

Higgs-top coupling at the LHC

Michael Spannowsky

IPPP, Durham University

I

The Flavor of Higgs

Weizmann Institute

Combined results for each experiment

CMS preliminary Events / 3 GeV Data √s = 7 TeV:L = 5.1 fb⁻¹ 30 m_H = 126 GeV √s = 8 TeV: L = 19.6 fb⁻¹ Zγ*, ZZ Z+X 20 10 200 800 100 400 m₄₁ [GeV]

- Huge international and intergenerational success!
- First observed in clean final states: photons, ZZ, WW
- Now more channels, e.g. taus
- In absence of other resonances Higgs is window to new physics

2

tth coupling of great importance

180

Pole top mass M_t in GeV 120

165

115

- As Yossi pointed out, Higgs and Flavor does not need to be related (accident of SM) but there is feedback from Flavor to Higgs sector
- Largest Yukawa coupling in SM
- Drives hierarchy problem
 - $\Delta m_{H}^{2} = -\frac{|\lambda_{f}|^{2}}{8\pi^{2}} [\Lambda_{\rm UV}^{2} + ...].$
- Vacuum stability
- Modified in many BSM models
 - Composite Higgs
 MC

CHM5:
$$c_t = \frac{1 - 2\xi}{\sqrt{1 - \xi}}$$
 MCHM4: $c_t = \sqrt{1 - \xi}$ $\xi = v^2/f^2$

120

Instability

Supersymmetric Modelsf g_{ffh} g_{ffH} g_{ffA} u $\cos \alpha / \sin \beta$ $\sin \alpha / \sin \beta$ $\cot \beta$

Flavor

1,2,3 0

125

Higgs mass M_h in GeV

[Degrassi et al (2012)]

Higgs

Meta-stability

Stability

130

135

For Higgs boson coupling measurements:

- Every measurement affected by production and decay
- top-Higgs coupling directly accessible only in tth and th+X final states which constitute minor fraction of produced Higgses at LHC
- However, as Higgs does not decay into top quarks only measured in combination with other couplings

Phenomenological status and challenges of tth

Signal calculated at NLO QCD [Beenakker et al (2001), Dawson et al (2003)]

Higgs XS WG for mH=125 GeV: $\sigma(pp \rightarrow t\bar{t}H) \simeq 0.1293 \stackrel{11.6\%}{_{-17.2\%}} \text{ pb}$ @ 8 TeV

 $\sigma(pp \to t\bar{t}H) \simeq 0.6113 \ {}^{14.8\%}_{-18.2\%} \text{ pb} \quad @ 14 \text{ TeV}$ and matched to parton shower (POWHEG) [Garzelli at all (2011)] Proposed channels: (14 TeV) $\sigma(pp \to t\bar{t}H) \times BR(H \to b\bar{b}) \simeq 352.7 \text{ fb}$ $\sigma(pp \to t\bar{t}H) \times BR(H \to WW) \simeq 131.1 \text{ fb}$ $\sigma(pp \to t\bar{t}H) \times BR(H \to \tau\tau) \simeq 38.63 \text{ fb}$

 $\sigma(pp \to t\bar{t}H) \times BR(H \to \gamma\gamma) \simeq 1.39 \text{ fb}$

Phenomenology special as top decays before hadronization:

$1/m_t <$	$1/\Gamma_t <$	$1/\Lambda <$	m_t/Λ^2	
Production time<	Lifetime <	Hadronization time $<$	Spin decorrelation tim	е
The Flavor of Higgs	Weizmann Institu	ute 6	Michael Spannowsky	24.06.2014

I. tth with $h \rightarrow bb$

Problems of this channel: [Cammin and

[Cammin and Schumacher, ATL-PHYS-2003-024]

- 4 b -> 6 combinations to reconstruct m_{bb}
- Low event reconst. efficiency due to lost decay prods.
- Systematics/Theory limited

The Flavor of Higgs

Weizmann Institute

7

Invers problem

8

9

Challenging backgrounds in this channel

ttbb

[Bredenstein et al (2009), Bevilacqua et al (2009)] ttjj

[Bevilacqua et al (2009)]

[Lazopoulos et al (2008)]

††Z

Challenging backgrounds in this channel

After b-tags and selection cuts major background ttbb:

- NLO calculations reduce uncertainty from 80% to 20-30%
- Collider analyses require matching to parton shower
 - Powheg matching to Pythia/Herwig, 5F-scheme (mb=0) [Kardos, Trocanyi (2013)]
 - S-MC@NLO matching to Sherpa, 4F-scheme (finite mb) [Cascioli et al (2013)]

multi-scale process $\sqrt{\hat{s}} \gg m_t, m_h, m_W \gg m_b \longrightarrow$ scale choice tricky

CKKW inspired scale choice gives good perturbative convergence: $\mu_{\rm R}^4 = E_{{\rm T},{\rm t}} E_{{\rm T},{\rm \bar{t}}} E_{{\rm T},{\rm \bar{b}}} E_{{\rm T},{\rm \bar{b}}} \Rightarrow \alpha_S^4(\mu_{\rm R}^2) = \alpha_S(E_{{\rm T},{\rm t}}^2) \alpha_S(E_{{\rm T},{\rm \bar{t}}}^2) \alpha_S(E_{{\rm T},{\rm \bar{b}}}^2)$

	ttb	ttbb	$ttbb(m_{bb}>100)$				
$\sigma_{\rm LO}[{\rm fb}]$	$2644^{+71\%}_{-38\%}{}^{+14\%}_{-11\%}$	$463.3^{+66\%}_{-36\%}{}^{+15\%}_{-12\%}$	$123.4^{+63\%}_{-35\%}{}^{+17\%}_{-13\%}$	 Scale uncertainties mostly 			
$\sigma_{ m NLO}[m fb]$	$3296^{+34\%}_{-25\%}{}^{+5.6\%}_{-4.2\%}$	$560^{+29\%}_{-24\%}{}^{+5.4\%}_{-4.8\%}$	$141.8^{+26\%}_{-22\%}{}^{+6.5\%}_{-4.6\%}$	$TFOIN \ \mu R$			
$\sigma_{ m NLO}/\sigma_{ m LO}$	1.25	1.21	1.15	 K-factors moderate, though 			
$\sigma_{ m MC@NLO}[m fb]$	$3313^{+32\%}_{-25\%}{}^{+3.9\%}_{-2.9\%}$	$600^{+24\%+2.0\%}_{-22\%-2.1\%}$	$181^{+20\%}_{-20\%}{}^{+8.1\%}_{-6.0\%}$	enhanced in signal region			
$\sigma_{ m MC@NLO}/\sigma_{ m NLO}$	1.01	1.07	1.28				
MSTW2008 NLO(LO) 4F PDFs							

The Flavor of Higgs

12

Challenging backgrounds in this channel

Which top decay mode is most sensitive?

 Using Matrix Element Method di-lepton channel at least as or even more sensitive than single-lepton channel for standard input objects beyond ~ 8 ifb

Present results by CMS and ATLAS

- Both experiments are sensitive at X-times the SM cross section.
 However, because channel systematics limited X > 3 is not the challenge
- Recent progress in ttbb and tt+jets will reduce uncertainty in background but what we really want to measure coupling is a side-band analysis ...

To relax sensitivity on overall Signal and BKG normalization we want this situation:

- Need reconstruction which gives narrow mbb for resonance
- Need reconstruction that does NOT introduce scale
- Need reconstruction that has same eff. for Z as for H

The Flavor of Higgs

Weizmann Institute

16

Can we repeat success of BDRS study in tth?

Problems in event reconstruction:

Results for boosted tth in h->bb

[Plehn at al (2010)]

- 5 sigma sign. with 100 1/fb
- Development of Higgs and top tagger for busy final state
 - Jet substructure methods well established by now
 - HEPTopTagger designed for tth used by ATLAS and CMS
- Improvement of S/B from 1/9 to 1/2
- We find Higgs peak next to Z peak on top of continuous background
- Boosted topology ameliorates problems with combinatorics
- Possible further improvements due to top polarization [Biswal et al (2014)]

The Flavor of Higgs

Michael Spannowsky

II. tth with h -> WW

• Worth measuring in its own right, as in ratio

$$\frac{\sigma(t\bar{t}H) \times \mathrm{BR}(H \to b\bar{b})}{\sigma(t\bar{t}H) \times \mathrm{BR}(H \to WW)} \simeq \frac{g_{Hbb}^2}{g_{HWW}^2}$$

many systematics cancel

• W-rich final state $W^+W^-W^+W^-b\overline{b}$ can be separated in lepton multiplicity of final state [Maltoni et al (2002)]

j	$p^T > 15 (30) { m GeV}$	$ \eta < 4.5$		tor 300 itb								
b	$p p^T > 15(30) \text{ GeV} n < 2.5$				$t\bar{t}h$			backgrounds				
	F = == (==) == =	141 1 2 2 2		$m_h~({ m GeV})$	130	160	190	$t\bar{t}W^{\pm}jj$	$t\bar{t}\ell^+\ell^-(jj)$	$t\bar{t}W^+W^-$	$t\bar{t}t\bar{t}$	B
l	$p^T > 10 { m ~GeV}$	$ \eta < 2.5$		2ℓ	8.1	24	16	19	3.2	2.1	4.2	29
Trigger lepton: $p^T > 20 (30) \text{ GeV}$			•	3ℓ	12	27	16	4.6	17	1.8	3.6	27
$\Delta R_{ij} > 0.4$			4ℓ	2.1	3.8	2.0	_	3.9	0.21	0.20	4.3	

Combination indicates ~ 25% uncertainty measuring Htt with 300 ifb

III. tth with H -> WW and H -> taus

[Craig et al (2013)] and [Curtin et al (2013)] multi-lepton final states, incl taus

 \clubsuit special focus on same-sign leptons -> at 8 TeV found to be as sensitive as $H o b ar{b}$ and $H o \gamma \gamma$

Study SSL final states for tth contribution: [CMS-SUS-12-017] 10 ifb

	SR0	SR1	SR2	SR3	SR4	SR5	SR6	SR7	SR8
No. of jets	≥2	≥ 2	≥2	≥ 4	≥ 4	≥ 4	≥ 4	≥ 3	≥ 4
No. of btags	≥ 2	≥ 2	≥2	≥ 2	≥ 2	≥ 2	≥ 2	≥ 3	≥ 2
Lepton charges	++/	++/	++	++/	++/	++/	++/	++/	++/
E_{T}^{miss}	>0 GeV	>30 GeV	>30 GeV	>120 GeV	>50 GeV	>50 GeV	>120 GeV	>50 GeV	>0 GeV
$\hat{H_{\mathrm{T}}}$	>80 GeV	>80 GeV	>80 GeV	>200 GeV	>200 GeV	>320 GeV	>320 GeV	>200 GeV	>320 GeV
Fake BG	25 ± 13	19 ± 10	9.6 ± 5.0	0.99 ± 0.69	4.5 ± 2.9	2.9 ± 1.7	0.7 ± 0.5	0.71 ± 0.47	4.4 ± 2.6
Charge-flip BG	3.4 ± 0.7	2.7 ± 0.5	1.4 ± 0.3	0.04 ± 0.01	0.21 ± 0.05	0.14 ± 0.03	0.04 ± 0.01	0.03 ± 0.01	0.21 ± 0.05
Rare SM BG	11.8 ± 5.9	10.5 ± 5.3	6.7 ± 3.4	1.2 ± 0.7	3.4 ± 1.8	2.7 ± 1.5	1.0 ± 0.6	0.44 ± 0.39	3.5 ± 1.9
Total BG	40 ± 14	32 ± 11	17.7 ± 6.1	2.2 ± 1.0	8.1 ± 3.4	5.7 ± 2.4	1.7 ± 0.7	1.2 ± 0.6	8.1 ± 3.3
Event yield	43	38	14	1	10	7	1	1	9
N _{UL} (13% unc.)	27.2	26.0	9.9	3.6	10.8	8.6	3.6	3.7	9.6
N _{UL} (20% unc.)	28.2	27.2	10.2	3.6	11.2	8.9	3.7	3.8	9.9
N _{UL} (30% unc.)	30.4	29.6	10.7	3.8	12.0	9.6	3.9	4.0	10.5

Recast enhanced tth and set limit

 $\mu_{t\bar{t}h}(4b+\ell) \leq 5.8 \ (5.2)$

Advantage: tth coupling measurement disentangled from hbb, i.e.

$$\frac{\sigma(t\bar{t}H) \times \mathrm{BR}(H \to WW)}{\sigma(HW) \times \mathrm{BR}(H \to WW)} \simeq \frac{g_{Htt}^2}{g_{HWW}^2}$$

IV. tth with h -> hadronic-taus

- Signal process considered $t\bar{t}H \rightarrow b\bar{b}l\nu qq'\tau_h^+\tau_h^-$
- Only background electroweak $t\bar{t}Z$

Weizmann Institute

The Flavor of Higgs

Background: $\tau^+\tau^$ decay Signal: pp $\rightarrow t\bar{t}H, H$ $\frac{\Gamma_b}{\Gamma_\tau} = \frac{Z_b^{(t)}}{Z_\tau^{(t)}}$ 120 GeV $pp \rightarrow t\bar{t}\tau^+\tau^-$ 110 GeV 130 GeV 140 GeV 0.52Eff. of CUTS I+II+III (%) 0.420.500.550.588.8 Number of events/100 fb⁻¹ 12342516 $S/\sqrt{S+B}$ 1.9 5.03.04.1 $\frac{\Gamma_t}{\Gamma_g} = \frac{Z_{\tau}^{(t)} Z_{\gamma}^{(w)}}{Z_{\tau}^{(w)} Z_{\gamma}^{(g)}}$ 2.80.7S/B2.11.30.520.200.33 $\delta\sigma/\sigma$ 0.2450 Ratio of couplings can be measured, Γ_{b}/Γ_{τ} here very optimistic uncertainties $\Gamma_{1}^{\prime}/\Gamma_{0}^{\prime}$ expected accuracy (%) B B B B B B B Also possible: Separate GF and WBF and take with systematics $\frac{\sigma(ttH) \times BR(H \to \tau\tau)}{\sigma(Hjj) \times BR(H \to \tau\tau)} \simeq \frac{g_{Htt}^2}{(X \ g_{HWW}^2 + Y \ g_{HZZ}^2)}$ 10 ⊾ 110 120 130 140 M_H

24

Michael Spannowsky

24.06.2014

[Belyaev et al (2002)]

production

V. tth with $H \rightarrow \gamma \gamma$

[Buttar et al. (2006)]

with 14 TeV and 100 ifb				
Higgs Mass (GeV)	115	120	130	140
Signal Selection Efficiency (%)	19.09	20.78	24.65	25.58
Number Signal Evts (N _S)	13.2	13.5	13.1	9.5
$tar{t}\gamma\gamma$ Type 1	0.57	0.38	0.48	0.53
$tar{t}\gamma\gamma$ Type 2	0.3	0.5	0.3	0.5
$tar{t}\gamma\gamma$ Type 3	<0.5	0.5	<0.5	< 0.5
$Z\gamma\gamma$	0.8	0.7	0.8	0.5
$W\gamma\gamma4j$	1.5	3.0	6.2	4.7
bb $\gamma\gamma$	<0.2	0.2	0.2	< 0.2
Total Number Background Evts.(N _B)	3.17	5.28	7.98	6.23
Signal Significance	7.41	5.88	4.64	3.81
$W\gamma\gamma$	1.25	1.35	1.23	1.27

- Good significance after 100 ifb for SM value
- However, variation of htt partly compensated by destructive interference with W loop in decay
- No other peak to compare

top-Higgs associated production

- Largest CS t-channel, despite negative interference between Higgs emission off top or W
- However, this strong interference results in sensitivity of sign of Htt coupling

Total rate very sensitive to interplay between C_t and C_V

The Flavor of Higgs

Weizmann Institute

28

New Physics in tth

Received much less attention than eg HH

CP properties of Higgs [Ellis et al (2013)]

Higgs could be mixture of CP-even and CP-odd state:

$$\mathcal{L}_t = -rac{m_t}{v} \left(\kappa_t \bar{t}t + i \tilde{\kappa}_t \bar{t} \gamma_5 t
ight) H$$
 where SM $\left(\kappa_t, \tilde{\kappa}_t
ight) = (1, 0)$
In $H o \gamma \gamma$ define $\zeta_t \equiv \arctan\left(rac{\tilde{\kappa}_t}{\kappa_t}
ight)$

29

Affects cross sections:

and shapes:

tth from vector-like quarks

Assume VLQ with $T = (3,1)_{2/3}$ and $T^c = (\overline{3},1)_{-2/3}$ see e.g. comp-Higgs models, little Higgs...

Add
$$\mathcal{L} \supset y_1 Q_3 H t^c + \delta T t^c + M T T^c$$

Burried Higgs

- Higgs decays into CP-odd scalar (10 GeV) with subsequent decay into gluons
- Jet substructure used in leptonic tth
- Sudakov suppression exploited for low jet mass

[Bellazzini et al (2009)] [Falkowski et al (2010)]

Conclusions

• tth one of most crucial coupling measurements for 14 TeV run

• Final state tth is one of the most complex SM final states

- Measurement in H->bb mostly systematics limited
- New techniques are needed/available to reconstruct
- thj interesting final state to eliminate sign-ambiguity of tth coupling
- Worth recasting first tth results in terms of new physics models

I. Find fat jets (C/A, R=1.5, pT>200 GeV)

II. Find hard substructure using mass drop criterion

Undo clustering, $m_{
m daughter_1} < 0.8 \; m_{
m mother}$ to keep both daughters

I. Find fat jets (C/A, R=1.5, pT>200 GeV)

II. Find hard substructure using mass drop criterion

Undo clustering, $m_{
m daughter_1} < 0.8 \; m_{
m mother}$ to keep both daughters

I. Find fat jets (C/A, R=1.5, pT>200 GeV)

II. Find hard substructure using mass drop criterion

Undo clustering, $m_{
m daughter_1} < 0.8 \ m_{
m mother}$ to keep both daughters

I. Find fat jets (C/A, R=1.5, pT>200 GeV)

II. Find hard substructure using mass drop criterion

Undo clustering, $m_{
m daughter_1} < 0.8 \ m_{
m mother}$ to keep both daughters

III. Apply jet grooming to get top decay candidates

- I. Find fat jets (C/A, R=1.5, pT>200 GeV)
- II. Find hard substructure using mass drop criterion

Undo clustering, $m_{\mathrm{daughter}_1} < 0.8 \ m_{\mathrm{mother}}$ to keep both daughters

III. Apply jet grooming to get top decay candidates

IV. Choose pairing based on kinematic correlation, e.g. top mass, W mass and invariant subjet masses

24.06.2014

IV. check mass ratios

Cluster top candidate into 3 subjets j_1, j_2, j_3

Top quark momentum reconstruction

