			$3 \pm 0.003 \cdot 10^{-4}$ +3.6% +2.2% -3.5% -1.7% $4 \pm 0.004 \cdot 10^{-4}$ +1.7% +2.1% -1.7%	1.8^{-} $e'e \rightarrow ttZ1$	$e+e=>t,t_{2}z_{1}$ 6.059 ± 0.	$.006 \cdot 10^{-4} \stackrel{+0.3\%}{_{-7.8\%}} 6.940 \pm 0.028 \cdot 10^{-4} \stackrel{+2.0\%}{_{-2.6\%}}$
e.14* j.pp $\rightarrow t\bar{t}W^{\pm}Z_{t\bar{t}W}$	$\pm jj$ $_{\rm eP}$ p->> to to wpm g j $2.404 \pm 0.002 \cdot 10^{-73} + \pm 25.6\% - \pm 0.9.6\%$	$\pm 2.5\% \\ \pm 1.8\% \pm 0.30525 \pm 0.010 \\ \pm 0.010 \\ \pm 0.010 \\ -9.1\% \\ = 10.6\% \\ -10.8\% \\ -10.6\% \\ = 1.6\%$	c.29* $pp \rightarrow W^{\pm}Z\gamma$					et 0.6% t-0.8% j j 6.351±0. et 0.6% t-0.8% vpm j j 2.400±0. -8.1% -0.8%	$\begin{array}{c} .028 \cdot 10^{-5} & + 19.4\% \\ - & 15.0\% \\ .004 \cdot 10^{-7} & + 19.3\% \\ - & 14.9\% \\ \end{array} \\ \begin{array}{c} .8.439 \pm 0.051 \cdot 10^{-5} & + 5.8\% \\ - & -6.8\% \\ - & -6.8\% \\ - & -9.1\% \\ - & -9.1\% \\ \end{array}$
e.15 [*] j. $pp \rightarrow t\bar{t}W^{\pm} \gamma t\bar{t}H$	2 gp p->>た tr~ mpm a 23.618 ± 0.0003 ·110 ⁺³ +仕35.4% -仕載5.9%	$\pm 2.3\% \\ \pm 0.30927 \pm 0.0013 \\ \pm 0.0\% \\ -10.4\% \\ -1.5\% \\ -10.4\% \\ -1.5\% \\ -10.4\% \\ -1.5\% \\ -10.4\% \\ -1.5\% \\ -10.4\% \\ -1.5\% \\ -10.4\% \\ -1.5\% \\ -10.4\% \\ -1.5\% \\ -10.4\% \\ -1.5\% \\ -10.4\% \\ -1.5\% \\ -10.4\% \\ -1.5\% \\ -10.4\% \\ -1.5\% \\ -10.4\% \\ -1.5\% \\ -10.4\% \\ -1.5\% \\ -10.4\% \\ -1.5\% \\ -10.4\% \\ -1.5\% \\ -10.4\% \\ -1.5\% \\ -10.4\% \\ -1.5\% \\ -10.4\% \\ -1.5\% \\ -10.4\% \\ -1.5\% \\ -10.4\% \\ -10.4\% \\ -1.5\% \\ -10.4\% \\ -10.4\% \\ -1.5\% \\ -10.4\% \\ -10.4\% \\ -10.4\% \\ -10.4\% \\ -10.4\% \\ -10.4\% \\ -1.5\% \\ -10.4\% \\ -10.4\% \\ -10.4\% \\ -10.4\% \\ -10.4\% \\ -1.5\% \\ -10.4\% \\ -$	c.30* $pp \rightarrow W^{\pm} \gamma \gamma$		p>wpmaaa 3.600	-1.0% $-1.6%$	$1.240 \pm 0.005 \cdot 10^{-4}$ $j.11^{*} e^{+}e^{-} \rightarrow t\bar{t}HZ_{+-}$	-8.1% -0.8% et 9.5% t 2%h z 3.600 ± 0.	$.006 \cdot 10^{-5}$ $_{-0.0\%}^{+0.0\%}$ $3.579 \pm 0.013 \cdot 10^{-5}$ $_{-0.0\%}^{+0.1\%}$
e.16* $j \cdot \frac{1}{pp} \rightarrow t\bar{t}^* Z \overline{Z} \rightarrow t\bar{t}\gamma Z$ $j \cdot 13^* = e^+ e^- \rightarrow t\bar{t}\gamma E$		$\begin{array}{c} 21364 \pm 0.0860 \\ \overline{9}, 423 \pm 0.032 \cdot 10^{-5} \\ \end{array} \begin{array}{c} +0.6\% \\ -0.007 \\ -0.207 \\ -0.3\% \\ -9.9\% \\ -1.5\% \\ -9.9\% \\ -1.5\% \\ -9.9\% \\ -1.5\% \\ -0.4\% \\$	c.31* $pp \rightarrow ZZZZ$			$\pm 0.002 \cdot 10^{-5}$ $^{+3.8\%}_{-3.6\%}$ $^{+2.2\%}_{-1.7\%}$			$.003 \cdot 10^{-4} + 0.0\% - 0.0\%$ $2.364 \pm 0.006 \cdot 10^{-4} + 0.6\% - 0.5\%$
e.17* j. $PP \rightarrow tt Z^{\gamma} \rightarrow t\bar{t}\gamma\gamma$		$\begin{array}{c}9.423\pm0.032\cdot10^{-5}\\\pm1.7\%\\31803\pm0.0120.40\\-0.4\%\\-11.0\%\\-11.0\%\\-11.0\%\\-11.0\%\\-1.0\%\\-1.0\%\\-1.0\%\\-1.0\%\\-1.1\%\\-1.0\%\\-1.1\%$ +1.1\%	c.32* $pp \rightarrow ZZZ\gamma$		p>zzza 3.945	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$j.14^* e^+e^- \rightarrow t\bar{t}\gamma\gamma$	e+ e- > t t~ a a 3.650 ± 0.	$.008 \cdot 10^{-4} + 0.0\%$ $3.833 \pm 0.013 \cdot 10^{-4} + 0.4\%$
e.18* j. $p\bar{p} \rightarrow t\bar{t}\gamma\bar{\gamma} \rightarrow t\bar{t}Z2$ j.16* $e^+e^- \rightarrow t\bar{t}H1$	1 - 3 + 0 - 3 + 1 - 3 + 0 -	$\begin{array}{c} \pm 13\% \\ -1.1\% \\ \pm 0.003 \\ \cdot 10^{-5} \\ \end{array} \begin{array}{c} \pm 0.003 \\ \pm 0.003 \\ \cdot 10^{-5} \\ -1.1\% \end{array} \begin{array}{c} \pm 7.8\% \\ \pm 1.4\% \\ -9.7\% \\ -1.4\% \\ \end{array} \begin{array}{c} \pm 7.8\% \\ -9.7\% \\ -1.4\% \\ \end{array}$	c.33* $pp \rightarrow ZZ\gamma\gamma$	-					
	$^{+}W^{-}$ e+ e- > t t~ w+ w- $1.372 \pm 0.003 \cdot 10^{-4} + \frac{-0.0\%}{-0.0\%}$	$1.540 \pm 0.006\cdot 10^{-4} {}^{+1.6\%}_{-0.9\%}$	c.34* $pp \rightarrow Z\gamma\gamma\gamma$	Р	*	$) \pm 0.012 \cdot 10^{-5}$ +2.3% +2.0% -3.1% -1.6%	$_{j.16^{*}103^{+}e^{-}0.026^{+}10^{-5}}$ $_{j.17^{*}103^{+}e^{-}e^{-} \rightarrow ttW^{+}W^{-}$	ef 2 2% t 1 5% w+ w- 1.372 ± 0.	
			c.35* $pp \rightarrow \gamma \gamma \gamma \gamma$	р	p>aaaa 1.594	$1 \pm 0.004 \cdot 10^{-5} + 4.7\% + 1.9\% - 5.7\% - 1.7\%$	$3.389 \pm 0.012 \cdot 10^{-5}$	-6.7% -1.3%	

The flavor of the Higgs, 23-26 June 2014, WIS, Israel

AUTOMATIC NLO IN SM (2014)

2		~		Process	Syntax		Cross section (pb)			
Process Vector boson +jets	Syntax	Cross sec LO 13 TeV	ction (pb) NLO 13 TeV	Vector-boson pair +jets		m LO~13~TeV	Process NLO 1	^{3 TeV} Syntax	Cros	ss section (pb)
a.1 $pp \rightarrow W^{\pm}$	p p > wpm	$1.375 \pm 0.002 \cdot 10^{5} {}^{+ 15.4 \% }_{- 16.6 \% } {}^{+ 2.0 \% }_{- 1.6 \% }$	$1.773 \pm 0.007 \cdot 10^{5} {}^{+ 5.2 \% }_{- 9.4 \% } {}^{+ 1.9 \% }_{- 1.6 \% }$	b.1 $pp \rightarrow W^+W^-$ (4f)	p p > w+ w-	$\begin{array}{rrr} 7.355 \pm 0.005 \cdot 10^{1} & {}^{+ 5.0 \% }_{- 6.1 \% } \end{array}$	⁺² Heavy quarkstand(jets))	2 +4.0% +1.9% -4.5% -1.4%	LO 13 TeV	NLO 13 TeV
a.2 $pp \rightarrow W^{\pm}j$	p p > wpm j	$2.045 \pm 0.001 \cdot 10^{4} {}^{+19.7\%}_{-17.2\%} {}^{+1.4\%}_{-1.1\%}$	$2.843 \pm 0.010 \cdot 10^{4} + 5.9\% + 1.3\% \\ -8.0\% - 1.1\% \\ 7.7\% + 0.020 + 103 + 2.4\% + 0.9\%$	b.2 $pp \rightarrow ZZ$	p p > z z	$1.097 \pm 0.002 \cdot 10^{1}$ $^{+4.5\%}_{-5.6\%}$	$^{+1.9\%}_{-1}$ $1.415 \pm 0.005 \cdot 10$ $^{+2.0\%}_{pp} \rightarrow jj$	1 +3.1% +1.8% −3.7p p.≫ j j 1 +4.4p p.7% j j	$1.162 \pm 0.001 \cdot 10^{6} {}^{+ 24.9 \% }_{- 18.8 \% } {}^{+ 0.8 }_{- 0.9 }$	$\frac{1.580 \pm 0.007 \cdot 10^{6}}{-9.0\%} \frac{+8.4\%}{-9.0\%} \stackrel{+0.7\%}{-0.9\%}$
a.3 $pp \rightarrow W^{\pm} jj$ a.4 $pp \rightarrow W^{\pm} jjj$	pp>wpmjj pp>wpmjjj	$\begin{array}{cccc} 6.805 \pm 0.015 \cdot 10^3 & +24.5\% & +0.8\% \\ & -18.6\% & -0.7\% \\ 1.821 \pm 0.002 \cdot 10^3 & +41.0\% & +0.5\% \\ & -27.1\% & -0.5\% \end{array}$	$\begin{array}{rrrr} 7.786 \pm 0.030 \cdot 10^3 & +2.4\% & +0.9\% \\ & -6.0\% & -0.8\% \\ 2.005 \pm 0.008 \cdot 10^3 & +0.9\% & +0.6\% \\ & -6.7\% & +0.9\% \\ & -6.7\% & -0.5\% \end{array}$	b.3 $pp \rightarrow ZW^{\pm}$ b.4 $pp \rightarrow \gamma\gamma$	pp>zwpm pp>aa	$2.777 \pm 0.003 \cdot 10^{-4.7\%}$ $2.510 \pm 0.002 \cdot 10^{-4.7\%}$	$^{-1}$ d.2 $pp \rightarrow jjj$	-4.4° p P 3 j j j	$8.940 \pm 0.021 \cdot 10^{4} {}^{+ 43.8 \% }_{- 28.4 \% } {}^{+ 1.2 }_{- 1.4 }$	$\begin{array}{cccc} \% & 7.791 \pm 0.037 \cdot 10^4 & {}^{+ 2.1 \% }_{- 23.2 \% } {}^{+ 1.1 \% }_{- 1.3 \% } \end{array}$
a.5 $pp \rightarrow Z$	pp>z	$4.248 \pm 0.005 \cdot 10^{4} {}^{+14.6\%}_{-15.8\%} {}^{+2.0\%}_{-1.6\%}$	$5.410 \pm 0.022 \cdot 10^{4} {}^{+4.6\%}_{-8.6\%} {}^{+1.9\%}_{-1.5\%}$	b.5 $pp \rightarrow \gamma Z$	pp>aa pp>az	$2.510 \pm 0.002 \cdot 10^{-22.49}$ $2.523 \pm 0.004 \cdot 10^{1}$ $^{+9.9\%}_{-11.29}$	$+d.3 pp_{53}b\bar{b}_{-0.013-10}$	-18.8% -1.9% 1 +5.4 p p > b b∼ -7.1 p −1.4%	$3.743 \pm 0.004 \cdot 10^{3} {}^{+ 25.2 \% }_{- 18.9 \% } {}^{+ 1.5 }_{- 1.8 }$	
a.6 $pp \rightarrow Zj$	pp>zj	$7.209 \pm 0.005 \cdot 10^{3} {}^{+19.3\%}_{-17.0\%} {}^{+1.2\%}_{-1.0\%}$	$9.742 \pm 0.035 \cdot 10^3$ $^{+5.8\%}_{-7.8\%}$ $^{+1.2\%}_{-1.0\%}$	b.6 $pp \rightarrow \gamma W^{\pm}$	p p > a wpm	$2.954 \pm 0.005 \cdot 10^{1} {}^{+ 9.5 \% }_{- 11.09 }$	$+ \frac{1}{2} \frac{1}{4}^* pp \mapsto b\bar{b}j_{0.026} \cdot 10$	¹ +9.7p̃ ₽.5%b b~ j	$1.050 \pm 0.002 \cdot 10^{3} {}^{+44.1\%}_{-28.5\%} {}^{+1.6}_{-1.8}$	$1.327 \pm 0.007 \cdot 10$ $-11.6\% -1.8\%$
a.7 $pp \rightarrow Zjj$ a.8 $pp \rightarrow Zjjj$	p p > Z		$2.65 \pm 0.010 \cdot 10^{6}$ $-6.0\% -0.7\%$	$i \tilde{\mathbf{n}} \sigma^{p \to W} \tilde{\mathbf{n}} V^{(4f)}$	50	Drocas	$d.5$ $pp \rightarrow bbjj$ 13 · 10		$1.852 \pm 0.006 \cdot 10^{2}$ $^{+61.8\%}_{-35.6\%}$ $^{+2.1}_{-2.4}$	$\begin{array}{cccc} & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ $
a.9 $pp \rightarrow \gamma j$	pp>aj	$1.964 \pm 0.001 \cdot 10^4$ $^{+31.2\%}_{-26.0\%}$ $^{+1.1\%}_{-1.8\%}$	$d_{5,218\pm0}^{265\pm0.010\times10^{3}} - d_{-60}^{265\pm0.010\times10^{3}} - d_{-60}^{260} - d_{-75}^{0.76}$			pi oces.		COLLED		
a.10 $pp \rightarrow \gamma jj$	pp>ajj	$7.815 \pm 0.008 \cdot 10^{3} {}^{+32.8\%}_{-24.2\%} {}^{+0.9\%}_{-1.2\%}$	$1.004 \pm 0.004 \cdot 10^{4} {}^{+5.9\%}_{-10.9\%} {}^{+0.8\%}_{-2\%}$	b.9 $pp \rightarrow ZW \perp j$	pp>zwpmj pp>aaj	$\begin{array}{c} 1.605 \pm 0.005 \cdot 10^{1} & +11.07 \\ & -10.09 \\ 1.022 \pm 0.001 \cdot 10^{1} & +20.39 \\ & -17.78 \end{array}$	$f = d_{17}$ $pp \rightarrow tt = 0.007 \cdot 10$	_4.8 P P > t t~	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Process	Sect	IONS at IN	LO in QC	$pp \rightarrow \gamma Zj$	pp>aaj pp>azj	$8.310 \pm 0.017 \cdot 10^{0} ^{+14.59}_{-12.89}$	$pp \rightarrow tij 0.010 \cdot 10$ $h^{+1.0\%} = \frac{1}{m} \frac{220ti}{2} \frac{1}{2} 0.005 \cdot 10$	-15. p , p , Not t~ j 1 +7.3% +0.9% -7.4 p , p).>%t t~ j j	-29.0% - 2.5 1 261 ± 0 001 10 ² +61.4% +2.6	-12.2% - 2.5% $1.795 \pm 0.006 \cdot 10^2 + 9.3\% + 2.4\%$
Three vector bosons +jet	oymax	LO 13 TeV	NLO 13 TeV	b.12* $pp \rightarrow \gamma W^{\pm} j$	p p > a wpm j	$2.546 \pm 0.010 \cdot 10^{1} {}^{+ 13.79}_{- 12.19}$	$^{+0.9\%}_{6}$ $^{+0.9\%}_{-d:10}$ $^{3}_{pp}$ $^{713}_{-ttt}$ $^{100}_{-0.015}$ $^{-10}_{-0.015}$	1 +7.2% +0.9% -7.1p pL%t t~ t t~	-33.0% -3.0	-10.1% - 2.5% -10.1% - 2.5% -10.1% - 2.5%
c.1 $pp \rightarrow W^+W^-W^{\pm}$ (4f)	p p > w+ w- wpm	$1.307 \pm 0.003 \cdot 10^{-1} {}^{+ 0.0 \% }_{- 0.3 \% } - 1.5 \% \qquad 2.10^{-1}$	$09 \pm 0.006 \cdot 10^{-1} {}^{+ 5.1 \% }_{- 4.1 \% } {}^{+ 1.6 \% }_{- 1.2 \% }$	b.13 $pp \rightarrow W^+W^+jj$	p p > w+ w+ j	j $1.484 \pm 0.006 \cdot 10^{-1} \begin{array}{c} +25.4 \\ -18.9 \end{array}$	$\begin{array}{c} & & & \\ 1\% & +2.1\% & & 2.251 \pm 0.011 \cdot 10 \\ 0\% & d1 \pm 1 & & pp \rightarrow t \bar{t} b \bar{b} \end{array}$	-1 +10.5% +2.2% -1₽ ⁶ ₽ ≯ t t~ b b~		
c.2 $pp \rightarrow ZW^+W^-$ (4f)	p p > z w+ w-	$9.658 \pm 0.065 \cdot 10^{-2}$ $^{+0.8\%}_{-1.1\%}$ $^{+2.1\%}_{-1.6\%}$ $1.6^{\circ}_{-1.1\%}$ $^{+2.0\%}_{-1.6\%}$	$79 \pm 0.005 \cdot 10^{-1}$ $^{+6.3\%}_{-5.1\%}$ $^{+1.6\%}_{-1.2\%}$	b.14 $pp \rightarrow W^-W^-jj$	p p > w- w- j	j $6.752 \pm 0.007 \cdot 10^{-2} \begin{array}{c} +25.0 \\ -18.0 \end{array}$	$1\% + 2.4\%$ FF $0.003 \pm 0.003 \times 10$ $3\% - 1.7\%$ $1.003 \pm 0.003 \times 10$	-1 +10.1% +2.5% -10.4% -1.8%	-35.7% -3.5	$1.452 \pm 0.005 \cdot 10^{-1} - 27.5\% - 3.5\%$
c.3 $pp \rightarrow ZZW^{\pm}$ c.4 $pp \rightarrow ZZZ$	p p > z z wpm	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$50 \pm 0.020 \cdot 10^{-2} + 2.5\% + 1.5\% - 1.1\% + 2.5\% + 1.1\% + 1.5\% + 1.1\% + 1.5\% + 1.1\% + 1.5\% $	b.15 $pp \rightarrow W^+W^-jj$ (4f)) pp>w+w-j	$\frac{1}{1.144 \pm 0.002 \cdot 10^{1}}$	$1.396 \pm 0.005 \cdot 10$	liand):)
c.5 $pp \rightarrow \gamma W^+ W^-$ (4f)	pp>aww-		$9 = 0.08 \cdot 10^{-1} \begin{array}{r} 1\% - 24 \\ -5.4\% + 1.45 \\ -4.3\% - 1.1\% \end{array}$	ial state		ered (no		4 and		Pl NI O 12 TI V
c.6 $pp \rightarrow \gamma \gamma W^{\pm}$ c.7 $pp \rightarrow \gamma Z W^{\pm}$	pp>aawpm pp>azwpm	$2.681 \pm 0.007 \cdot 10^{-2} + 4.4\% + 1.9\% \\ -5.6\% - 1.6\% \\ 4.004 \pm 0.011 + 10^{-2} + 0.8\% + 1.9\% \\ 1.1$	$51 \pm 0.032 \cdot 10^{-2} + 7.6\% + 1.0\% - 7.0\% - 1.0\%$ $17 \pm 0.004 + 10^{-1} + 7.2\% + 1.2\%$	b.18 $pp \rightarrow \gamma \gamma j j$	pp>aajj	$ \frac{5.377 \pm 0.029 - 10^{0}}{-19.89} $	6 -0.3% 6 +0.6% $7.501 \pm 0.032 \cdot 10^{-1.0\%}$		LO 13 lev	
	p p > a z wpm	$\begin{array}{c} 4.354 \pm 0.001 \cdot 10 & -1.4\% & -1.6\% \\ 2.318 \pm 0.004 \cdot 10^{-2} & +2.0\% & +1.9\% \\ & -2.8\% & -1.5\% \end{array} \begin{array}{c} 2.1 \\ \text{Cr} \end{array}$	$\begin{array}{c} -5.9\% & -0.9\% \\ \hline -5.9\% & -0.9\% \\ \hline 77 \pm 0.015 \cdot 10^{-2} & +3.1\% & +1.8\% \\ \hline \text{oss section (pb)} & -2.9\% & -1.4\% \end{array}$	$-b.19^* pp \rightarrow \gamma Z jj$	pp>azjj	f.13.26($pp \rightarrow tj$ (t-channel)	6 +0.6% p p ≥2tt±j).\$\$ w t)		-11.5% -0.0%	$1.563 \pm 0.005 \cdot 10^{2} {}^{+1.4\%}_{-1.8\%} {}^{+0.4\%}_{-0.6\%}$
^{c.9} $pp \rightarrow \gamma \gamma Z$ Heavy quarks+vector boso		$3.077 \pm 0.008 \cdot 10^{-2}$ LO 13 TeV LO 13 TeV	$71 \pm 0.017 \cdot 10^{-2}$ +4.2% +1.7% NLO 13 TeV	b.20* $pp \rightarrow \gamma W^{\pm} jj$	p p > a wpm j	j f.21.23 $pp \leftrightarrow t\gamma j$ (t-channe	l)-0.69p p >4tt±a0.j0:\$\$1%		-8.8% -1.0%	$1.017 \pm 0.003 \cdot 10^{0} + 1.3\% + 0.8\% \\ -1.2\% - 0.9\% \\ 6.002 \pm 0.021 + 10^{-1} + 1.6\% + 0.9\% $
$\begin{array}{cccc} c.10 & pp \to \gamma\gamma\gamma \\ \hline e.1 & pp \to W^{\pm} b\overline{b} \\ c.11^{\pm} & m & PD \to W^{\pm} b\overline{b} \end{array}$	p p > a a	ferentia	8 162 0.03 - 10 29.80 1 29	D) and	I NLO				± 0.007 10^{-1} $+3.5\%$ $+0.9\%$ -1.5% $-1.0%$	
c.11° $pp \rightarrow W + W + j$ (41) c.12° $pp \rightarrow Z W + W = j$ (4f)	p p > p p + p p + p p p p p p p p p p p		$\begin{array}{c} 9\% \\ 4\% \\ 4\% \\ 0.003 \\ 10 \end{array} \pm 0.004 \\ \cdot 10 \\ + 10 \\ -17 \\ - 1.49 \end{array}$	and and		f t $pp \rightarrow tbj$ -changes f		cally av	$\pm 0.006 \cdot 10^{-1}$ +16.8% +0.8%	$1.319 \pm 0.003 \cdot 10^{2} {}^{+5.5\%}_{-5.2\%} {}^{+0.4\%}_{-0.5\%}$ 8.612 ± 0.025 + 10 ⁻¹ + 6.2% + 0.8%
c.13 $e.3_{pp} \rightarrow pp_{\overline{ZW}} b\bar{b}$	pp } p p p b b	$2.810 \pm 0.731 \pm 0.001 + 103 + 51.9\% + 1 \\ -13.0\% - 0.34.8\% - 2$	$\substack{1.6\%\\2.1\%}, \substack{0.013}, 171 \pm 0.015\%, 103\%, \substack{+33.7\%\\-5.6\%}, \substack{+1.49\\-27.1\%}, \substack{-1.99\\-1.9\%}$	Process	Ç,	Syntax f.6* $pp \rightarrow tbjZ$ (t-chann	Cros	s section (pb) s w+ w- 3.934	-13.5% -0.9%	$5.657 \pm 0.014 \cdot 10^{-1} + 7.7\% + 0.9\%$
c.14 [*] e.4* $pp \rightarrow pp = \sqrt{W^{\pm} bb j}$ c.15* $\gamma pp \rightarrow \gamma W^{\pm} W$ $(4f)$	P P > p p p ≯ ŵpm b l	$\sim 8^{-3}_{j} \pm 1.861 \pm 0.003^{+1}_{-1} 10^{2}_{-1} \pm 42.5\%$ (+0 1.182 ± 9.064 + 10^{-1}_{-1} \pm 13.4\% + 42.4% (+0	0.7% $-21.0%$ $-0.6%$	Four vector be	OSOIIS		LO 13 16V- J - 4	NLO 13		-7.9% -0.9%
	^P P p p > z b b~	$ \begin{array}{c} \textbf{j} & 1.604 \pm 0.001 - 10^{4} - 27.6\% - 1 \\ 4.107 \pm 0.015 + 10^{-2} + 11.8\% + 0.27.6\% - 1 \\ 7.812 \pm 0.017 - 10.02 - \pm 51.2\% + 1 \end{array} $	$2.805 \pm 0.009 + 10^{20} + 1.0\% + 0.0\% + 0.0\% + 0.023 \pm 0.004\% + 0.0\% + 1.0\% +$	c.21* $pp \rightarrow W^+W$	$W^-W^+W^-$ (4f) I	$f.7 \qquad pp \rightarrow tb \text{ (s-channel)}$	± 0.014 · 10 · 10 · 1.0 · 1.0	7% 9.959 ± 0.035 · 10	-6.0% -1.2% -11.0%	
c.17* $pp \rightarrow 7W^{\pm j}$ Process	P P Onter D	certaintie	es evaluat	ed in th	e san			event_	-1.8% -1.5%	$1.952 \pm 0.007 \cdot 10^{-2} + 2.0\% + 1.1\% \\ -2.3\% - 1.4\% \\ 1.024 \times 50.45 \le 1.0\%^2 + 3.9\% + 1.9\%$
c.19e.8 pp $\mathcal{P}p \mathcal{D} \mathcal{U} Z_{-} \rightarrow \mathcal{H} H$	PP>RE	1.372±5,272 丰化的生活的。1.372±5,272 丰化的生活的。	1.8% +1.8% +2.1% +2.1% +2.1% +2.1% +2.1% +2.1% +2.1% +2.1% +2.1% +1.1% +2.1%	9%						NLO1 TeV NLO1 TeV
c.20 e.9 pp j. pp $\overline{p}_{j} \rightarrow t \overline{t} p_{j} \rightarrow t \overline{t} H j$	pp> eptp-≥ttt~a	$j_{1.031 \pm 0.203 \pm 0.001 \pm 100^{0} + \pm 396\% + 1}$	$26\% = 0.00744 \pm 0.005 + 100 + 9.8\% + 1.79$ $26\% = 0.01744 \pm 0.005 + 100 - 11.0\% - 2.09$	c.24 $pp \rightarrow W^+W$ c.25 $pp \rightarrow W^+W$		p > w + w - z z = 4.320 p > w + w - z a = 8.403	$\pm 0.013 \cdot 10^{-4}$ $^{-4.1\%}_{-4.1\%}$ $^{-1.1\%}_{-4.1\%}$	7% j.1 ^{7.10} e ⁺ e-0.9 <i>代</i> 相。10 3% j.21 488 ⁺ e-0.7税相;10-3	e+eT% t.ts%h 2.018 ± 0.003 e+e2% t.ts%h j 2.533 ± 0.003	$\cdot 10^{-3} + \frac{+0.0\%}{-0.0\%}$ $1.911 \pm 0.006 \cdot 10^{-3} + \frac{+0.4\%}{-0.5\%}$ $\cdot 10^{-4} + \frac{+9.2\%}{-7.8\%}$ $2.658 \pm 0.009 \cdot 10^{-4} + \frac{+0.5\%}{-1.5\%}$
e.10* $j.\mathcal{P}p \to t\bar{t} V^{\pm} j t\bar{t}\gamma$	e+ e- > t t~ ⊥ e₽ ₽-> t t≈ 8	pm j $2.352 \pm 0.002 \cdot 10^{-21} + 10^{-7}$	$13.278 \pm 0.017 \cdot 10^{-5.7\%}$ $13.3\% \pm 0.30404 \pm 0.011 \cdot 0.10^{-5.7\%}$ $14.3\% \pm 0.30404 \pm 0.011 \cdot 0.10^{-1.4}$ -0.4% -14.0% -0.9	$c.26^* m \rightarrow W^+W$			$\pm 0.012 \cdot 10^{-4}$ $+0.6\%$ $+2.5\%$	^{7%} j.3 [*] $e^+e^- \rightarrow t\bar{t}Hjj$ ^{1%} j.49.382 ⁺ $e^-0.953 \cdot 10^{-4}$	$e^{\pm \frac{5}{6}.5\%} \pm \frac{1}{2} t^{2\%} h j j$ 2.663 ± 0.004 $e^{\pm \frac{6}{6}.7\%} \pm \frac{1}{4} t^{4\%} a$ 1.270 ± 0.002	$\begin{array}{cccc} \cdot 10^{-5} & + \dot{19.3\%} & 3.278 \pm 0.017 \cdot 10^{-5} & + \dot{4.0\%} \\ \cdot 10^{-2} & + 0.0\% & 1.335 \pm 0.004 \cdot 10^{-2} & + 0.5\% \end{array}$
e.11* $j \cdot \frac{5}{pp} \rightarrow t\bar{t} \overline{Z} \overline{j} \rightarrow t\bar{t}\gamma j$ $j \cdot 6^* \qquad e^+e^- \rightarrow t\bar{t}\gamma jj$	ep p=>t t≈ 2 e+ e- > t t~ a	j j $3.103 \pm 0.005 \cdot 10^{-4}$ $+19439970$ 2	$\begin{array}{c} 237\% \pm 050074 \pm 00016 \pm 230-1 & +7.0\% & +2.3\\ \hline 43002 \pm 0.021 \cdot 10^{-4} & \pm 5.4\% & -12.3\% & -2.9\\ \hline +2.3\% & -1.135 \pm 0.00076 \pm 950 & +7.5\% & +2.29\\ \hline \end{array}$	2% $c 27^*$ $m \rightarrow W^{\pm}Z^{\pm}$		1	$\pm 0.010 \cdot 10^{-5}$ $^{+5.1\%}_{-4.7\%}$ $^{+2.1}_{-1.0\%}$	$^{6\%}_{4\%}$ j.5 [*] .240 ⁺ $e^- \rightarrow t\bar{t}\gamma j$ 8% ; 61.240 ⁺ 0.014 [*] .10 ⁻⁴	-5.3% 二日% 1 e4度功常 本於7% a j 2.355 ± 0.002 a+長初% 本於2% a j 3 103 ± 0.005	10^{-3} $+9.3\%$ $2.617 \pm 0.010 \cdot 10^{-3}$ $+1.6\%$ -7.9% $2.617 \pm 0.010 \cdot 10^{-3}$ $+1.6\%$ 10^{-4} $+19.5\%$ 4.002 ± 0.021 10^{-4} $+5.4\%$
e.12* $j \not pp \rightarrow t\bar{t}_{e} \gamma j \rightarrow t\bar{t}Z$ $i \cdot 8^{*} e^{\pm}e^{-} \rightarrow t\bar{t}Z j$	$P P - t t \sim 2$ $e^+ e^- > t t \sim z$	$1 6.059 \pm 0.006 \cdot 10^{-4} \text{ s}^{+9.38} \text{ or } 6$	$\begin{array}{c} 42963 \pm 0.0149, 10^{-0.5\%}, & -12.2\%, -2.5\% \\ c 0.40 \pm 0.009, 10^{-4}, \pm 2.0\% \end{array}$	c.28 [*] $pp \rightarrow W^{\pm}Z_{2}^{+}$	$Z\gamma$ I	p > wpm z z a 1.148	$\pm 0.003 \cdot 10^{-4} {}^{+3.6\%}_{-3.5\%} {}^{+2.5}_{-1.5\%}$	^{2%} j.72.948 ⁺ € 0.008 · 10 ⁻⁴	$\begin{array}{c} \mathbf{c} + \mathbf{10.8\%} \mathbf{t} + \mathbf{1.3\%} \mathbf{z} \\ \mathbf{c} + \mathbf{10.8\%} \mathbf{t} + \mathbf{1.3\%} \mathbf{z} \\ \mathbf{c} - 8.7\% - 1.0\% \end{array} \qquad $	
e.13* $\stackrel{J \cdot \delta}{\underset{j,9}{\text{pp}}} \rightarrow \underbrace{ttW}_{e^+e^-} \rightarrow \underbrace{ttZjj}_{e^-}$ e.14* $: \mathbf{m} \rightarrow \underbrace{ttW}_{z} \xrightarrow{t}_{e^+} \underbrace{ttW}_{z}$	$\begin{array}{c} p p > t t \sim w \\ e^+ e^- > t t \sim z \end{array}$	$+$ W ⁻ 0.0(3 ± 0.000 · 10 - +192429% (3.51 ± 0.028 · 10 - 5 +192429% (3.51 ± 0.028 · 10 - 5 +192429% (3.51 ± 0.028 · 10 - 5 +192429% (3.51 ± 0.028 · 10 - 5 +192429% (3.51 ± 0.028 · 10 - 5 +192429% (3.51 ± 0.028 · 10 - 5 +192429% (3.51 ± 0.028 · 10 - 5 +192429% (3.51 ± 0.028 · 10 - 5 +192429% (3.51 ± 0.028 · 10 - 5 +192429% (3.51 ± 0.028 · 10 - 5 +192429% (3.51 ± 0.028 · 10 - 5 +192429\% (3.51 ± 0.028 · 10 - 5 +192429\% (3.51 ± 0.028 · 10 - 5 +192429\% (3.51 ± 0.028 · 10 - 5 +192429\% (3.51 ± 0.028 · 10 - 5 +192429\% (3.51 ± 0.028 · 10 - 5 +192429\% (3.51 ± 0.028 · 10 - 5 +192429\% (3.51 ± 0.028 · 10 - 5 +192429\% (3.51 \pm 0.028))	$82999 \pm 0.051 \pm 10^{-6.8\%} - 11.8\% - 2.1$ $\pm 2.5\% \pm 0.051 \pm 10^{-6.8\%} + 10.6\% + 2.3$	1% $c 20^* nn \rightarrow W^{\pm}Z_{\ell}$	γγ I	pp>wpmzaa 1.054	$\pm 0.004 \cdot 10^{-4} {}^{+1.7\%}_{-1.9\%} {}^{+2.}_{-1.}$	$_{7\%}^{1\%}$ j.8 [*] $e^+e^- \rightarrow ttZj$ j.9 ^{3.03} $e^+e^- 0.0tZj$ j10 ⁻⁶	eters t-trag j 6.351 ± 0.028	$\cdot 10^{-5} + \frac{19.4\%}{-15.0\%} = 8.439 \pm 0.051 \cdot 10^{-5} + \frac{5.8\%}{-6.8\%}$
e.14 j. $pp \rightarrow t\bar{t}W^{\pm}\gamma t\bar{t}HZ$ e.15* j. $pp \rightarrow t\bar{t}W^{\pm}\gamma t\bar{t}HZ$			$\begin{array}{llllllllllllllllllllllllllllllllllll$	c.30* $pp \rightarrow W^{\pm} \gamma \gamma$	γγ I	p > wpm a a a 3.600	$\pm 0.013 \cdot 10^{-5} \begin{array}{c} +0.4\% +2.0 \\ -1.0\% -1.0\% \end{array}$	0% j.10*.246 ⁺ 至0.065 ⁺⁺ 4約-4	1 e+⊛8% *0t8% wpm j j 2.400 ± 0.004 -8.1% -0.8%	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
e.16* $j \cdot \frac{1}{2} p_{p}^{*} \rightarrow t \bar{t}^{\dagger} Z \bar{Z} \rightarrow t \bar{t} \gamma Z$ $j \cdot 13^{*} e^{+} e^{-} \rightarrow t \bar{t} \gamma H$		$z = -2.212 \pm 0.003 \pm 105^{-4}3^{-+}9.223\% = 4$	$213734 \pm 0.086a \pm 105^{4}aa^{\pm 0.6\%}aa^{\pm 0.6\%}aa^{\pm 1.7\%}aa^{\pm $	% c.31 [*] $DD \rightarrow ZZZZ$		op>zzz 1.989	$\pm 0.002 \cdot 10^{-5} {}^{+3.8\%}_{-3.6\%} {}^{+2.5}_{-1.}$	$^{2\%}_{7\%}$ $^{1.11}_{j.12}$ $^{e}_{e}$ $^{e}_{e}$ $^{e}_{e}$ $^{+}_{\to}$ $^{tHZ}_{0.018}$ $^{10^{-5}}_{Z}$ $^{10^{-5}}_{10^{-5}}$	e+3.5% ‡22%h z 3.600 ± 0.006 e+3.0% t h⊼%a z 2.212 ± 0.003	$10^{-0.0\%}$ $3.579 \pm 0.013 \cdot 10^{-0.0\%}$ 10^{-4} 10^{-4} 10^{-4} 10^{-4} 10^{-4} 10^{-4} $10^{-6\%}$
e.17* j. $pp \rightarrow t\bar{t} + \bar{z}\gamma \rightarrow t\bar{t}\gamma\gamma$	₽₽->도도<	a 3.558 ± 0.008 · 10 · · · · · · · · · · · · · · · · ·	$\begin{array}{c} 1.5\% \\ 1.5\% \\ 1.7\% \\ 1.7\% \\ 1.7\% \\ 2.656 \\ 1.0012$	c.32* $pp \rightarrow ZZZ\gamma$		pp>zzza 3.945	$\begin{array}{cccc} & -3.6\% & -1. \\ \pm 0.007 \cdot 10^{-5} & +1.9\% & +2. \\ \pm 0.017 \cdot 10^{-5} & +0.0\% & +2. \\ & -0.0\% & +2. \\ & -0.3\% & -1. \end{array}$	^{1%} j.13 [*] .224 ⁺ e^- 0.0 $\bar{u}\bar{0}H$ 10 ⁻⁵ ^{6%} j.14 [*] $e^+e^- \rightarrow t\bar{t}\gamma\gamma$	$e + \frac{2.3\%}{2} \pm \frac{2.1\%}{4}a h$ 9.756 ± 0.016 $-2.7\% - \frac{1.6\%}{4}a a$ 3.650 ± 0.008	10^{-4} $+0.0\%$ 3.833 ± 0.013 10^{-4} $+0.4\%$
e.18* j. $p\bar{p} \rightarrow t\bar{t} \varphi \bar{\gamma} \rightarrow t\bar{t}ZZ$ j.16* $e^+e^- \rightarrow t\bar{t}HH$	ept p->> tt tt~ a e+ e- > t t~ h	1 959 1 0 001 10-0 70.076	$\pm 1.3\% \pm 0.40402 \pm 00.015 \stackrel{(0.5)}{_{(0.9)}} (0$							$\cdot 10^{-5} + 0.0\% - 0.0\% = 4.007 \pm 0.013 \cdot 10^{-5} + 0.0\% - 0.5\% - 0.5\% - 0.0\%$
	W^- e+e->tt \sim w		$1.540 \pm 0.006 \cdot 10^{-4} {}^{+1.6\%}_{-0.9\%}$	c.34* $pp \rightarrow Z\gamma\gamma\gamma$		pp>zaaa 4.790	$\pm 0.012 \cdot 10^{-5}$ $^{+2.3\%}_{-3.1\%}$ $^{+2.1\%}_{-1.1\%}$	6% j.17 [*] $e^+e^- \rightarrow ttW^+W^-$	$e = \frac{2.2\%}{1.372 \pm 0.003} \pm \frac{1.338 \pm 0.001}{1.372 \pm 0.003}$	$\begin{array}{cccc} 10 & -0.0\% & 1.200 \pm 0.003 \cdot 10 & -1.1\% \\ \cdot 10^{-4} & +0.0\% & 1.540 \pm 0.006 \cdot 10^{-4} & +1.0\% \\ -0.0\% & 1.540 \pm 0.006 \cdot 10^{-4} & -0.9\% \end{array}$
				c.35* $pp \rightarrow \gamma \gamma \gamma \gamma$	I	p>aaaa 1.594	$\pm 0.004 \cdot 10^{-5}$ $^{+4.7\%}_{-5.7\%}$ $^{+1.1}_{-1.7\%}$	7% 3.389 ± 0.012 · 10 ⁻⁶	-6.7% -1.3%	

The flavor of the Higgs, 23-26 June 2014, WIS, Israel

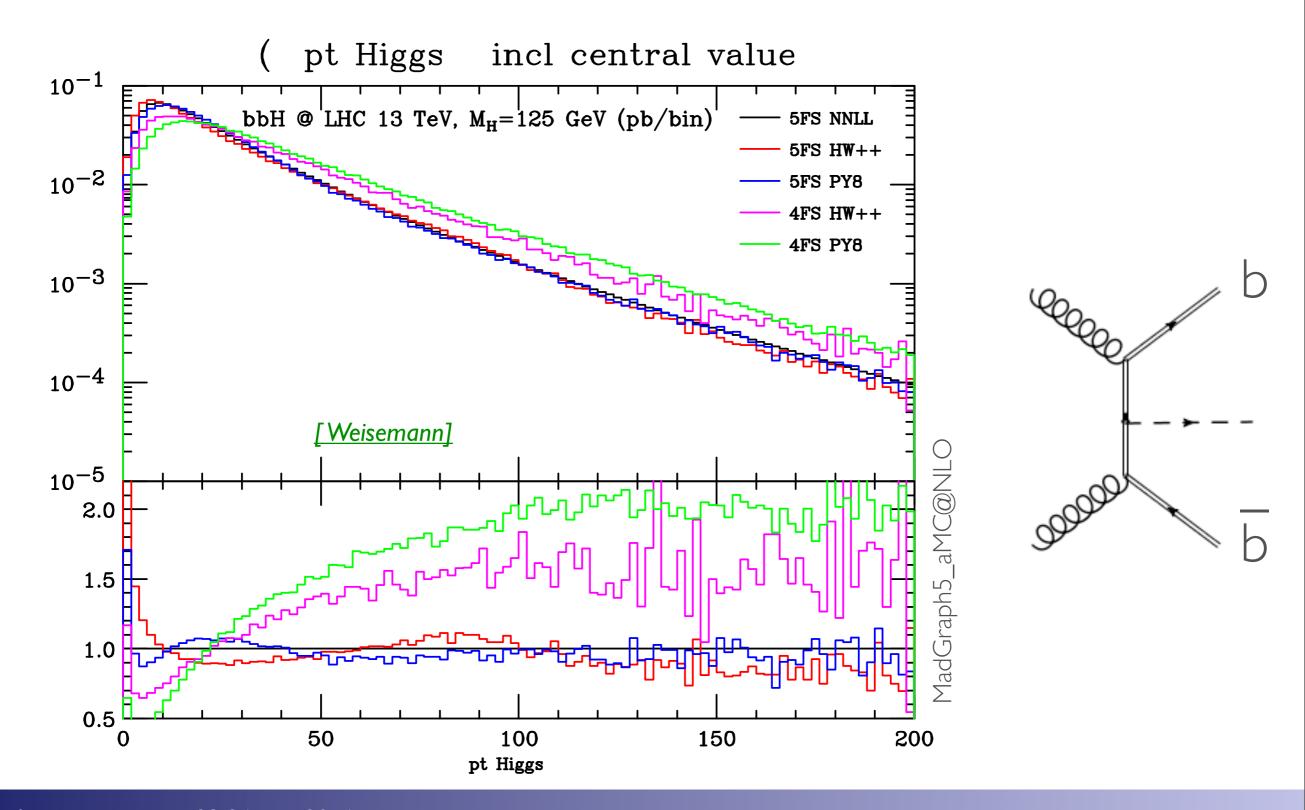


AUTOMATIC NLO IN SM (2014)

P	rocess	Syntax	Cross section (pb)				
Single	Higgs production		LO 13 TeV	NLO 13 TeV			
g.1 g.2 g.3	$pp \rightarrow H (\text{HEFT})$ $pp \rightarrow Hj (\text{HEFT})$ $pp \rightarrow Hjj (\text{HEFT})$	p p > h p p > h j p p > h j j	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$			
g.4 g.5	$pp \rightarrow Hjj$ (VBF) $pp \rightarrow Hjjj$ (VBF)	pp>hjj\$\$ w+ w- z pp>hjjj\$\$ w+ w- z	$\begin{array}{cccc} 1.987 \pm 0.002 \cdot 10^{0} & {}^{+1.7\%}_{-2.0\%} {}^{-1.4\%}_{-12.7\%} \\ 2.824 \pm 0.005 \cdot 10^{-1} & {}^{+15.7\%}_{-12.7\%} {}^{-1.0\%}_{-1.0\%} \end{array}$	$\begin{array}{cccc} 1.900 \pm 0.006 \cdot 10^{0} & {}^{+0.8\%}_{-0.9\%} {}^{+2.0\%}_{-1.5\%} \\ 3.085 \pm 0.010 \cdot 10^{-1} & {}^{+2.0\%}_{-3.0\%} {}^{+1.5\%}_{-1.1\%} \end{array}$			
g.6 g.7 g.8*	$pp \rightarrow HW^{\pm}$ $pp \rightarrow HW^{\pm} j$ $pp \rightarrow HW^{\pm} jj$	pp>hwpm pp>hwpmj pp>hwpmjj	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrr} 1.419 \pm 0.005 \cdot 10^{0} & {}^{+ 2.1 \% }_{- 2.6 \% } {}^{+ 1.9 \% }_{- 2.6 \% }_{- 1.4 \% }\\ 4.842 \pm 0.017 \cdot 10^{-1} & {}^{+ 3.6 \% }_{- 3.7 \% } {}^{- 1.0 \% }_{- 1.0 \% }\\ 1.574 \pm 0.014 \cdot 10^{-1} & {}^{+ 5.0 \% }_{- 6.5 \% } {}^{+ 0.9 \% }_{- 0.6 \% }\end{array}$			
g.9 g.10 g.11*	$pp \rightarrow HZ$ $pp \rightarrow HZ j$ $pp \rightarrow HZ jj$	pp>hz pp>hzj pp>hzjj	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$			
g.12* g.13* g.14* g.15*	$pp \rightarrow HZ JJ$ $pp \rightarrow HW^+W^-$ (4f) $pp \rightarrow HW^{\pm}\gamma$ $pp \rightarrow HZW^{\pm}$ $pp \rightarrow HZZ$	p p > h w + w - p p > h w pm a p p > h z w pm p p > h z z	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
g.16 g.17 g.18	$pp \rightarrow Ht\bar{t}$ $pp \rightarrow Htj$ $pp \rightarrow Hb\bar{b}$ (4f)	p	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$			
g.19 g.20*	$pp \rightarrow Ht\bar{t}j$ $pp \rightarrow Hb\bar{b}j$ (4f)	pp>htt∼j pp>hbb∼j	$\begin{array}{cccc} 2.674 \pm 0.041 \cdot 10^{-1} & {}^{+45.6\%} & {}^{+2.6\%} \\ -29.2\% & {}^{-2.9\%} \\ 7.367 \pm 0.002 \cdot 10^{-2} & {}^{+45.6\%} & {}^{+1.8\%} \\ -29.1\% & {}^{-2.1\%} \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$			

The flavor of the Higgs, 23-26 June 2014, WIS, Israel

AUTOMATIC SINGLE HIGGS PRODUCTION



The flavor of the Higgs, 23-26 June 2014, WIS, Israel

Tuesday 24 June 2014

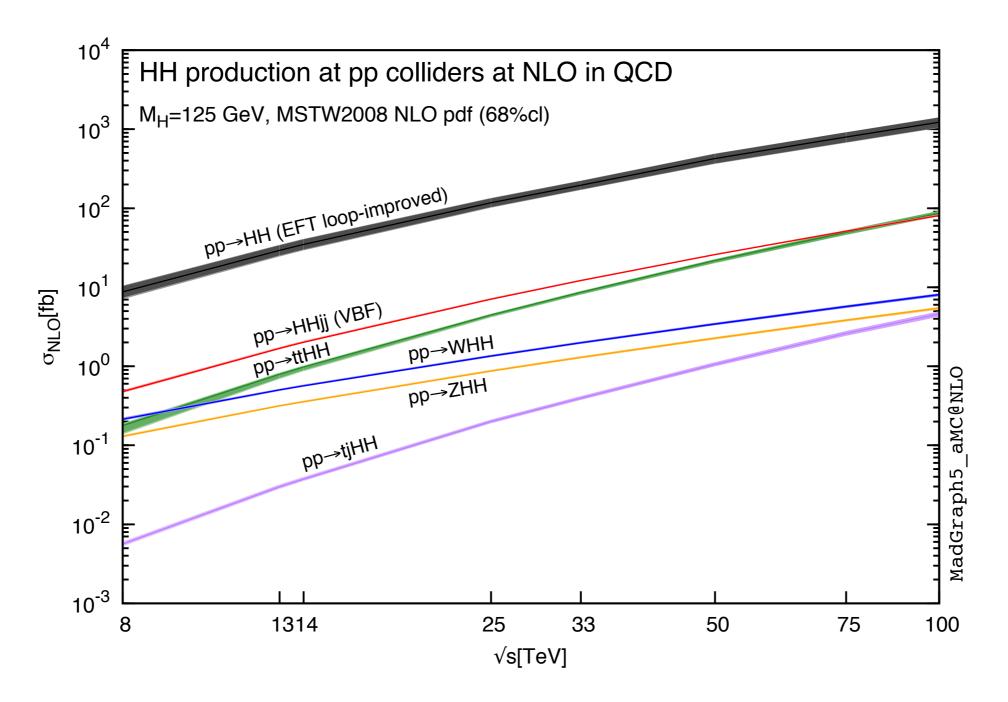
UCL Université catholique de Louvain

AUTOMATIC SINGLE HIGGS PRODUCTION

The flavor of the Higgs, 23-26 June 2014, WIS, Israel

Tuesday 24 June 2014

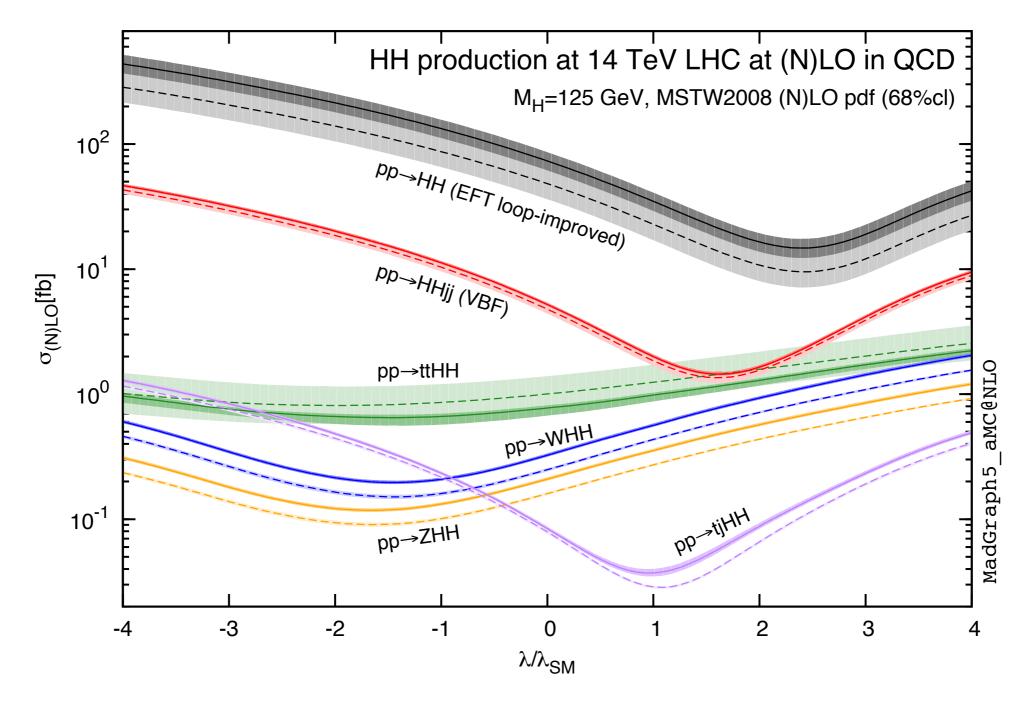
UCL Université catholique de Louvain


AUTOMATIC NLO IN SM (2014)

Process Syntax			Cross section (pb)				
Multip	ple Higgs production		LO 13 Te	eV	NLO 13 TeV		
h.1	$pp \rightarrow HH$ (Loop improved)	pp>hh	$1.772 \pm 0.006 \cdot 10^{-2}$	+29.5% +2.1% -21.4% -2.6%	$2.763 \pm 0.008 \cdot 10^{-2}$	+11.4% +2.1% -11.8% -2.6%	
h.2	$pp \rightarrow HHjj$ (VBF)	pp>hhjj\$\$ w+ w- z	$6.503 \pm 0.019 \cdot 10^{-4}$	$^{-21.4\%}_{+7.2\%}$ $^{-2.6\%}_{+2.3\%}_{-6.4\%}$ $^{-1.6\%}_{-1.6\%}$	$6.820 \pm 0.026 \cdot 10^{-4}$	$^{-11.8\%}_{+0.8\%}$ $^{-2.6\%}_{+2.4\%}_{-1.0\%}$ $^{-1.7\%}_{-1.7\%}$	
h.3	$pp \rightarrow HHW^{\pm}$	pp>hhwpm	$4.303 \pm 0.005 \cdot 10^{-4}$	+0.9% +2.0% -1.3% -1.5%	$5.002 \pm 0.014 \cdot 10^{-4}$	$^{+1.5\%}_{-1.2\%}$ $^{+2.0\%}_{-1.6\%}$	
$h.4^*$	$pp \rightarrow HHW^{\pm}j$	pp>hhwpmj	$1.922 \pm 0.002 \cdot 10^{-4}$	+14.2% +1.5% -11.7% -1.1%	$2.218 \pm 0.009 \cdot 10^{-4}$	$^{+2.7\%}_{-3.3\%}$ $^{+1.6\%}_{-1.1\%}$	
$h.5^*$	$pp \rightarrow HHW^{\pm}\gamma$	pp>hhwpma	$1.952 \pm 0.004 \cdot 10^{-6}$	+3.0% +2.2% -3.0% -1.6%	$2.347 \pm 0.007 \cdot 10^{-6}$	+2.4% +2.1% -2.0% -1.6%	
$h.6^*$	$pp \rightarrow HHHW^{\pm}$	pp>hhhwpm	$3.989 \pm 0.009 \cdot 10^{-7}$	+3.9% +2.2% -3.8% -1.7%	$4.590 \pm 0.012 \cdot 10^{-7}$	$^{+1.8\%}_{-1.7\%}$ $^{+2.2\%}_{-1.7\%}$	
h.7	$pp \rightarrow HHZ$	pp>hhz	$2.701 \pm 0.007 \cdot 10^{-4}$	+0.9% +2.0% -1.3% -1.5%	$3.130 \pm 0.008 \cdot 10^{-4}$	$^{+1.6\%}_{-1.2\%}$ $^{+2.0\%}_{-1.5\%}$	
$h.8^*$	$pp \rightarrow HHZj$	pp>hhzj	$1.211 \pm 0.001 \cdot 10^{-4}$	$^{+14.1\%}_{-11.7\%}$ $^{+1.4\%}_{-1.1\%}$ $^{+2.4\%}_{+2.2\%}$	$1.394 \pm 0.006 \cdot 10^{-4}$	+2.7% +1.5% -3.2% -1.1%	
$h.9^*$	$pp \rightarrow HHZ\gamma$	pp>hhza	$1.397 \pm 0.003 \cdot 10^{-6}$	-2.5% $-1.7%$	$1.604 \pm 0.005 \cdot 10^{-6}$	+1.7% +2.3% -1.4% -1.7%	
h.10*	$pp \rightarrow HHHZ$	pp>hhhz	$2.735 \pm 0.006 \cdot 10^{-7}$	+3.9% +2.2% -3.7% -1.7% +3.9% +2.2%	$3.154 \pm 0.007 \cdot 10^{-7}$	+1.7% +2.2% -1.6% -1.7%	
h.11*	$pp \rightarrow HHZZ$	p p > h h z z	$2.309 \pm 0.005 \cdot 10^{-6}$	-3.8% $-1.7%$	$2.754 \pm 0.009 \cdot 10^{-6}$	+2.3% +2.3% -2.0% -1.7%	
h.12*	$pp \rightarrow HHZW^{\pm}$	pp>hhzwpm	$3.708 \pm 0.013 \cdot 10^{-6}$	$^{+4.8\%}_{-4.5\%}$ $^{+2.3\%}_{-1.7\%}$ $^{+3.5\%}_{+2.3\%}$	$4.904 \pm 0.029 \cdot 10^{-6}$	+3.7% +2.2% -3.2% -1.6%	
$h.13^{*}$	$pp \rightarrow HHW^+W^-$ (4f)	p p > h h w+ w-	$7.524 \pm 0.070 \cdot 10^{-6}$	-3.4% $-1.7%$	$9.268 \pm 0.030 \cdot 10^{-6}$	+2.3% +2.3% -2.1% -1.7%	
h.14	$pp \rightarrow HHt\bar{t}$	p p > h h t t~	$6.756 \pm 0.007 \cdot 10^{-4}$	$^{+30.2\%}_{-21.6\%}$ $^{-1.8\%}_{+0.0\%}$ $^{+1.8\%}_{+1.8\%}$	$7.301 \pm 0.024 \cdot 10^{-4}$	$^{+1.4\%}_{-5.7\%}$ $^{+2.2\%}_{-2.3\%}_{+4.5\%}$ $^{+2.8\%}_{+2.8\%}$	
h.15	$pp \rightarrow HHtj$	pp>hhtt j	$1.844 \pm 0.008 \cdot 10^{-5}$	+0.0% +1.8% -0.6% -1.8%	$2.444 \pm 0.009 \cdot 10^{-5}$	+4.5% +2.8% -3.1% -3.0%	

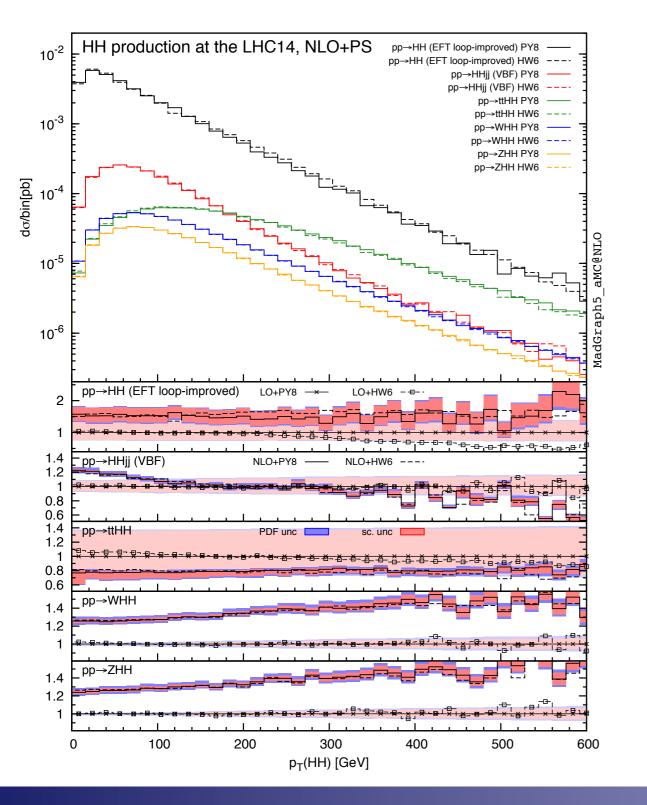
All channels here are possible at the NLO+PS for the first time.

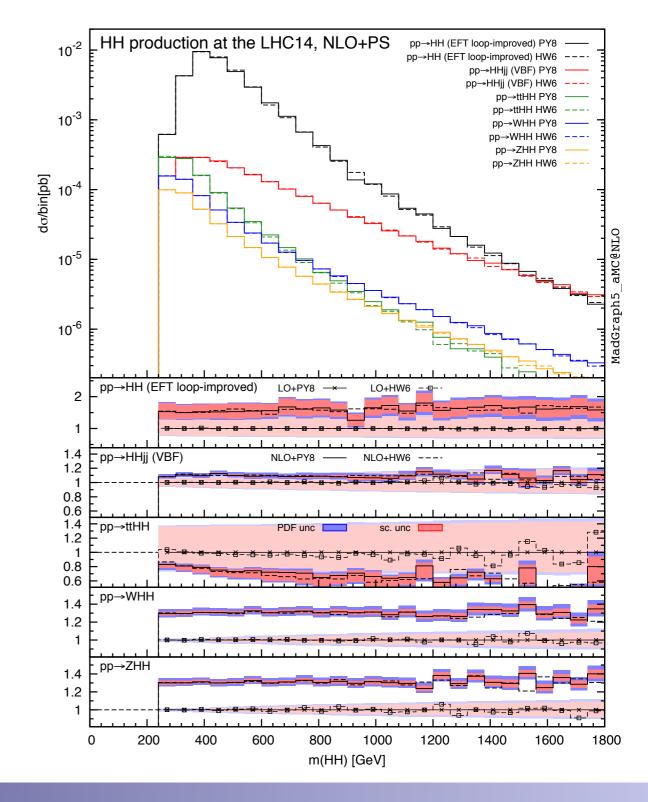
The flavor of the Higgs, 23-26 June 2014, WIS, Israel


HH PRODUCTION AT PP COLLIDERS

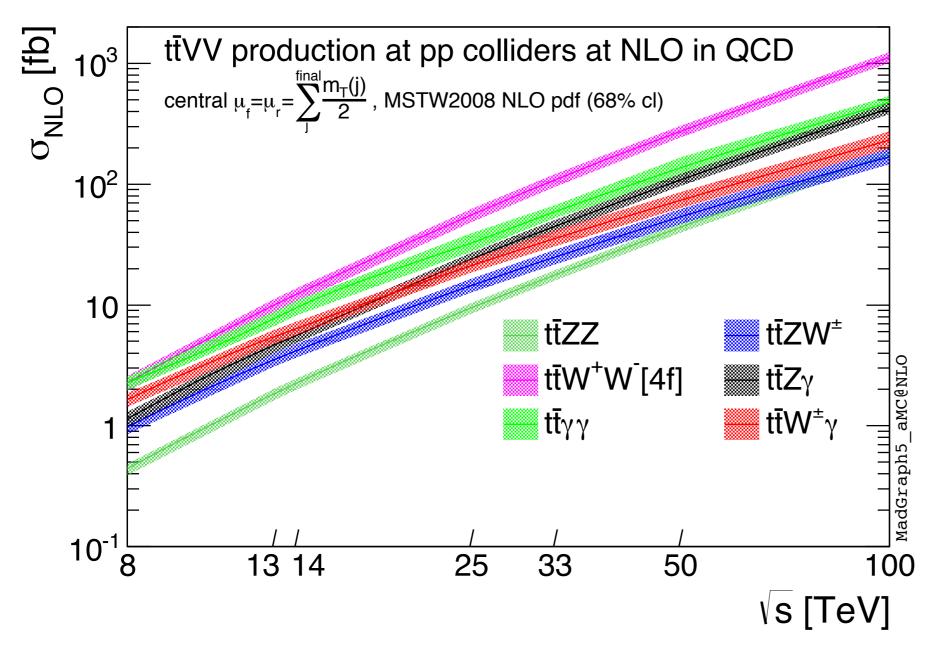
Total cross sections at NLO for the most relevant HH production channels

HH PRODUCTION AT PP COLLIDERS



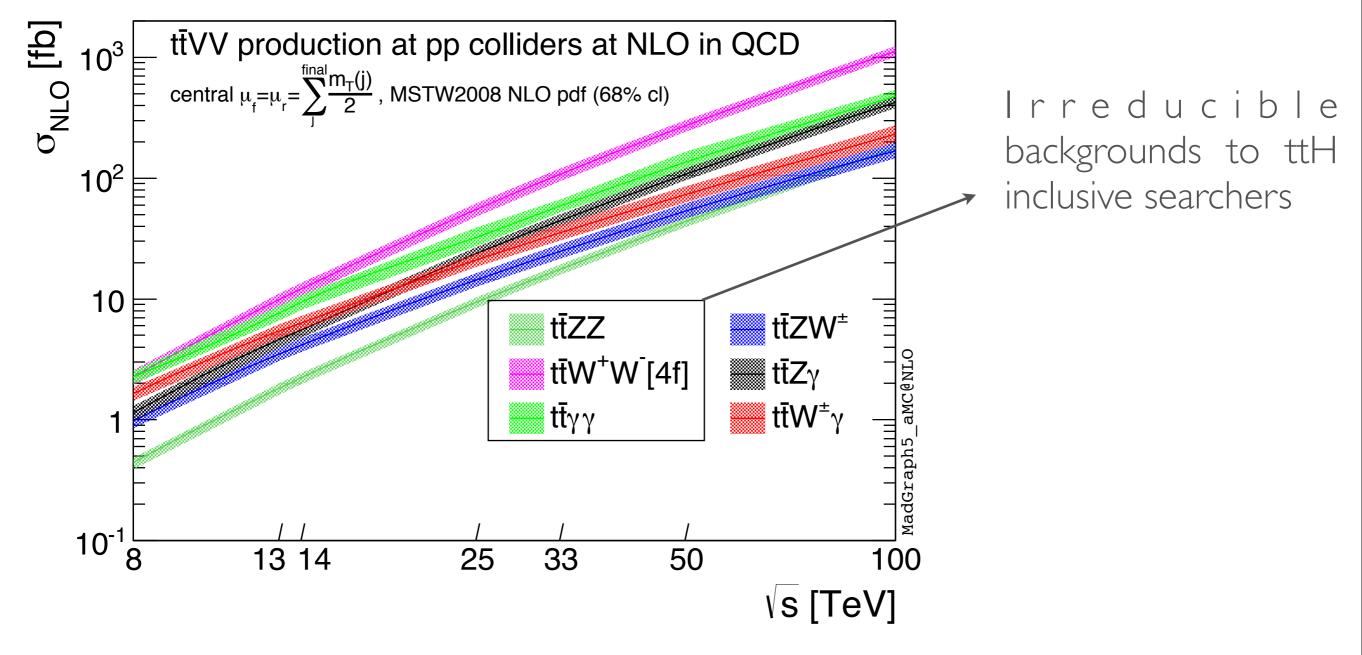

Trilinear coupling sensitivity

[Frederix et al. 1401.7340]


HH PRODUCTION AT PP COLLIDERS

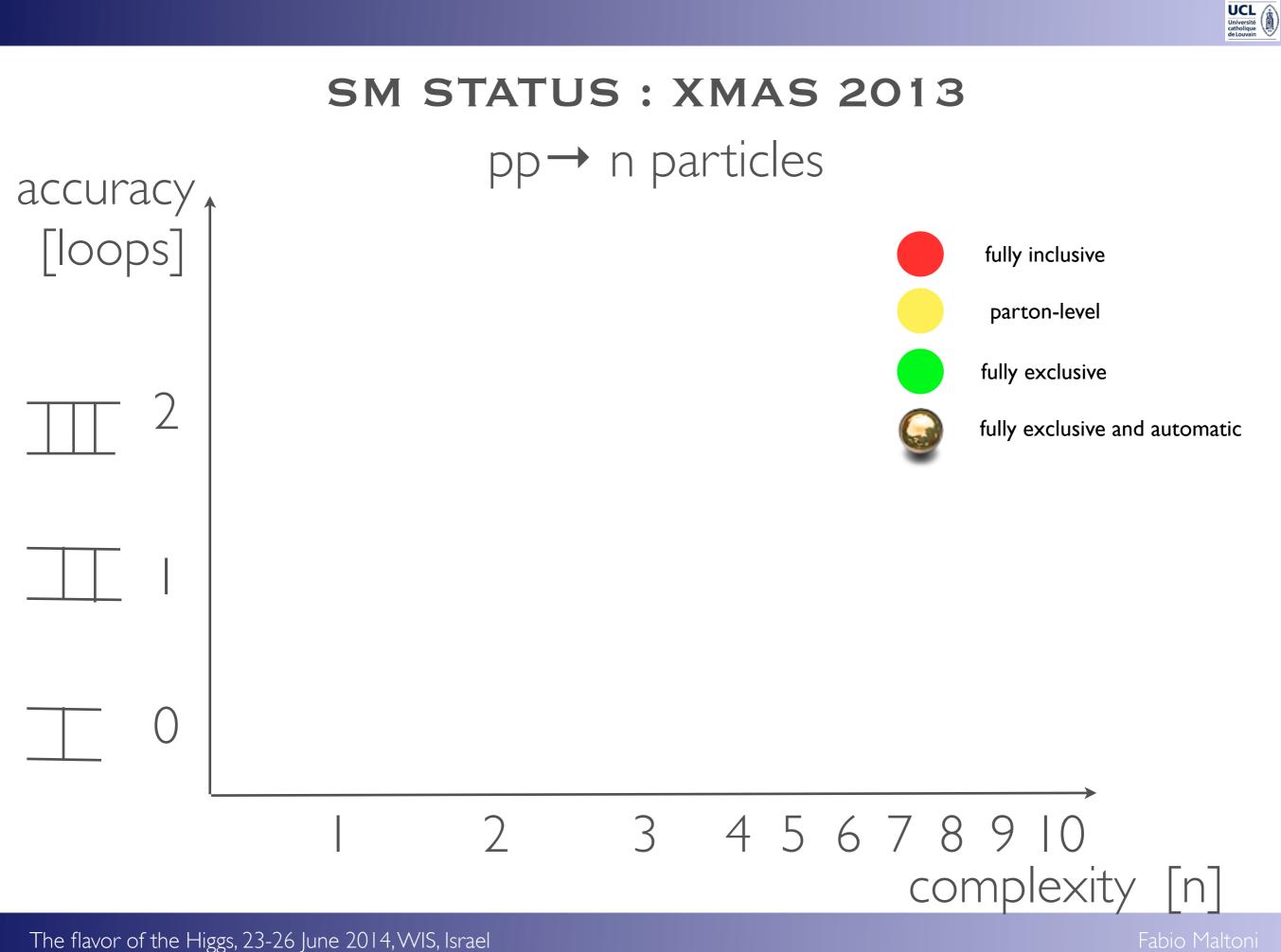
The flavor of the Higgs, 23-26 June 2014, WIS, Israel

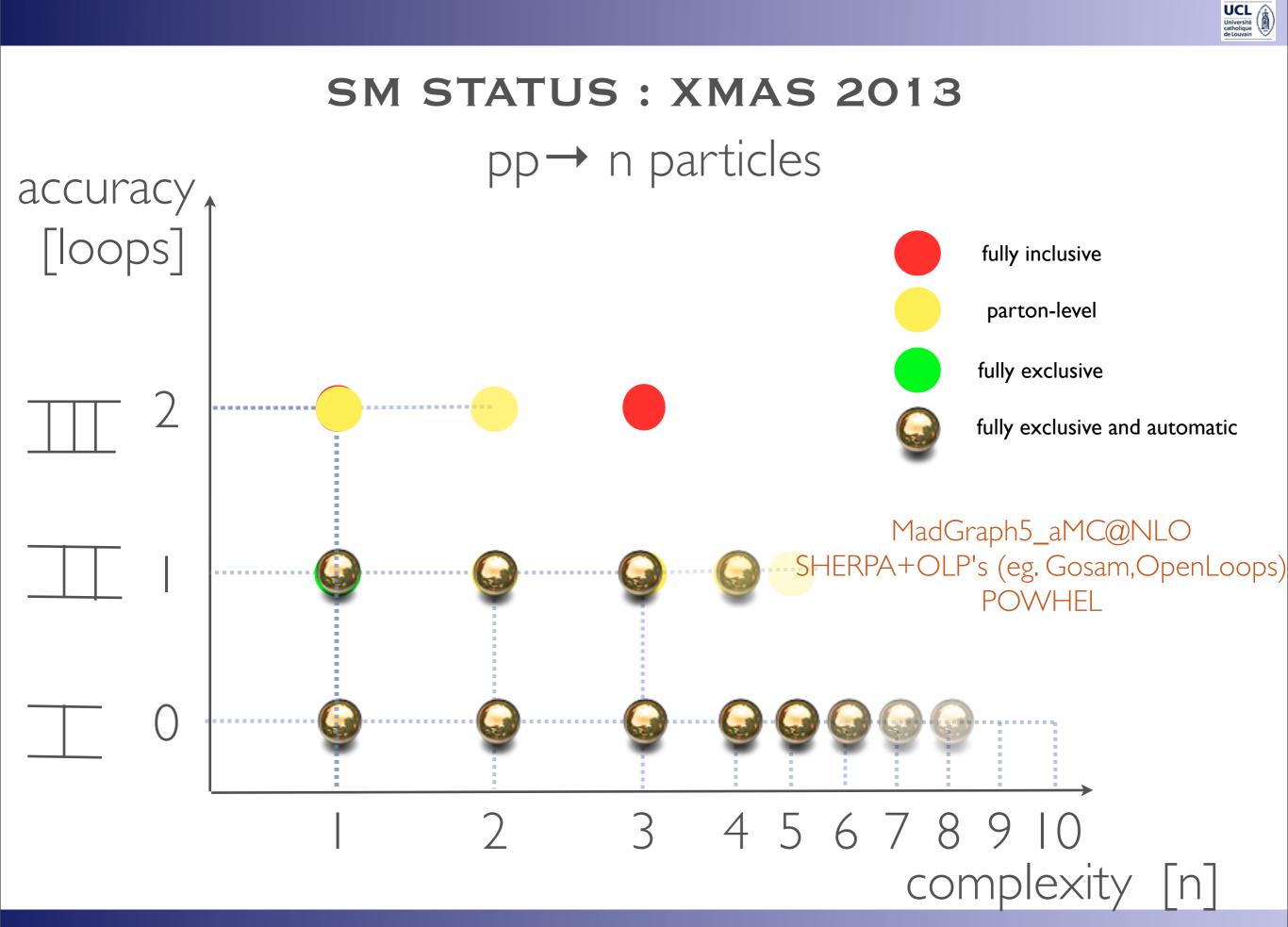
TTVV PRODUCTION AT PP COLLIDERS



[Tsinikos and Pagani, in progress]

The flavor of the Higgs, 23-26 June 2014, WIS, Israel



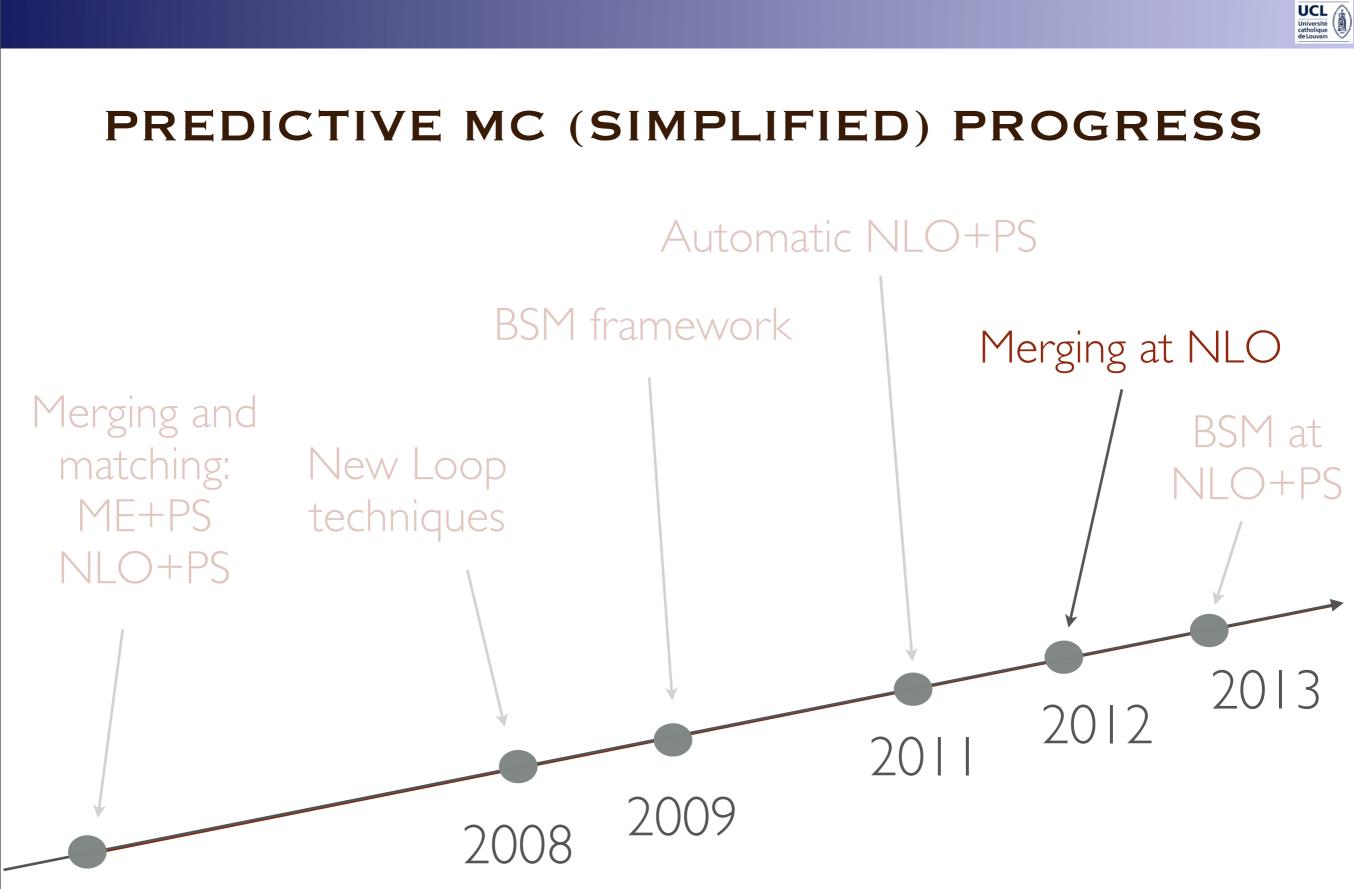

TTVV PRODUCTION AT PP COLLIDERS

[Tsinikos and Pagani, in progress]

The flavor of the Higgs, 23-26 June 2014, WIS, Israel

Tuesday 24 June 2014

Fabio Maltoni


BOTTOM LINE

NNLO and NLO+PS stay to the LHC era

as

NLO and LO+PS stayed to the Tevatron era

The flavor of the Higgs, 23-26 June 2014, WIS, Israel

2002

The flavor of the Higgs, 23-26 June 2014, WIS, Israel

The problem consists in merging samples for S+0j, S+1j, S+2j, S+...j computed at NLO consistently without double counting (where S can be a Higgs, a ttbar pair, a W-boson, etc.)

Sherpa approach: Hoeche et al., 1207.5031

CKKW-L approach: Lavesson, Lonnblad, 0811.2912, Lonnblad, Prestel, 1211.4827-7278

Geneva approach : Alioli et al. 1212.4504 and see also 1311.0286 (with NNLO proposal)

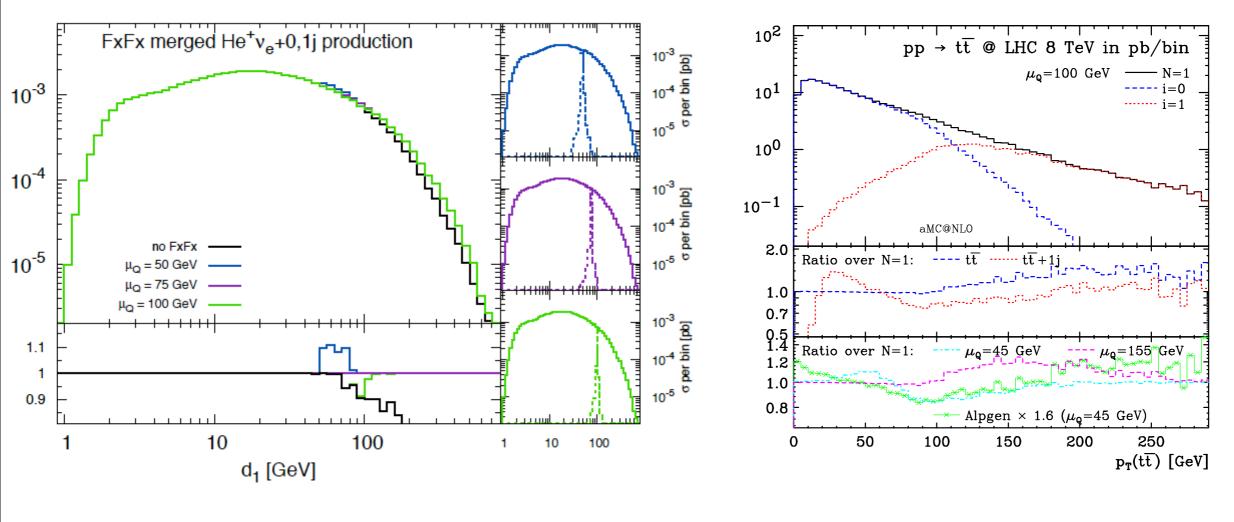
FxFx approach (with MC@NLO) : Frederix and Frixione 1209.6215

The problem consists in merging samples for S+0j, S+1j, S+2j, S+...j computed at NLO consistently without double counting (where S can be a Higgs, a ttbar pair, a W-boson, etc.)

Sherpa approach: Hoeche et al., 1207.5031

CKKW-L approach: Lavesson, Lonnblad, 0811.2912, Lonnblad, Prestel, 1211.4827-7278

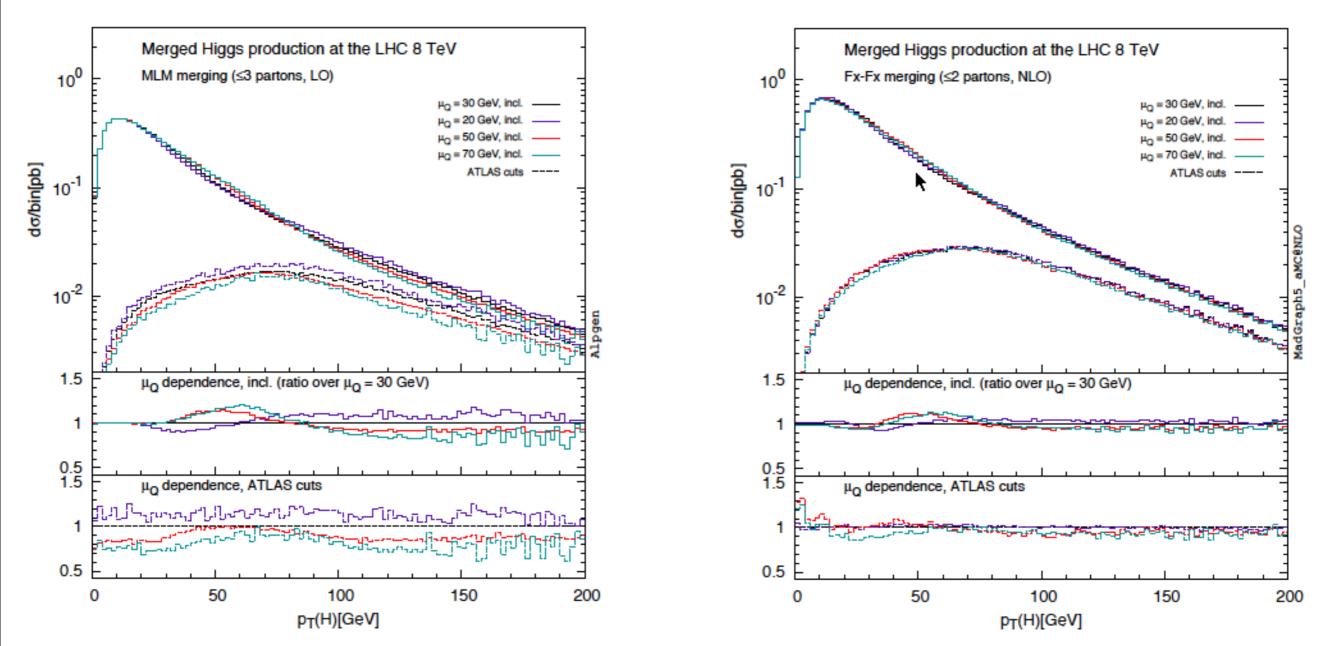
Geneva approach : Alioli et al. 1212.4504 and see also 1311.0286 (with NNLO proposal)


FxFx approach (with MC@NLO) : Frederix and Frixione 1209.6215

The wave function of the merging at NLO effort has collapsed in 2012

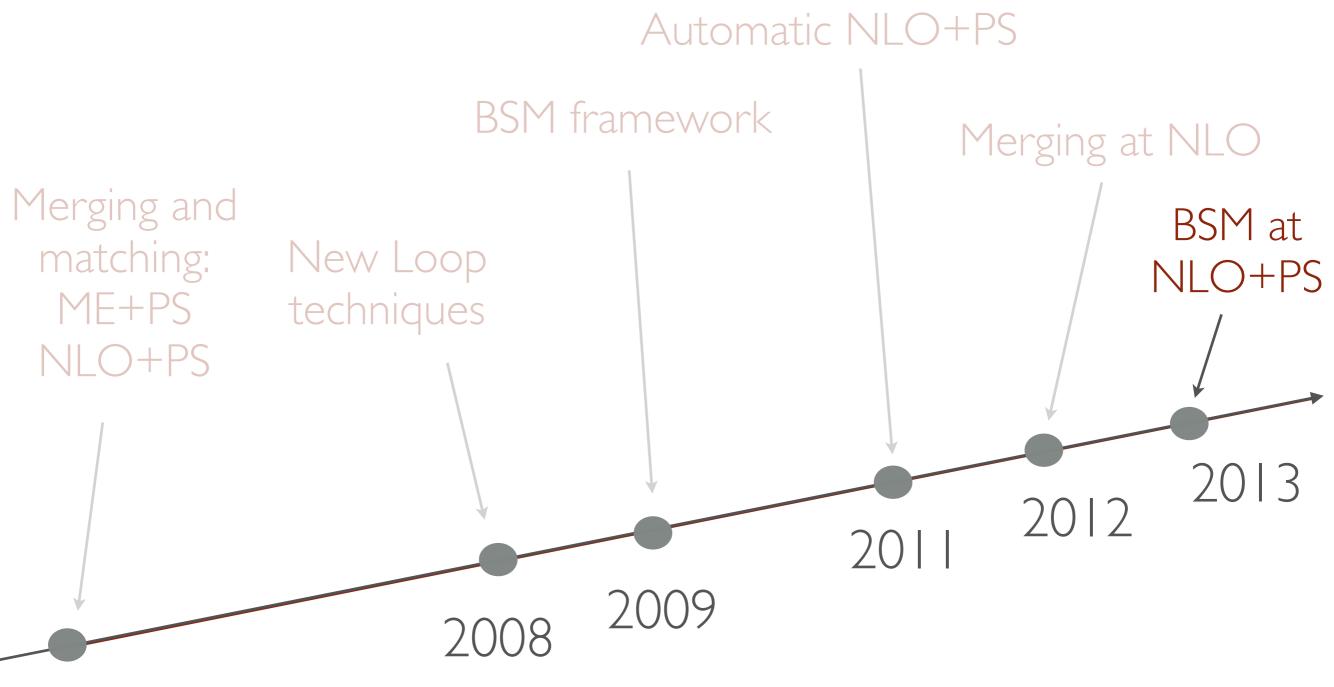
The flavor of the Higgs, 23-26 June 2014, WIS, Israel

[Frederix, Frixione, 1209.6215]



- Differential jet rates
- Matching up to I extra jet at NLO

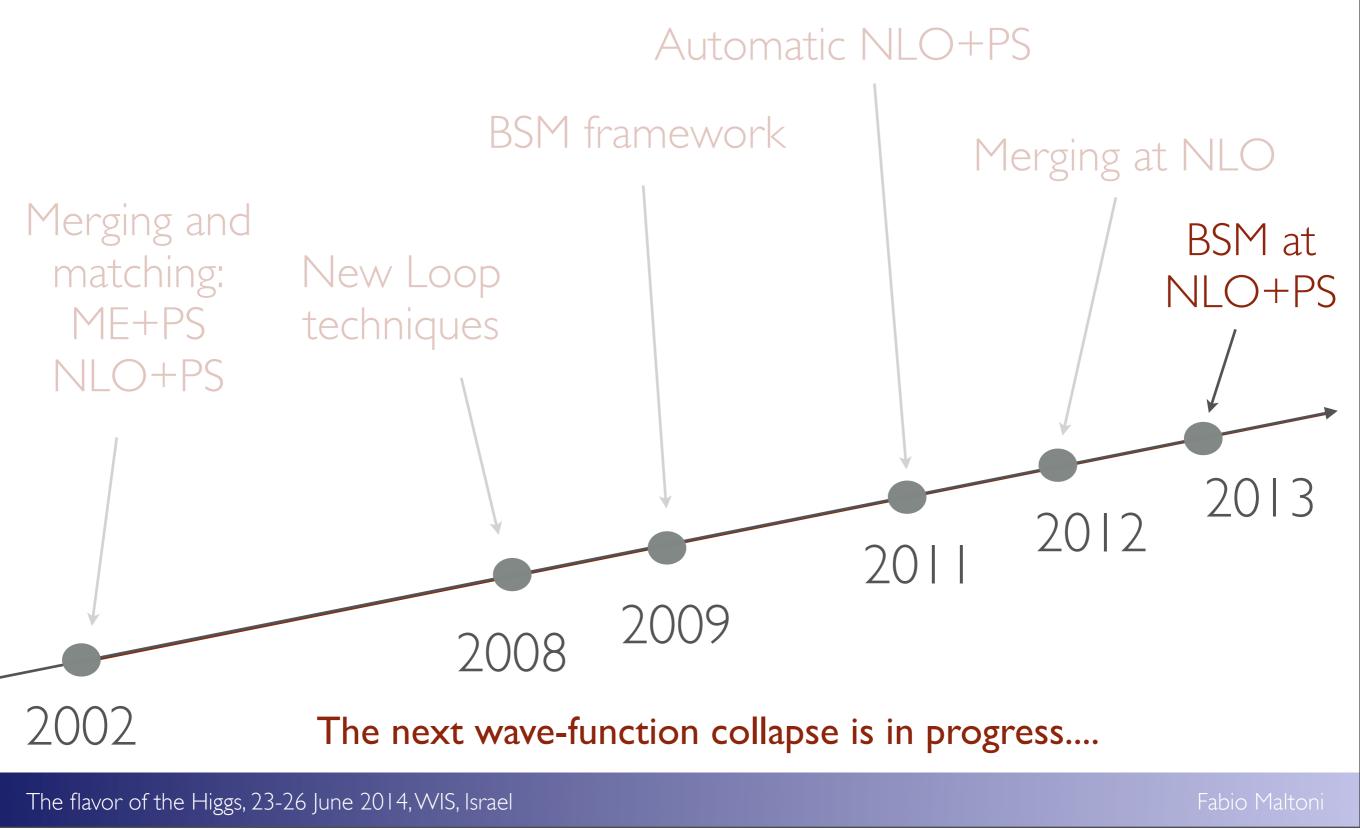
- Differential jet rates
- Matching up to I extra jet at NLO



comparison LO (Alpgen) vs NLO merging (MadGraph5_aMC@NLO)

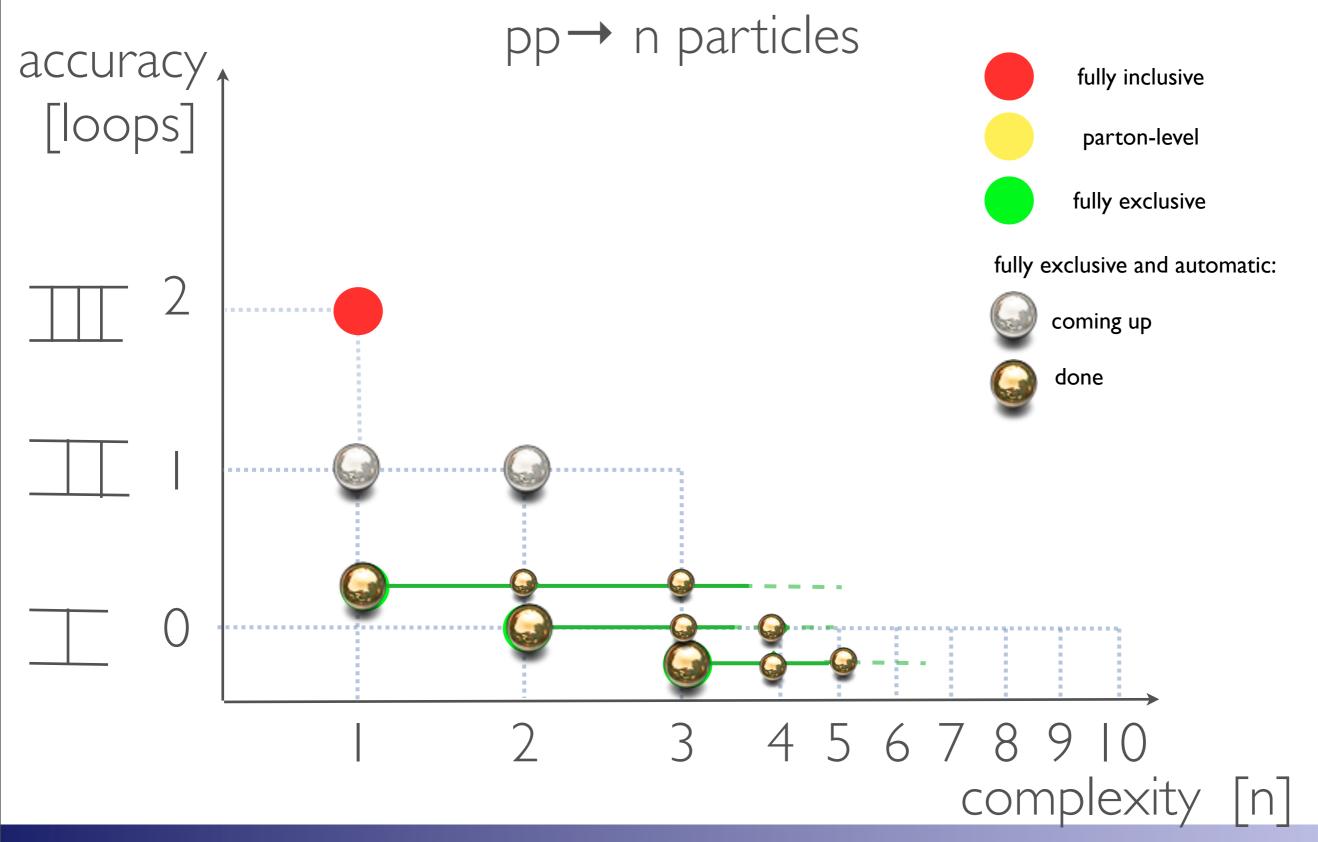
The flavor of the Higgs, 23-26 June 2014, WIS, Israel

PREDICTIVE MC (SIMPLIFIED) PROGRESS



2002

The flavor of the Higgs, 23-26 June 2014, WIS, Israel



PREDICTIVE MC (SIMPLIFIED) PROGRESS

BSM STATUS AND OUTLOOK

The flavor of the Higgs, 23-26 June 2014, WIS, Israel

BSM STATUS AND OUTLOOK

- Loops
 - UV (and R2) counterterms need to be calculated for each model once for all. This can now be achieved automatically by FeynRules+FeynArts+NLOCT . [Degrande 2014]
- Real corrections/matching/merging
 - Automatic resonant diagram subtraction (in progress)

2HDM available! SUSY being validated...

The flavor of the Higgs, 23-26 June 2014, WIS, Israel

TOP-HIGGS EFT

Very few operators of dim-6 in top physics:

operator	process		
$O_{\phi q}^{(3)} = i(\phi^+ \tau^I D_\mu \phi)(\bar{q}\gamma^\mu \tau^I q)$	top decay, single top		
$O_{tW} = (\bar{q}\sigma^{\mu\nu}\tau^I t)\tilde{\phi}W^I_{\mu\nu}$ (with real coefficient)	top decay, single top		
$O_{qq}^{(1,3)} = (\bar{q}^i \gamma_\mu \tau^I q^j) (\bar{q} \gamma^\mu \tau^I q)$	single top	CP-even	
$O_{tG} = (\bar{q}\sigma^{\mu\nu}\lambda^A t)\tilde{\phi}G^A_{\mu\nu}$ (with real coefficient)	single top, $q\bar{q}, gg \to t\bar{t}$		
$O_G = f_{ABC} G^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$	$gg \to t\bar{t}$		
$O_{\phi G} = \frac{1}{2} (\phi^+ \phi) G^A_{\mu\nu} G^{A\mu\nu}$	$gg \to t\bar{t}$		
7 four-quark operators	$q\bar{q} \rightarrow t\bar{t}$		

[Willenbrock and Zhan	g 2011	I, Aguilar-Saavedra	2011, Degrande et	al. 2011]

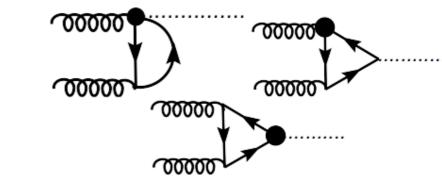
operator	process	
$O_{tW} = (\bar{q}\sigma^{\mu\nu}\tau^I t)\tilde{\phi}W^I_{\mu\nu}$ (with imaginary coefficient)	top decay, single top	
$O_{tG} = (\bar{q}\sigma^{\mu\nu}\lambda^A t)\tilde{\phi}G^A_{\mu\nu}$ (with imaginary coefficient)	single top, $q\bar{q}, gg \to t\bar{t}$	(
$O_{\tilde{G}} = f_{ABC} \tilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$	$gg \to t\bar{t}$	
$O_{\phi\tilde{G}} = \frac{1}{2}(\phi^+\phi)\tilde{G}^A_{\mu\nu}G^{A\mu\nu}$	$gg \to t\bar{t}$	

CP-odd

UCL Université catholique de Louvain

The flavor of the Higgs, 23-26 June 2014, WIS, Israel

TOP-HIGGS : FLAVOR CONSERVING


Consider, for example, the following top-Higgs interactions:

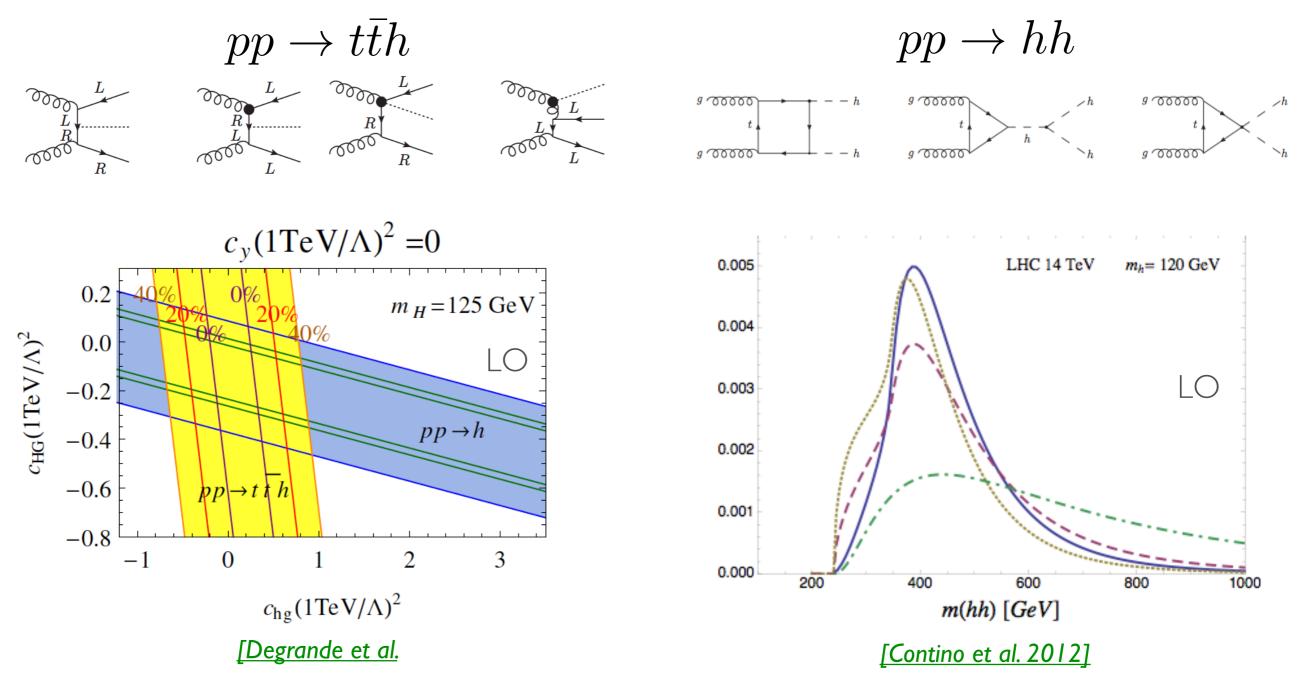
 $\mathcal{O}_{hg} = \left(\bar{Q}_L \sigma^{\mu\nu} T^a t_R\right) \tilde{\phi} G^a_{\mu\nu},$ $\mathcal{O}_{t\phi} = \left(\phi^{\dagger} \phi\right) \left(\bar{Q}_L t_R\right) \tilde{\phi}$ $\mathcal{O}_{G\phi} = \frac{1}{2} \left(\phi^{\dagger} \phi\right) G^a_{\mu\nu} G^{\mu\nu}_a$

At NLO in QCD the first two operators mix: γ

$$\gamma = rac{2lpha_s}{\pi} \left(egin{array}{cc} rac{1}{6} & 0 \ -2 & -1 \end{array}
ight)$$

In addition, the third operator receives contributions from the first two at one loop:

A meaningful analysis can only be made by considering them all!

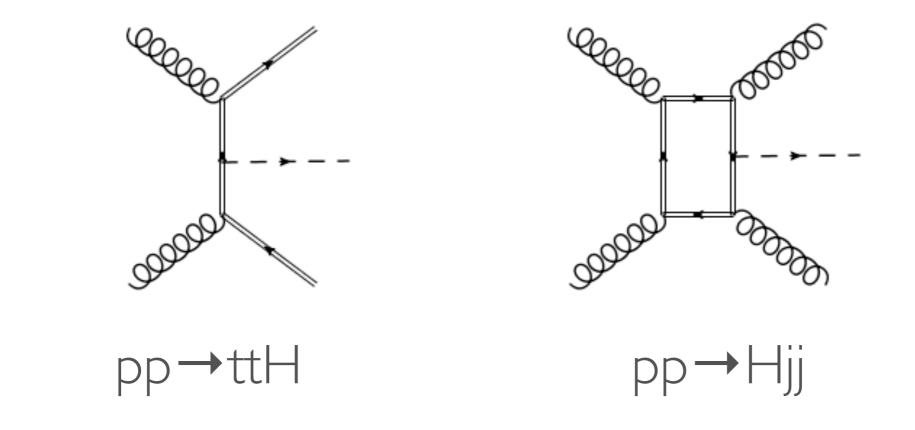

The flavor of the Higgs, 23-26 June 2014, WIS, Israel

Tuesday 24 June 2014

Université

TOP-HIGGS : FLAVOR CONSERVING

Still LO analyses .. to be upgraded to NLO

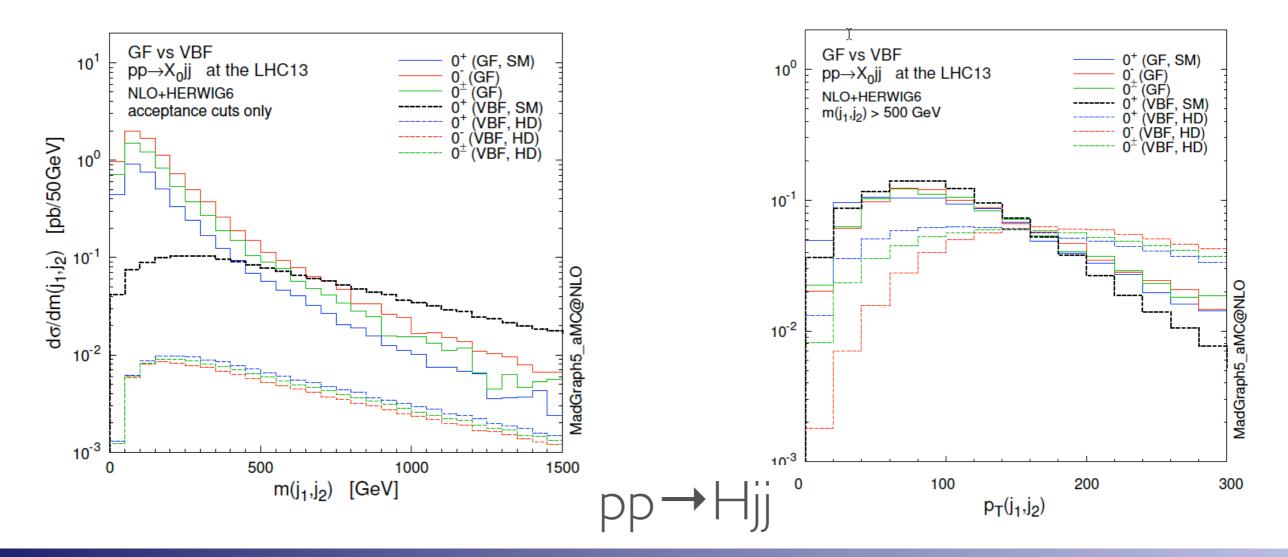

The flavor of the Higgs, 23-26 June 2014, WIS, Israel

[Demartin et al., in preparation]

 $\mathcal{L}_0^t = -\bar{\psi}_t \big(c_\alpha \kappa_{Htt} g_{Htt} + i s_\alpha \kappa_{Att} g_{Att} \gamma_5 \big) \psi_t X_0$

Two ways of directly accessing presence of CP-mixing in top-Higgs interactions at the LHC:

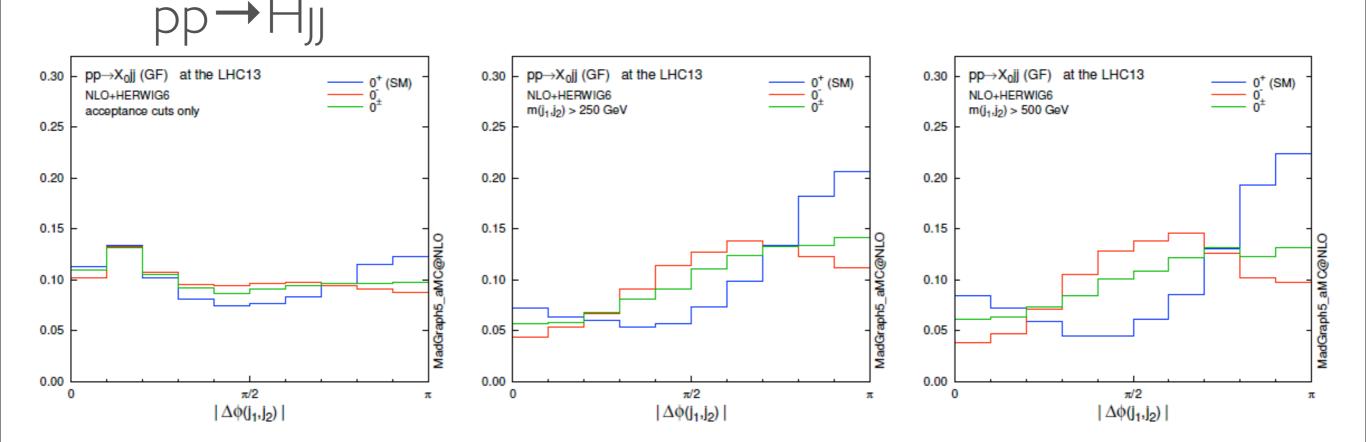
Both possible at NLO+PS, (Hjj in the HEFT)


The flavor of the Higgs, 23-26 June 2014, WIS, Israel

[Demartin et al., in preparation]

$$\mathcal{L}_0^t = -\bar{\psi}_t \big(c_\alpha \kappa_{Htt} g_{Htt} + i s_\alpha \kappa_{Att} g_{Att} \gamma_5 \big) \psi_t X_0$$

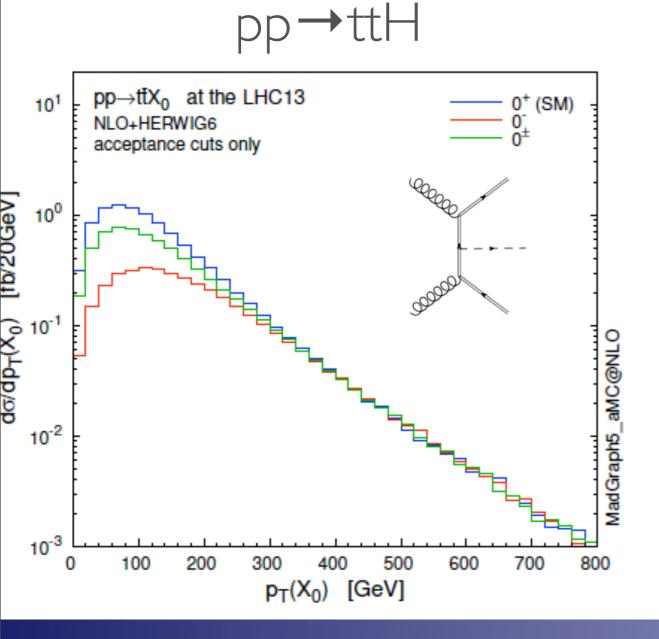
$$\mathcal{L}_0^{\text{loop}} = -\frac{1}{4} \left[c_\alpha \kappa_{Hgg} g_{Hgg} G^a_{\mu\nu} G^{a,\mu\nu} + s_\alpha \kappa_{Agg} g_{Agg} G^a_{\mu\nu} \widetilde{G}^{a,\mu\nu} \right] X_0$$


The flavor of the Higgs, 23-26 June 2014, WIS, Israel

[Demartin et al., in preparation]

 $\mathcal{L}_0^t = -\bar{\psi}_t (c_\alpha \kappa_{Htt} g_{Htt} + i s_\alpha \kappa_{Att} g_{Att} \gamma_5) \psi_t X_0$

 $\mathcal{L}_0^{\text{loop}} = -\frac{1}{4} \left[c_\alpha \kappa_{Hgg} g_{Hgg} G^a_{\mu\nu} G^{a,\mu\nu} + s_\alpha \kappa_{Agg} g_{Agg} G^a_{\mu\nu} \widetilde{G}^{a,\mu\nu} \right] X_0$


Delta(phi) among the jets is a sensitive variable as mjj increases.

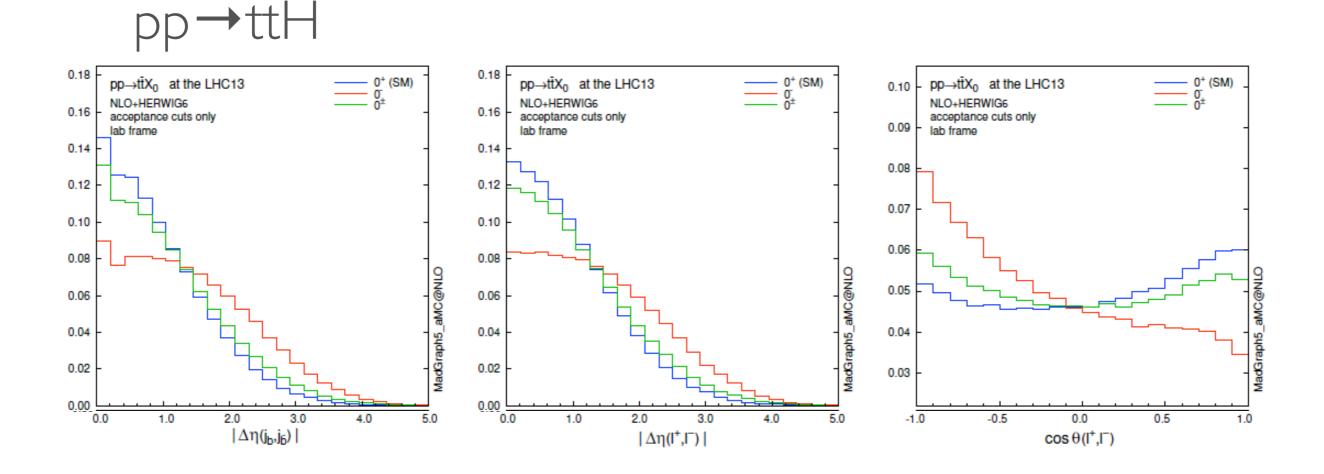
The flavor of the Higgs, 23-26 June 2014, WIS, Israel

[Demartin et al., in preparation]

$$\mathcal{L}_0^t = -\bar{\psi}_t \big(c_\alpha \kappa_{Htt} g_{Htt} + i s_\alpha \kappa_{Att} g_{Att} \gamma_5 \big) \psi_t X_0$$

At LO the two contributions add up incoherently.

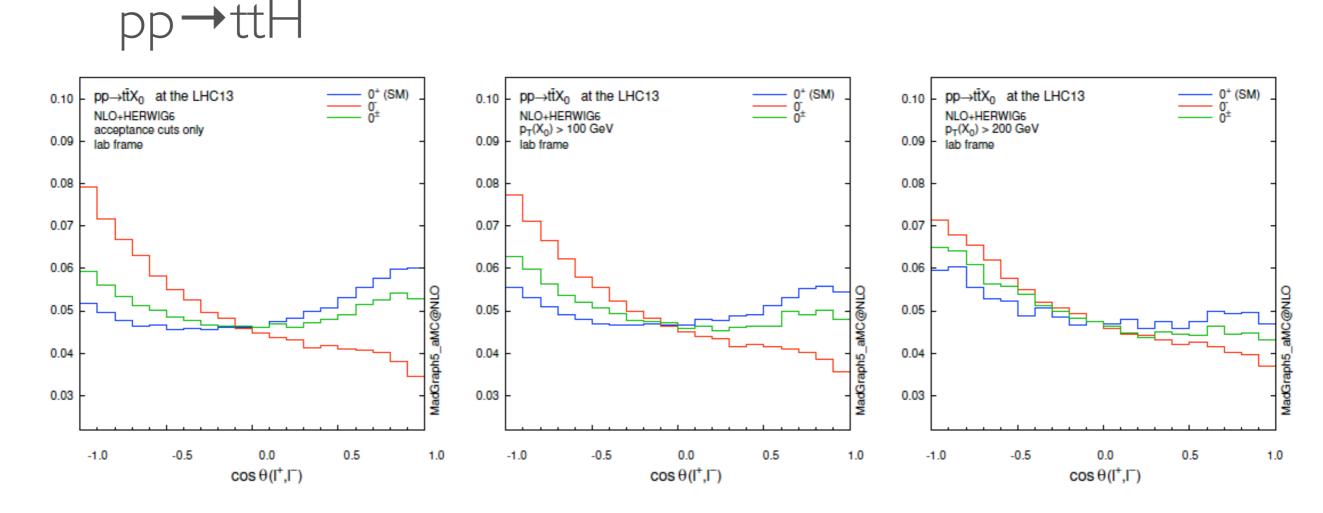
At NLO in QCD CP-even and CP-odd amplitudes interfere.


At high Higgs pT shapes and normalization exactly equal (mt effects become subdominant)

 \Rightarrow boosted analyses insensitive to CP?

[Demartin et al., in preparation]

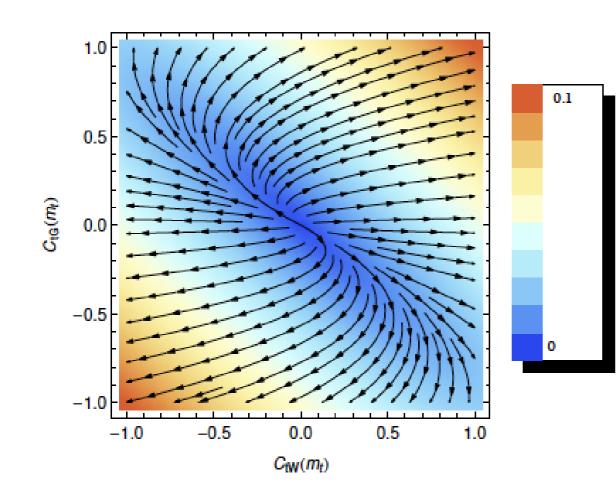
 $\mathcal{L}_0^t = -\bar{\psi}_t \big(c_\alpha \kappa_{Htt} g_{Htt} + i s_\alpha \kappa_{Att} g_{Att} \gamma_5 \big) \psi_t X_0$

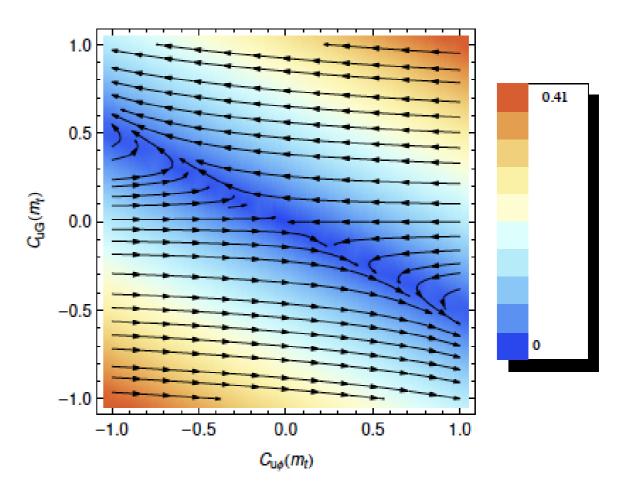

Angular variables between the daughters of the top sensitive to the CP-mixing.

The flavor of the Higgs, 23-26 June 2014, WIS, Israel

[Demartin et al., in preparation]

 $\mathcal{L}_0^t = -\bar{\psi}_t \big(c_\alpha \kappa_{Htt} g_{Htt} + i s_\alpha \kappa_{Att} g_{Att} \gamma_5 \big) \psi_t X_0$


CP-mixing sensitivity is maintained for the boosted case.

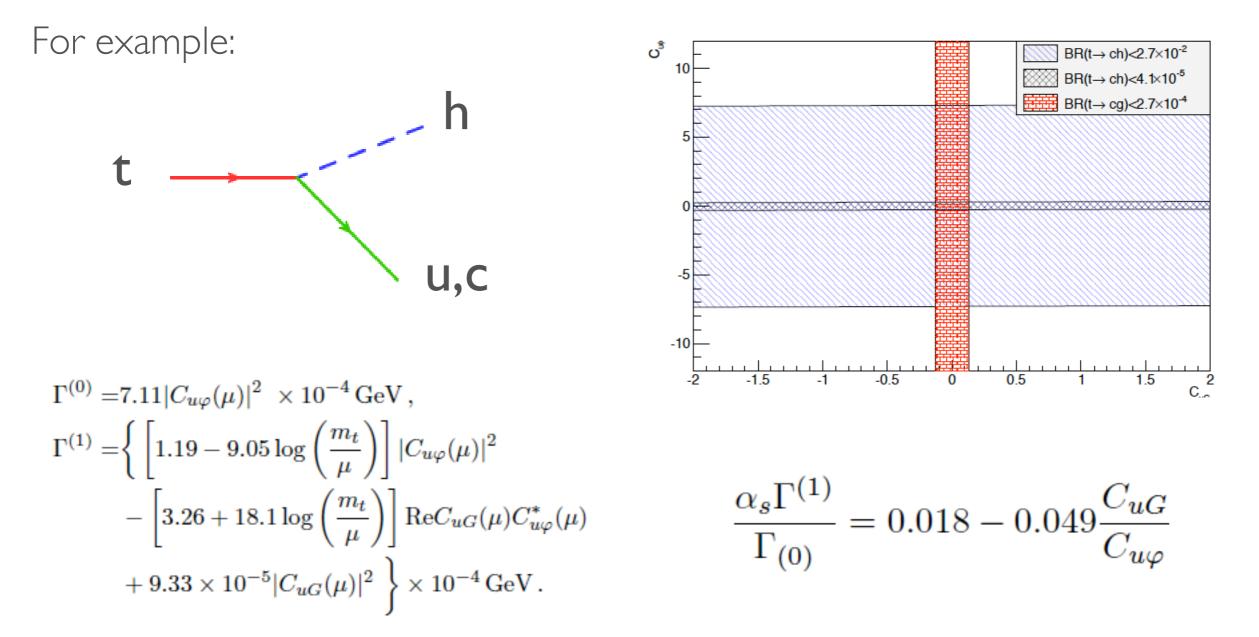

The flavor of the Higgs, 23-26 June 2014, WIS, Israel

8

TOP-HIGGS : FLAVOR CHANGING

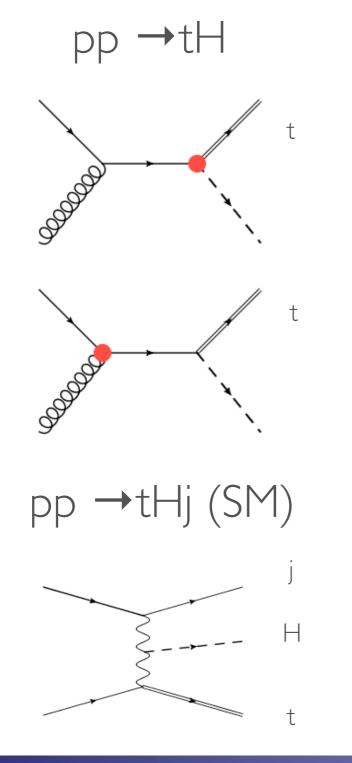
$$\begin{split} O_{tG} &= y_t g_s (\bar{Q} \sigma^{\mu\nu} T^A t) \tilde{\varphi} G^A_{\mu\nu} \\ O_{tW} &= y_t g_W (\bar{Q} \sigma^{\mu\nu} \tau^I t) \tilde{\varphi} W^I_{\mu\nu} \\ O_{tB} &= y_t g_Y (\bar{Q} \sigma^{\mu\nu} t) \tilde{\varphi} B_{\mu\nu} \\ O_{tB} &= y_t g_Y (\bar{Q} \sigma^{\mu\nu} t) \tilde{\varphi} B_{\mu\nu} \\ O_{t\varphi} &= -y_t^3 (\varphi^{\dagger} \varphi) (\bar{Q} t) \tilde{\varphi} \; . \end{split}$$

$$\begin{aligned} O_{uG}^{(13)} &= y_t g_s (\bar{q} \sigma^{\mu\nu} T^A t) \tilde{\varphi} G^A_{\mu\nu} \\ O_{uW}^{(13)} &= y_t g_W (\bar{q} \sigma^{\mu\nu} \tau^I t) \tilde{\varphi} W^I_{\mu\nu} \\ O_{uB}^{(13)} &= y_t g_Y (\bar{q} \sigma^{\mu\nu} t) \tilde{\varphi} B_{\mu\nu} \end{aligned} \qquad \gamma = \frac{2\alpha_s}{\pi} \begin{pmatrix} \frac{1}{6} & 0 & 0 & 0 \\ \frac{1}{3} & \frac{1}{3} & 0 & 0 \\ \frac{5}{9} & 0 & \frac{1}{3} & 0 \\ -2 & 0 & 0 & -1 \end{pmatrix} \\ O_{u\varphi}^{(13)} &= -y_t^3 (\varphi^{\dagger} \varphi) (\bar{q} t) \tilde{\varphi} \end{aligned}$$


At
$$\mu =$$
 1 TeV: $C_{uG}^{(13)} =$ 1, $C_{u\varphi}^{(13)} =$ 0 \Rightarrow

At
$$\mu =$$
 173 GeV: $C_{uG}^{(13)} =$ 0.98, $C_{u\varphi}^{(13)} =$ 0.23

The flavor of the Higgs, 23-26 June 2014, WIS, Israel


TOP-HIGGS : FLAVOR CHANGING

The study of FCNC couplings can bring new information: [Drobnak, 2012 based on CMS and ATLAS results] [Kao et al. 2011, Kai-Feng et al 2013] [Zhang FM, 2013]

UCL Université de Louvain

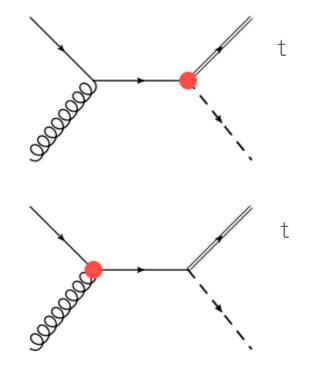
TOP-HIGGS : FLAVOR CHANGING

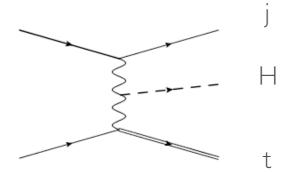
Two contributions appear at LO: one from $O_{u\phi}$ and one from O_{uG} .

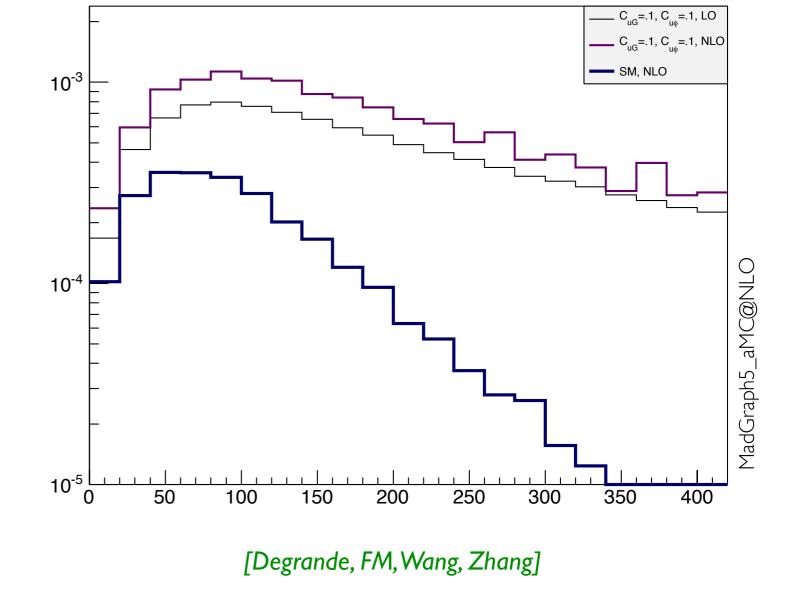
At NLO in QCD O_{uG} mixes with all the other operators so, unless it is artificially taken as zero, it has always to be included.

It also means that if a specific (arbitrary) choice of coefficient operators is made at high scales (where one can imagine a full theory to live) many operators become active when evolved to lower scales.

Only a global/fit approach on constraining such operators at the same time can be useful strategy and it has to be at least NLO in QCD.


Université catholique de Louvain


TOP-HIGGS : FLAVOR CHANGING



 $d\sigma/dp_{_{Th}}\,$ (pb/GeV), LHC 13 TeV, LO and NLO

The flavor of the Higgs, 23-26 June 2014, WIS, Israel

The flavor of the Higgs, 23-26 June 2014, WIS, Israel

Tuesday 24 June 2014

The need for better description and more reliable predictions for SM processes for the LHC has motivated a significant increase of theoretical and phenomenological activity in the last years, leading to several important achievements.

- The need for better description and more reliable predictions for SM processes for the LHC has motivated a significant increase of theoretical and phenomenological activity in the last years, leading to several important achievements.
- A new generation of tools and techniques is now available. Full Automation of Accurate (NLO) computations at fixed order as well as their the matching to parton-shower has been proven for the SM. The frontier is now at NNLO.

- The need for better description and more reliable predictions for SM processes for the LHC has motivated a significant increase of theoretical and phenomenological activity in the last years, leading to several important achievements.
- A new generation of tools and techniques is now available. Full Automation of Accurate (NLO) computations at fixed order as well as their the matching to parton-shower has been proven for the SM. The frontier is now at NNLO.
- Amazingly efficient, flexible and robust BSM simulation chain available and being continuously improved. Same level of sophistication as SM processes can be attained. Both top-down and bottom-up approaches included.

- The need for better description and more reliable predictions for SM processes for the LHC has motivated a significant increase of theoretical and phenomenological activity in the last years, leading to several important achievements.
- A new generation of tools and techniques is now available. Full Automation of Accurate (NLO) computations at fixed order as well as their the matching to parton-shower has been proven for the SM. The frontier is now at NNLO.
- Amazingly efficient, flexible and robust BSM simulation chain available and being continuously improved. Same level of sophistication as SM processes can be attained. Both top-down and bottom-up approaches included.
- Augmented EXP/TH interactions in the new framework and not limited anymore by the burden of heavy/long and inefficient calculations...

The flavor of the Higgs, 23-26 June 2014, WIS, Israel

The flavor of the Higgs, 23-26 June 2014, WIS, Israel

Tuesday 24 June 2014

AAA

Automation

The flavor of the Higgs, 23-26 June 2014, WIS, Israel

Tuesday 24 June 2014

UCL Université catholique de Louvain

AAA MONTECARLO FOR THE LHC

The flavor of the Higgs, 23-26 June 2014, WIS, Israel

Tuesday 24 June 2014