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Examples of models with modified 
Higgs couplings to heavy flavors

Heavy flavors = bottom + charm



LHC Constraints



Where do we stand
Gazillion sigma evidence for a SM-
like Higgs boson

Higgs mass is 125.5 GeV, give or take  
a few hundred MeV.  

Strong evidence for couplings to SM 
gauge bosons but also some direct/
indirect evidence for couplings to 
fermions

Strong evidence for gluon fusion 
production but also some evidence for 
vector boson fusion production 



Simpler effective theory with 7 free parameters 

Assume flavor blind Higgs couplings + custodial symmetry + no extra particles

<ALL> 7 parameters are meaningfully constrained by current Higgs data

Standard Model limit: cv=cf=1, cgg=cγγ=czγ=0
 

Simplified 7 parameter effective Higgs Lagrangian  



7 parameter fit

 Islands of good fit with 
negative cu, cd, cl ignored here

Belusca-Maito, AA
arXiv: 1311.1113 + updates

 ∆χ2=χ2SM  -  χ2min  ≈ 5.5, 
with  7 d.o.f.

SM hypothesis is 
a perfect fit :-((( 

using only Higgs data:
Central values and 1σ uncertainties

http://arXiv.org/abs/arXiv:1311.1113
http://arXiv.org/abs/arXiv:1311.1113


7 parameter fit

Bounds on cu from top 
via tth constraints

Bounds on cd from bottom
mostly via Higgs width
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Very depressing

For some couplings,  limits strongly depend 
on assumptions

Dropping the assumption of flavor blindness 
gives more wiggle room for Higgs couplings

Moreover, in the presence of new light 
particles leading to an extra Higgs width, 
the limits on Higgs couplings can be relaxed

Let’s look in more detail at constraints on 
Higgs couplings to heavy flavors...

Where do we stand



Direct h→bb searches

Contribution to the total 
width (indirectly enters all 
other rates)

Small contribution to gg→h 
and h → γγ from bottom 
loop

Constraints on Higgs couplings to beesRelative signal strengths 

Flavor of Higgs 2014 measuring.higgs@cern.ch 
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Tevatron ATLAS CMS 
mH 125 GeV 125.5 GeV 125.7 GeV 

� = 
σ/σSM% 

1.44 +0.59
-0.56 1.30 ±0.18 0.80 ±0.14 

Naïve average: 0.98 ±0.11 

[arXiv:1303.6346] [ATLAS-CONF-2014-009] [CMS-PAS-HIG-13-005] 



Higgs couplings to bees
95%CL limits on Higgs couplings to down-type quarks

only cd free:
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Higgs couplings to bees
95%CL limits on Higgs couplings to down quarks

only cd free:

cd + extra width:

cd + cgg :
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For flavor blind Higgs 
couplings, same coupling cu 
to top and charm quark.  

Then, model independently,  
strongest constraints from  
tth searches

If cgg is absent, strongest 
constraints via  top loop  
contributions to gg→h and 
h → γγ

Constraints on Higgs couplings to charm
(flavor blind)

CMS Grand Combination 

•  Combination of CMS results: 
•  Hbb (7 TeV pub + 8 TeV prelim) 
•  Hττ (8 TeV prelim) 
•  SS 2-lep, 3-lep, 4-lep (8 TeV prelim) 
•  Hγγ (8 TeV prelim) 

•  Obs (exp) limit @ MH=125 GeV:   
 4.3xSM (1.8xSM). 

€ 

µcomb = 2.5−1.0
+1.1

33 
Comparable sensitivity of Hbb 

and multilepton channels!  

ATLAS Hbb Result (8 TeV) 

•  Combination of lepton+jets and dileptons: 
 Observed (expected) limit @ MH=125 GeV: 
4.1xSM (2.6xSM) 

•  Best-fit signal strength:  

ATLAS-CONF-2014-011 

€ 

µcomb =1.7±1.4



Higgs couplings to charm
(flavor blind)

95%CL limits on Higgs couplings to charm quarks
- if only cu free:

- if cu and cgg free:
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Leakage of h→cc into 
h→bb (not taken into 
account here)

Contribution to the total 
Higgs width (indirectly 
enters all other rates)

Tiny contribution to gg→h 
and h → γγ from charm 
loop

Constraints on Higgs couplings to charm

Rejecting c-jets
• Historically, most effort invested in light-jet rejection.!

• More recently, dedicated algorithms to reject c-jets.!

• Explicitly train NN / BDT against c-jets.!

• Take advantage of secondary vertex properties and 
topology from JetFitter (decay chain fit).

ε(B) R(c) R(light)
80% ~3 ~27
70% ~5.0 ~150
60% ~8.0 ~650
50% ~14 ~2500
30% ~78 ~40k

MV1 MV1c



Higgs couplings to charm
95%CL limits on Higgs couplings to charm quarks

- if only cc free:

- extra width has 
no important effect

- if cc and cgg free:
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Higgs couplings to charm
95%CL limits on Higgs couplings to charm quarks

- if only cc free:

- extra width has 
no important effect
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Models



Effective Theory



Effective Theory

Anything goes

Dimension 6 operators 
shifting Higgs 
couplings to quarks

If dimension 6 
Yukawas aligned with 
SM ones, flavor blind 
corrections to Higgs 
quark couplings



2HDM 



2HDM

Two Higgs doublet models predict light Higgs h 
couplings cv to WW and ZZ are suppressed:

real and (without loss of generality) non-negative. Thus

Φj =

(
φ+
j

(vj + ρj + iηj)
/√

2

)
, (11)

with v1 = v cos β and v2 = v sin β. Then, the neutral Goldstone boson is G0 = η1 cos β +
η2 sin β. The linear combination of the ηj orthogonal to G0 is the physical pseudoscalar

A = η1 sin β − η2 cos β. (12)

The physical scalars are a lighter h and a heavier H , which are orthogonal combinations
of ρ1 and ρ2:

h = ρ1 sinα− ρ2 cosα, (13)

H = −ρ1 cosα− ρ2 sinα. (14)

Notice that the Standard-Model Higgs boson would be

HSM = ρ1 cos β + ρ2 sin β

= h sin (α− β)−H cos (α− β). (15)

As shown by Carena and Haber [29], one can, without loss of generality, assume that
β is in the first quadrant, i.e. that both v1 and v2 are non-negative real; also, one can add
π to α, i.e. invert the sign of both the h and H fields, without affecting any physics. In
the tree-level MSSM, α is in the fourth quadrant, but this is not the case in the general
2HDM, therefore we will choose α to be either in the first or the fourth quadrant. We
will choose our independent variables to be tan β and α, which are single valued over the
allowed range.

It is conventionally assumed, in discussions of type I and type II 2HDMs, that the right-
handed leptons satisfy the same discrete symmetry as the diR and thus the leptons couple to
the same Higgs boson as the Q = −1/3 quarks. However, the Glashow–Weinberg theorem
does not require this, and there are two other possibilities. In the “lepton-specific” model,
the RH quarks all couple to Φ2 and the RH leptons couple to Φ1. In the “flipped” model,
one has the Q = 2/3 RH quarks coupling to Φ2 and the Q = −1/3 RH quarks coupling to
Φ1, as in the type II 2HDM, but now the RH leptons couple to Φ2. The phenomenology
of these models is, as we will see, quite different. In one of the earliest papers [30], the
names “Model III” and “Model IV” were used for the flipped and lepton-specific models,
respectively. The term “Model III”, however, has become associated with the 2HDM
with tree-level FCNCs (the subject of Chapter III). In other early papers [31, 32, 33],
the terms “Model I” and “Model II” were used for the lepton-specific and flipped models
respectively, and in even earlier works [34, 35], the terms IIA and IIB were used. More
recently [36], the terms type X and type Y were used for the lepton-specific and flipped
models. The four models which lead to natural flavour conservation are presented in
Table 1. It is straightforward to find a Z2 symmetry which will ensure that only these
interactions exist.

In a somewhat related work, Pich and Tuzón [37, 38] simply assumed that the Yukawa
coupling matrices of Φ1 and Φ2 in flavour space are proportional. This then eliminates
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Two SM SU(2) doublets that get a vev

CP-even neutral Higgs sector customarily described by 2 
masses mh, mH and 2 angles α,β. 

see e.g. Branco et al 1106.0034



2HDM

Type I Type II Lepton-specific Flipped
ξuh cosα/ sinβ cosα/ sin β cosα/ sinβ cosα/ sin β
ξdh cosα/ sinβ − sinα/ cos β cosα/ sinβ − sinα/ cosβ
ξ!h cosα/ sinβ − sinα/ cos β − sinα/ cosβ cosα/ sin β
ξuH sinα/ sinβ sinα/ sin β sinα/ sinβ sinα/ sinβ
ξdH sinα/ sinβ cosα/ cosβ sinα/ sinβ cosα/ cos β
ξ!H sinα/ sinβ cosα/ cosβ cosα/ cosβ sinα/ sinβ
ξuA cot β cot β cotβ cot β
ξdA − cot β tanβ − cotβ tan β
ξ!A − cot β tanβ tanβ − cot β

Table 2: Yukawa couplings of u, d, $ to the neutral Higgs bosons h,H,A in the four
different models. The couplings to the charged Higgs bosons follow Eq. 16.

Standard-Model coupling times cos(α−β). The coupling of the pseudoscalar, A, to vector
bosons vanishes.

In this section, we will summarize some of the work done on these four models, and
will follow with a more detailed discussion in the following sections.

There are relatively few studies which directly compare all four models. One of the
earliest papers to mention all four models was by Barger, Hewett and Phillips [30], who
studied the charged-Higgs phenomenology but assumed fairly light top quarks. The fa-
mous Higgs Hunter’s Guide [47] mentions all four, but concentrates only on the type I and
type II 2HDMs. Grossman [31] also discusses all four models, but focuses on models with
more than two doublets, and concentrates on the on the charged Higgs sector. Akeroyd
has several papers in which all four models are discussed. In an early paper with Stir-
ling [32], the phenomenology of the charged Higgs boson at LEP2 was analysed in each
model, and this was followed [33] by a study of the neutral sector at LEP2. In addition,
he looked [49] at LHC phenomenology in all four models, focusing in particular on the
Higgs branching ratios to γγ and ττ . More recently, Barger, Logan and Shaughnessy [50]
performed a comprehensive analysis of the couplings in all models with natural flavour
conservation, including doublets and singlets; the four models appear as special cases.

There are two recent papers comparing Higgs decays in all four models. Aoki et al. [36]
study the decays of the Higgs bosons in each model, summarize current phenomenological
constraints and look at methods of distinguishing the models at colliders, although they
focus on the type II and lepton-specific models and assume that the heavy Higgs bosons
are not too heavy (typically with masses below 200 GeV). Arhrib et al. [51] study the
decays of the light Higgs in each model, although the main point of their work concerns
double-Higgs production at the LHC.

Recently, a new computer code was written by Eriksson et al. [52]. The code allows one
to input any of the different Z2 symmetries, or even more general couplings, and calculates
all two-body and some three-body Higgs boson decays, and the oblique parameters S, T
and U and other collider constraints.

The least studied model is the flipped model (the word was coined in Ref. [50]); even
works that discuss all four models generally focus less on this structure than the others.
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Two Higgs doublet models predict Higgs couplings 
cv to WW and ZZ are suppressed:

Fermion couplings in general arbitrary. 
But to avoid FCNC in natural way, one needs 
discrete symmetry such that only one Higgs 
doublet couples to ups, downs, and lepton. 

4 possibilities 



2HDM
Two Higgs doublet models predict Higgs couplings 
cv to WW and ZZ are suppressed:

Fermion couplings in general arbitrary. 
But to avoid FCNC in natural way, one needs 
discrete symmetry such that only one Higgs 
doublet couples to ups, downs, and lepton. 

4 possibilities 



2HDM
Two Higgs doublet models predict Higgs couplings 
cv to WW and ZZ are suppressed:

- deviation in fermionic Higgs coupling larger than 
in bosonic ones (O(δ) vs O(δ^2))
- possible to enhance only one coupling (only 
bottom or only top/charm) 



So, in flavor blind 
scenario large deviations 
of Higgs couplings to 
heavy flavors trivially 
realized in 2HDM 

What about splitting top 
and charm couplings? 

2HDM + MFV studied in 
Dery et al 1304.6727

2HDM

6

matrices are respectively

Mu
ij =

v√
2

(

λu
ij + guij

v2

2Λ2

)

, (16)

Y u
ij =

1√
2

(

λu
ij + 3guij

v2

2Λ2

)

. (17)

We assume for convenience that λu and gu are aligned
and that only gu22 "= 0 in the mass basis. In this case the
deviation from the SM Higgs to charm coupling is simply

cc = 1 +
3

2

v2

Λ2

gu22
yc

, (18)

where we defined yc ≡
√
2mc/v $ 3.6 × 10−3, mc be-

ing the running charm quark at the Higgs mass scale [5].
Naive dimensional analysis suggests that the effective de-
scription breaks down at the scale Λ for gu22 ∼ 16π2. As
a function of the Higgs to charm coupling modification
this scale is

Λ $
63TeV
√

|cc − 1|
. (19)

Assuming the upper bound on cc in Eq. (8), we find
that the cutoff scale can be as high as Λ ! 38 (25)TeV
for case (a) ((b)). These scales are sufficiently high
so that it is possible that the associated new physics
dynamics at the cut-off leaves no direct signatures at
the LHC other than a significantly enhanced Higgs to
charm coupling.

We now focus on some specific new physics scenarios.
Consider a 2HDM with MFV [29, 30]. In this setup, the
MFV ansatz allows to write the SM-like Higgs couplings
to fermions as an expansion in the spurionic parameters
which break the flavor symmetry group. Following nota-
tions of Ref. [31], the charm and top quark couplings to
the SM-like Higgs boson are

ct $ AU
S +BU

S y
2
t + CU

S y2b |Vtb|2 ,

cc $ AU
S +BU

S y
2
c + CU

S

(

y2b |Vcb|2 + y2s |Vcs|2
)

, (20)

where yi ≡
√
2mi/v, Vij are the CKM matrix elements

and AU
S , BU

S and CU
S are O(1) coefficients. O(y4i )

and higher contributions were neglected in Eq. (20).
Assuming for instance AU

S $ 4 and BU
S $ −3, Eq. (20)

yields cc $ 4 and ct $ 1. Moreover, in the limit where
all the heavier Higgs states are decoupled, cV $ 1 [32].
Therefore, a significantly larger charm coupling, with all
other couplings close to their SM values, can be obtained
at the expense of a mild cancellation, at the level of one
part in few, among unknown O(1) coefficients.

Consider now a model with one Higgs doublet in the
GMFV framework [28], in which large top Yukawa ef-
fects are resummed to all orders. We define our no-
tations in Appendix B. In the mass basis, the up-type

quark mass and linear Higgs interaction matrices become
Mu $ λv/

√
2×diag

(

yu(γ + ζx), yc(γ + ζx), 1 + rx
)

and
to leading order in λC $ 0.23, the sine of the Cabibbo
angle and in x ≡ v2/(2Λ2) , with Λ the GMFV scale, we
find

Y u $
λ√
2





yu(γ + 3ζx) 0 2λ3
C(κ− αr)x

0 yc(γ + 3ζx) 2λ2
C(κ− αr)x

2yuλ3
Cwx 2ycλ2

Cwx 1 + 3rx



 ,

(21)

where w ≡ η− γr+α∗(ζ − γr). Equation (21) yields the
following Higgs to charm coupling ratio in GMFV and in
the SM

cc = λ(γ + 3ζx) $ 1 + 2λζx . (22)

As λ, ζ ∼ O(1) and x ! 1, cc > 1 can be obtained for
not too small value of x. As in all the above cases the
coupling enhancement is at the cost of a moderate acci-
dental cancelation among O(1) couplings. Note that the
GMFV scale is constrained through the off-diagonal en-
tries in Eq. (21) by a series of flavor changing observables
analysed in Ref. [15]. However, constraints from single-
top production, neutral D meson mixing, flavor changing
top decay t → hj and neutron electric dipole moment
(assuming O(1) phases in the fundamental parameters)
are satisfied for x ! 1 since GMFV contributions are
suppressed by λ2

C , λ
5
C , λ

2
C and yuλ6

C , respectively.
Consider finally composite pNGB Higgs models. Mod-

ifications of Higgs couplings to up-type quark in compos-
ite Higgs models is parameterized by the effective La-
grangian in Eq. (15) with Λ remplaced by the global
symmetry breaking scale f , the “decay constant” of
the pNGB Higgs [33]. The dimension six coefficient in
Eq. (15) receives two types of contributions from the
composite dynamics, gu = guh + guψ. The first term
is a direct contribution from the non-linear Higgs dy-
namics and it is aligned with the marginal operator
guh ∝ λu. The second term arises from the presence of
light fermionic resonances from the strong dynamics. It
is generically misaligned with λu and its entries scale like
guψ ∼ λuε2(gψf/mψ)2, where gψ < 4π and mψ are respec-
tively a typical strong coupling and a resonance mass of
the strong dynamics, and ε < 1 is the degree of the com-
positeness of the SM quarks. Neglecting flavor violation
for simplicity and assuming relatively composite right-
handed charm quark, the Higgs to charm coupling is [34]

cc $ 1 +O
(

v2

f2

)

+O

(

ε2c
g2ψv

2

m2
ψ

)

, (23)

where εc is the right-handed charm degree of compos-
iteness. The symmetry breaking scale f is constrained
by EW precision parameters to be f " 750GeV (see
e.g. [35, 36] for a recent analysis). Hence, in the ab-
sence of light composite resonances associated with the
charm quark, the Higgs to charm coupling is not expected
to deviate significantly from its SM value. However,

With some cancelation 
between O(1) 
coefficients  A and B 
one can get cc order 
few



Composite Higgs



Composite Higgs Model

Global symmetry 
G = SO(5)
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MPL

H = SO(4)
f=TeV G/H

dynamically generated

composite         Goldstone bosons = Higgs doubletPseudo

tL,R

W±Z

Like QCD: (techni)quarks, strong dynamics, global symmetry
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6

Kaplan,Georgi,Dimopoulos,Dugan,Galison ’84; Agashe,Contino,DaRold,Pomarol ’05 -’07

4

New “quarks”

Composite states 
(incl. scalars)

4 naturally light



Higgs = Goldstone Boson of  SO(5)/SO(4)
described by angular variable sin
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Composite Higgs Model



The couplings of the SM top-quark, q
L

= (t
L

, b
L

) and t
R

, to the strong sector are defined by their

embedding into the external SO(5)-multiplets  
L,R

since, according to Eq. (46), this tells us to

which operators they couple to. For the case  
L,R

2 5, this is uniquely given by

 
L

=
1p
2
(b

L

,�ib
L

, t
L

, it
L

, 0) ,  
R

= (0, 0, 0, 0, t
R

) . (52)

Plugging Eq. (52) into Eq. (50), expanding around the vacuum ⌃ = (0, 0, 0, s
h

, c
h

) (that can be

achieved from Eq. (49) after a proper SU(2) rotation) and using Eq. (51), one obtains Eq. (9) and

Eq. (11).

Appendix B

rL� rR 1 5 10 14

5 m = n = 0 m = 0, n = 1 m = n = 0 m = n = 0

10 � m = n = 0
(i) m = 0, n = 1
(ii) m = n = 0

m = 0, n = 1

14 m = 0, n = 1
(i) m = n = 0

(ii) m = 0, n = 2
m = 0, n = 1

(i) m = 0, n = 1
(ii) m = 1, n = 1

Table 1: Values of m,n in Eq. (57) for di↵erent embeddings.

In this appendix, we list the analog of the e↵ective lagrangian Eq. (9) for di↵erent embeddings

of t
L

and t
R

in SO(5) representations, rL and rR respectively (Eq. (9) corresponds to rL,R = 5).

We split the lagrangian in three parts, Le↵ = LLL
e↵ + LRR

e↵ + LLR
e↵ . For the LL and RR part, we

have for the 10 = 6� 4 (under SO(4)):

rL = 10 : LLL
e↵ = b̄

L

6p
✓
⇧bL

0 +
1

2
c2
h

⇧bL
2 (p)

◆
b
L

+ t̄
L

6p
✓
⇧tL

0 +

✓
1

2
c2
h

� 1

4
s2
h

◆
⇧tL

2 (p)

◆
t
L

,

rR = 10 : LRR
e↵ = t̄

R

6p
✓
⇧tR

0 � 2c
h

⇧tR
1 (p) +

1

4
s2
h

⇧tR
2 (p)

◆
t
R

, (53)

where

⇧tL,tR
0 = 1 + ⇧L,R

Q4
, ⇧tR

1 = �1

2
⇧̃R

Q6
, ⇧tL,tR

2 = 2
⇣
⇧L,R

Q6
� ⇧L,R

Q4

⌘
, (54)

and ⇧bL
0,2 = ⇧tL

0,2. We have included a term contracted with the Levi-Civita tensor that in the

corresponding of Eq. (47) reads, Q̄(6)
R ij

6p ⇧̃R

Q6
(p)Q(6)

Rkl

✏ijkl. For the 14 = 9� 4� 1, we have

rL = 14 : LLL
e↵ = b̄

L

6p
✓
⇧bL

0 +
1

2
c2
h

⇧bL
2 (p)

◆
b
L

+ t̄
L

6p
✓
⇧tL

0 +

✓
1

2
c2
h

� 1

4
s2
h

◆
⇧tL

2 (p) + s2
h

c2
h

⇧tL
4 (p)

◆
t
L

,

rR = 14 : LRR
e↵ = t̄

R

6p
✓
⇧tR

0 +

✓
4

5
c2
h

+
1

20
s2
h

◆
⇧tR

2 (p) +
1

20

�
4c2

h

� s2
h

�2
⇧tR

4 (p)

◆
t
R

, (55)
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Higgs couplings to heavy flavors depend on how 
quarks are embedded into representations of 
global symmetry  

Current limits on f typically exclude large effects

But for non-minimal  representations one can 
realize large corrections 

Composite Higgs Model

cf =
1 + 2m� (1 + 2m+ n)v2/f2

p
1� v2/f2



Take-away

Higgs couplings to heavy flavors generically 
constrained to be close to SM, however 
there are loopholes.

It is fairly straightforward to modify the 
coupling to bottom quarks by a large amount 
(e.g 2HDM). 

Modifying the coupling to charm quarks by a 
large amount requires more model gymnastics 
but is possible.
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