

Higgs-top coupling at the LHC

Michael Spannowsky
IPPP, Durham University

Combined results for each experiment

- Huge international and intergenerational success!
- First observed in clean final states: photons, ZZ, WW
- Now more channels, e.g. taus
- In absence of other resonances Higgs is window to new physics

CMS preliminary

Michael Spannowsky
24.06.2014

Naturalness

Symmetry SUSY, CW,

scalar top partners

Jets

Leptons

mass

width boost

Photons

tth coupling of great importance

- As Yossi pointed out, Higgs and Flavor does not need to be related (accident of SM) but there is feedback from Flavor to Higgs sector

Flavor Higgs

- Largest Yukawa coupling in SM
- Drives hierarchy problem

$$
\Delta m_{H}^{2}=-\frac{\left|\lambda_{f}\right|^{2}}{8 \pi^{2}}\left[\Lambda_{\mathrm{UV}}^{2}+\ldots\right]
$$

- Vacuum stability
- Modified in many BSM models

- Composite Higgs

$$
\text { MCHM5: } c_{t}=\frac{1-2 \xi}{\sqrt{1-\xi}} \quad \text { MCHM4: } \quad c_{t}=\sqrt{1-\xi} \quad \xi=v^{2} / f^{2}
$$

- Supersymmetric Models

	$g_{f f h}$	$g_{f f H}$	$g_{f f A}$
u	$\cos \alpha / \sin \beta$	$\sin \alpha / \sin \beta$	$\cot \beta$

For Higgs boson coupling measurements:

[Duehrssen et al]

- Every measurement affected by production and decay
- top-Higgs coupling directly accessible only in tth and th+X final states which constitute minor fraction of produced Higgses at LHC
- However, as Higgs does not decay into top quarks only measured in combination with other couplings

Phenomenological status and challenges of tth

Signal calculated at NLO QCD

tth with fairly large error bands compared to other channels
[Beenakker et al (2001), Dawson et al (2003)]

$$
\begin{aligned}
& \sigma(p p \rightarrow t \bar{t} H) \simeq 0.6113_{-18.2 \%}^{14.8 \%} \mathrm{pb} @ 14 \mathrm{TeV} \\
& \text { and matched to parton shower (POWHEG) } \\
& \text { [Garzelli at all (2011)] }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Proposed channels: } \quad(14 \mathrm{TeV}) \\
& \sigma(p p \rightarrow t \bar{t} H) \times B R(H \rightarrow b \bar{b}) \simeq 352.7 \mathrm{fb} \\
& \sigma(p p \rightarrow t \bar{t} H) \times B R(H \rightarrow W W) \simeq 131.1 \mathrm{fb} \\
& \sigma(p p \rightarrow t \bar{t} H) \times B R(H \rightarrow \tau \tau) \simeq 38.63 \mathrm{fb} \\
& \sigma(p p \rightarrow t \bar{t} H) \times B R(H \rightarrow \gamma \gamma) \simeq 1.39 \mathrm{fb}
\end{aligned}
$$

Phenomenology special as top decays before hadronization:
$1 / m_{t}<$
$1 / \Gamma_{t}<$
$1 / \Lambda<$
m_{t} / Λ^{2}

Production time< Lifetime < Hadronization time < Spin decorrelation time

I. tth with h \rightarrow bb

High expectations:

[ATLAS TDR 1999]
tth major channel

Problems of this channel:
[Cammin and Schumacher, ATL-PHYS-2003-024]

- $4 b$-> 6 combinations to reconstruct $m_{b b}$
- Low event reconst. efficiency due to lost decay prods.
- Systematics/Theory limited

Invers problem

Challenging backgrounds in this channel

$\dagger \dagger b b$
[Bredenstein et al (2009), Bevilacqua et al (2009)]
$\dagger \dagger j j$
[Bevilacqua et al (2009)]
t†Z
[Lazopoulos et al (2008)]
single lepton channel

Challenging backgrounds in this channel

After b-tags and selection cuts major background ttbb:

- NLO calculations reduce uncertainty from 80% to $20-30 \%$
- Collider analyses require matching to parton shower
- Powheg matching to Pythia/Herwig, 5F-scheme (mb=0) [Kardos, Trocanyi (2013)]
- S-MC@NLO matching to Sherpa, 4F-scheme (finite mb) [Cascioli et al (2013)]
multi-scale process $\quad \sqrt{\hat{s}} \gg m_{t}, m_{h}, m_{W} \gg m_{b} \longrightarrow \quad$ scale choice tricky
CKKW inspired scale choice gives good perturbative convergence:

$$
\mu_{\mathrm{R}}^{4}=E_{\mathrm{T}, \mathrm{t}} E_{\mathrm{T}, \overline{\mathrm{t}}} E_{\mathrm{T}, \mathrm{~b}} E_{\mathrm{T}, \overline{\mathrm{~b}}} \Rightarrow \alpha_{S}^{4}\left(\mu_{\mathrm{R}}^{2}\right)=\alpha_{S}\left(E_{\mathrm{T}, \mathrm{t}}^{2}\right) \alpha_{S}\left(E_{\mathrm{T}, \overline{\mathrm{t}}}^{2}\right) \alpha_{S}\left(E_{\mathrm{T}, \mathrm{~b}}^{2}\right) \alpha_{S}\left(E_{\mathrm{T}, \overline{\mathrm{~b}}}^{2}\right)
$$

	$t t b$	$t t b b$	$t t b b\left(m_{b b}>100\right)$	- Scale uncertainties mostly from μ_{R}
$\sigma_{\mathrm{LO}}[\mathrm{fb}]$	$2644_{-38 \%}^{+71 \%+11 \%}{ }_{-14 \%}$	$463.3{ }_{-36 \%}^{+66 \%}{ }_{-12 \%}$	$123.4_{-35 \%}^{+63 \%}+17 \%$	
$\sigma_{\mathrm{NLO}}[\mathrm{fb}]$	$3296_{-25 \%}^{+34 \%+5.6 \%}$	$560_{-24 \%-4.8 \%}^{+29 \%}+5.4 \%$	$141.8_{-22 \%}^{+26 \%+6.5 \%}{ }_{-4.6}$	
$\sigma_{\mathrm{NLO}} / \sigma_{\mathrm{LO}}$	1.25	1.21	1.15	- K-factors moderate, though enhanced in signal region
$\sigma_{\mathrm{MC@NLO}}[\mathrm{fb}]$	$3313_{-25 \%}+32 \%+2.9 \%$	$600_{-22 \%}^{+24 \%+2.0 \%}$	$181{ }_{-20 \%}^{+20 \% .0 \%}$	
$\sigma_{\mathrm{MC@NLO}} / \sigma_{\mathrm{NLO}}$	1.01	1.07	1.28	

MSTW2008 NLO(LO) 4F PDFs

Challenging backgrounds in this channel

Which top decay mode is most sensitive?

[Artoisenet et al (2013)]

Analysis with 4 b-jets and std reconstruction as input to MEM

process	incl. σ	efficiency	$\sigma^{\text {rec }}$
$t \bar{t} h$, single-lepton	111 fb	0.0485	5.37 fb
$t \bar{t} h$, di-lepton	17.7 fb	0.0359	0.634 fb
$t \bar{t}+$ jets, single-lepton	256 pb	0.463×10^{-3}	119 fb
$t \bar{t}+$ jets, di-lepton	40.9 pb	0.168×10^{-3}	6.89 fb

$$
D_{i}=\frac{P\left(x_{i} \mid S\right)}{P\left(x_{i} \mid S\right)+P\left(x_{i} \mid B\right)}
$$

- Using Matrix Element Method di-lepton channel at least as or even more sensitive than single-lepton channel for standard input objects beyond $\sim 8 \mathrm{ifb}$

Present results by CMS and ATLAS

based on Neural Net

- Both experiments are sensitive at X-times the SM cross section. However, because channel systematics limited $X>3$ is not the challenge
- Recent progress in $\dagger t b b$ and $t \dagger+$ jets will reduce uncertainty in background but what we really want to measure coupling is a side-band analysis ...

To relax sensitivity on overall Signal and BKG normalization we want this situation:
[Butterworth et al (2008)]
Peak of resonance we know the coupling well
otherwise continuous background

Compare peak height of known and new resonance

- Need reconstruction which gives narrow mbb for resonance
- Need reconstruction that does NOT introduce scale
- Need reconstruction that has same eff. for Z as for H

Can we repeat success of BDRS study in tth?

Problems in event reconstruction:

- (b-)jet multiplicity
- reconstruction efficiency

Boost should help but

need tagger for this

 environment

Results for boosted tth in h->bb

[Plehn at al (2010)]

- 5 sigma sign. with 100 1/fb
- Development of Higgs and top tagger for busy final state
- Jet substructure methods well established by now
- HEPTopTagger designed for tth used by ATLAS and CMS
- Improvement of S / B from 1/9 to $1 / 2$
- We find Higgs peak next to Z peak on top of continuous background
- Boosted topology ameliorates problems with combinatorics
- Possible further improvements due to top polarization [Biswal et al (2014)]

II. tth with h \rightarrow WW

- Worth measuring in its own right, as in ratio

$$
\frac{\sigma(t \bar{t} H) \times \mathrm{BR}(H \rightarrow b \bar{b})}{\sigma(t \bar{t} H) \times \operatorname{BR}(H \rightarrow W W)} \simeq \frac{g_{H b b}^{2}}{g_{H W W}^{2}}
$$

many systematics cancel

- W-rich final state $W^{+} W^{-} W^{+} W^{-} b \bar{b} \quad$ can be separated in lepton multiplicity of final state [Maltoni et al (2002)]

$j \quad p^{T}>15(30) \mathrm{GeV} \quad\|\eta\|<4.5$	for 300 ifb								
$b \quad p^{T}>15(30) \mathrm{GeV} \quad\|\eta\|<2.5$	$m_{h}(\mathrm{GeV})$	$t \bar{t} h$			backgrounds				B
		130	160	190	$t \bar{t} W^{ \pm} j j$	$t \overline{\ell^{+}} \ell^{-}(j j)$	$t \bar{t} W^{+} W^{-}$	$t \bar{t} t \bar{t}$	
$l \quad p^{T}>10 \mathrm{GeV} \quad\|\eta\|<2.5$	2ℓ	8.1	24	16	19	3.2	2.1	4.2	29
Trigger lepton: $p^{T}>20$ (30) GeV	3ℓ		27	16	4.6	17	1.8	3.6	27
$\Delta R_{i j}>0.4$	4ℓ		3.8	2.0	-	3.9	0.21	0.20	4.3

Combination indicates $\sim 25 \%$ uncertainty measuring Htt with 300 ifb

III. tth with $H \rightarrow$ WW and H-> taus

[Craig et al (2013)] and [Curtin et al (2013)] multi-lepton final states, incl taus
special focus on same-sign leptons \rightarrow at 8 TeV found to be as sensitive as $H \rightarrow b \bar{b}$ and $H \rightarrow \gamma \gamma$

Study SSL final states for the contribution: [CMS-SUS-12-017] 10 ifb

	SR0	SR1	SR2	SR3	SR4	SR5	SR6	SR7	SR8
No. of jets	≥ 2	≥ 2	≥ 2	≥ 4	≥ 4	≥ 4	≥ 4	≥ 3	≥ 4
No. of btags	≥ 2	≥ 3	≥ 2						
Lepton charges	$++/--$	$++/--$	++	$++/--$	$++/--$	$++/--$	$++/--$	$++/--$	$++/--$
$E_{\mathrm{T}}^{\text {miss }}$	$>0 \mathrm{GeV}$	$>30 \mathrm{GeV}$	$>30 \mathrm{GeV}$	$>120 \mathrm{GeV}$	$>50 \mathrm{GeV}$	$>50 \mathrm{GeV}$	$>120 \mathrm{GeV}$	$>50 \mathrm{GeV}$	$>0 \mathrm{GeV}$
H_{T}	$>80 \mathrm{GeV}$	$>80 \mathrm{GeV}$	$>80 \mathrm{GeV}$	$>200 \mathrm{GeV}$	$>200 \mathrm{GeV}$	$>320 \mathrm{GeV}$	$>320 \mathrm{GeV}$	$>200 \mathrm{GeV}$	$>320 \mathrm{GeV}$
Fake BG	25 ± 13	19 ± 10	9.6 ± 5.0	0.99 ± 0.69	4.5 ± 2.9	2.9 ± 1.7	0.7 ± 0.5	0.71 ± 0.47	4.4 ± 2.6
Charge-flip BG	3.4 ± 0.7	2.7 ± 0.5	1.4 ± 0.3	0.04 ± 0.01	0.21 ± 0.05	0.14 ± 0.03	0.04 ± 0.01	0.03 ± 0.01	0.21 ± 0.05
Rare SM BG	11.8 ± 5.9	10.5 ± 5.3	6.7 ± 3.4	1.2 ± 0.7	3.4 ± 1.8	2.7 ± 1.5	1.0 ± 0.6	0.44 ± 0.39	3.5 ± 1.9
Total BG	40 ± 14	32 ± 11	17.7 ± 6.1	2.2 ± 1.0	8.1 ± 3.4	5.7 ± 2.4	1.7 ± 0.7	1.2 ± 0.6	8.1 ± 3.3
Event yield	43	38	14	1	10	7	1	1	9
$N_{U L}$ (13\% unc.)	27.2	26.0	9.9	3.6	10.8	8.6	3.6	3.7	9.6
$N_{U L}$ (20\% unc.)	28.2	27.2	10.2	3.6	11.2	8.9	3.7	3.8	9.9
$N_{U L}$ (30\% unc.)	30.4	29.6	10.7	3.8	12.0	9.6	3.9	4.0	10.5

- Recast enhanced tth and set limit

$$
\mu_{t \bar{t} h}(4 b+\ell) \leq 5.8(5.2)
$$

Fit for 8 TeV data

$\Delta \mathcal{L}_{\text {eff }}=\frac{h}{v} \times\left(c_{t} m_{t} \bar{t} t+c_{g} G_{\mu \nu}^{2}\right)$

Combination 7, 8 and 14 TeV

ATLAS \& CMS Combined Fit: $(5+20+30) f b^{-1}$

Advantage: ${ }^{\text {th }}$ coupling measurement disentangled from hbb, i.e.

$$
\frac{\sigma(t \bar{t} H) \times \mathrm{BR}(H \rightarrow W W)}{\sigma(H W) \times \operatorname{BR}(H \rightarrow W W)} \simeq \frac{g_{H t t}^{2}}{g_{H W W}^{2}}
$$

IV. tth with h -> hadronic-taus

- Signal process considered $t \bar{t} H \rightarrow b \bar{b} l \nu q q^{\prime} \tau_{h}^{+} \tau_{h}^{-}$
- Only background electroweak $t \bar{Z} Z$

	Background:	Signd: $p p \rightarrow t \bar{t} H, H$				$\tau^{+} \tau^{-}$
		110 GeV	120 GeV	130 GeV	140 GeV	
Eff. of CUTS I+II+III (\%)	0.42	0.50	0.52	0.55	0.58	
Number of events $/ 100 \mathrm{fb}^{-1}$	12	34	25	16	8.8	
$S / \sqrt{S+B}$		5.0	4.1	3.0	1.9	
S / B		2.8	2.1	1.3	0.7	
$\delta \sigma / \sigma$		0.20	0.24	0.33	0.52	

[Belyaev et al (2002)]

$$
\begin{aligned}
& \quad \text { production } \\
& \frac{\Gamma_{b}}{\Gamma_{\tau}}=\frac{Z_{b}^{(t)} \text { decay }}{Z_{\tau}^{(t)}} \text { dec) } \\
& \frac{\Gamma_{t}}{\Gamma_{g}}=\frac{Z_{\tau}^{(t)} Z_{\gamma}^{(w)}}{Z_{\tau}^{(w)} Z_{\gamma}^{(g)}}
\end{aligned}
$$

Ratio of couplings can be measured, here very optimistic uncertainties

Also possible:
Separate GF and WBF and take
$\frac{\sigma(t \bar{t} H) \times \operatorname{BR}(H \rightarrow \tau \tau)}{\sigma(H j j) \times \operatorname{BR}(H \rightarrow \tau \tau)} \simeq \frac{g_{H t t}^{2}}{\left(X g_{H W W}^{2}+Y g_{H Z Z}^{2}\right)}$

V. tth with $H \rightarrow \gamma \gamma$

[Buttar et al. (2006)]

with 14 TeV and 100 ifb

Higgs Mass (GeV)	115	120	130	140
Signal Selection Efficiency (\%)	19.09	20.78	24.65	$\mathbf{2} .58$
Number Signal Evts (N S)	13.2	13.5	13.1	9.5
$t \bar{t} \gamma \gamma$ Type 1	0.57	0.38	0.48	0.53
$t \bar{t} \gamma \gamma$ Type 2	0.3	0.5	0.3	0.5
$t \bar{t} \gamma \gamma$ Type 3	<0.5	0.5	<0.5	<0.5
$\mathrm{Z} \gamma \gamma$	0.8	0.7	0.8	0.5
$\mathrm{~W} \gamma \gamma 4 \mathrm{j}$	1.5	3.0	6.2	4.7
bb $\gamma \gamma$	<0.2	0.2	0.2	4.2
Total Number Background Evts.(N_{B})	3.17	5.28	7.98	6.23
Signal Significance	7.41	5.88	4.64	3.81
$\mathrm{~W} \gamma \gamma$	1.25	1.35	1.23	1.27

- Good significance after 100 ifb for SM value
- However, variation of htt partly compensated by destructive interference with W loop in decay
- No other peak to compare

top-Higgs associated production

Three SM-like production processes:
[Maltoni et al (2001)]
[Biswas et al (2002)]
t-channel

$$
\begin{aligned}
\sigma\left(q b \rightarrow t q^{\prime} H\right)^{S M} & \simeq 71.8 \mathrm{fb} \\
\sigma\left(q b \rightarrow t q^{\prime} H\right)^{C_{t}=0} & \simeq 276 \mathrm{fb} \\
\sigma\left(q b \rightarrow t q^{\prime} H\right)^{C_{t}=-1} & \simeq 893 \mathrm{fb}
\end{aligned}
$$

s-channel

$$
\begin{aligned}
\sigma\left(q \vec{q}^{\prime} \rightarrow t b H\right)^{S M} & \simeq 2.26 \mathrm{fb} \\
\sigma\left(q \vec{q}^{\prime} \rightarrow t b H\right)^{C_{t}=0} & \simeq 1.49 \mathrm{fb} \\
\sigma\left(q \vec{q}^{\prime} \rightarrow t b H\right)^{C_{t}=-1} & \simeq 0.39 \mathrm{fb}
\end{aligned}
$$

tW-associated channel

$$
\begin{aligned}
\sigma(g b \rightarrow W t H)^{S M} & \simeq 16.0 \mathrm{fb} \\
\sigma(g b \rightarrow W t H)^{C_{t}=0} & \simeq 34.9 \mathrm{fb} \\
\sigma(g b \rightarrow W t H)^{C_{t}=-1} & \simeq 139 \mathrm{fb}
\end{aligned}
$$

- Largest CS t-channel, despite negative interference between Higgs emission off top or W
- However, this strong interference results in sensitivity of sign of Htt coupling

Total rate very sensitive to interplay between C_{t} and C_{V}

[Grojean et al (2013)]

[Englert et al (2013)]

- Angular correlations can improve sensitivity
- In $H \rightarrow \gamma \gamma$ at 95% C.L.

Beyond total rates

Distinctive kinematic features due to forward jet

New Physics in tth

Received much less attention than eg HH

CP properties of Higgs

Higgs could be mixture of CP-even and CP-odd state:
[Ellis et al (2013)]

$$
\begin{array}{cr}
\mathcal{L}_{t}=-\frac{m_{t}}{v}\left(\kappa_{t} \bar{t} t+i \tilde{\kappa}_{t} \bar{t} \gamma_{5} t\right) H & \text { where SM } \quad\left(\kappa_{t}, \tilde{\kappa}_{t}\right)=(1,0) \\
\text { In } H \rightarrow \gamma \gamma & \text { define } \zeta_{t} \equiv \arctan \left(\frac{\tilde{\kappa}_{t}}{\kappa_{t}}\right) \\
\text { Affects cross sections: } & \text { and shapes: }
\end{array}
$$

tth from vector-like quarks

Assume VLQ with $T=(3,1)_{2 / 3}$ and $T^{c}=(\overline{3}, 1)_{-2 / 3}$ see e.g. comp-Higgs models, little Higgs...

Add $\quad \mathcal{L} \supset y_{1} Q_{3} H t^{c}+\delta T t^{c}+M T T^{c}$

$$
\left.\begin{array}{rl}
& \left(\begin{array}{cc}
t & T
\end{array}\right)\left(\begin{array}{cc}
m & 0 \\
\delta & M
\end{array}\right)\binom{t^{c}}{T^{c}} \\
\text { Limit inf. } & B R(T \rightarrow t+h) \sim 25 \% \\
\text { T mass } & B R(T \rightarrow t+Z) \sim 25 \% \\
\hdashline & B R(T \rightarrow b+W) \sim 50 \%
\end{array}\right] \begin{array}{cc|c|}
\hline m_{T} & \sigma(p p \rightarrow T \bar{T}) \\
\hline 400 & \mathrm{GeV} & 12.7 \mathrm{pb} \\
600 & \mathrm{GeV} & 1.29 \mathrm{pb} \\
800 & \mathrm{GeV} & 0.229 \mathrm{pb} \\
1 & \mathrm{TeV} & 0.054 \mathrm{pb} \\
\hline
\end{array}
$$

Burried Higgs

- Higgs decays into CP-odd scalar (10 GeV) with subsequent decay into gluons
[Bellazzini et al (2009)]
[Falkowski et al (2010)]
- Jet substructure used in leptonic tth
- Sudakov suppression exploited for low jet mass

Conclusions

- tth one of most crucial coupling measurements for 14 TeV run
- Final state tth is one of the most complex SM final states
- Measurement in H ->bb mostly systematics limited
- New techniques are needed/available to reconstruct
- thj interesting final state to eliminate sign-ambiguity of tth coupling
- Worth recasting first tth results in terms of new physics models

How does the HEPTopTagger work?

I. Find fat jets ($C / A, R=1.5, p T>200 \mathrm{GeV}$)
II. Find hard substructure using mass drop criterion

Undo clustering, $m_{\text {daughter }_{1}}<0.8 m_{\text {mother }}$ to keep both daughters

How does the HEPTopTagger work?

I. Find fat jets ($C / A, R=1.5, p T>200 \mathrm{GeV}$)
II. Find hard substructure using mass drop criterion

Undo clustering, $m_{\text {daughter }_{1}}<0.8 m_{\text {mother }}$ to keep both daughters

How does the HEPTopTagger work?

I. Find fat jets ($C / A, R=1.5, p T>200 \mathrm{GeV}$)
II. Find hard substructure using mass drop criterion

Undo clustering, $m_{\text {daughter }_{1}}<0.8 m_{\text {mother }}$ to keep both daughters

How does the HEPTopTagger work?

I. Find fat jets (C/A, $R=1.5, \mathrm{pT}>200 \mathrm{GeV}$)
II. Find hard substructure using mass drop criterion

Undo clustering, $m_{\text {daughter }_{1}}<0.8 m_{\text {mother }}$ to keep both daughters
III. Apply jet grooming to get top decay candidates

How does the HEPTopTagger work?

I. Find fat jets ($C / A, R=1.5, \mathrm{pT}>200 \mathrm{GeV}$)

II. Find hard substructure using mass drop criterion

Undo clustering, $m_{\text {daughter }_{1}}<0.8 m_{\text {mother }}$ to keep both daughters
III. Apply jet grooming to get top decay candidates

IV. Choose pairing based on kinematic correlation, e.g. top mass, W mass and invariant subjet masses

IV. check mass ratios

Cluster top candidate into 3 subjets j_{1}, j_{2}, j_{3}

No fix pairing for W mass reconstruction

Only invariants for reconstruction

Top quark momentum reconstruction

