CP Violation in the Higgs Sector

Joachim Brod

Workshop "The Flavor of Higgs"

Weizmann Institut of Science, Tel Aviv, June 26, 2014

Partially based on work by

Brod, Haisch, Zupan - JHEP 1311 (2013) 180

Harnik, Martin, Okui, Primulando, Yu - Phys.Rev. D88 (2013) 7, 076009

Bishara, Grossman, Harnik, Robinson, Shu, Zupan - JHEP 1404 (2014) 084

Delaunay, Perez, de Sandes, Skiba - Phys.Rev. D89 (2014) 035004

Chen, Falkowski, Low, Vega-Morales - arXiv:1405.6723

Dolan, Harris, Jankowiak, Spannowski - arXiv:1406.3322

Joachim Brod (University of Cincinnati)

CP Violation in the Higgs Sector

Motivation

"Es ist schon alles gesagt, nur noch nicht von allen"

"Everything has been said already, though not yet by everybody"

[Karl Valentin]

Motivation – I

- We have found New Physics (NP) at the LHC! \Rightarrow The Higgs
- Yet, we still need to find NP beyond the Standard Model (BSM)
- The discovery of the/a Higgs boson opens a new window to NP BSM
- CP violation
 - In the quark sector consistent with SM
 - Already probe scales of up to $\mathcal{O}(10^4)$ TeV
 - CP violation in the Higgs sector?
- What do we know already / what can we learn in the future?

Motivation – II

- Higgs couplings completely determined in the SM
- That is why we need to measure them!
- For instance, in the SM

$$\mathcal{L}_{Y} = -\sum_{i} \frac{y_{i}}{\sqrt{2}} \bar{f}_{i} f_{i} h$$

- SM Yukawas are
 - flavor-diagonal
 - real (CP-conserving)

[CMS-PAS-HIG-13-005]

SM EFT

• No BSM particles at LHC \Rightarrow use EFT with only SM fields

[See, e.g., Buchmüller et al. 1986, Grzadkowski et al. 2010]

$$\mathcal{L}^{\mathsf{eff}} = \mathcal{L}^{\mathsf{SM}} + \mathcal{L}^{\mathsf{dim.6}} + \dots$$

For instance,

$$\mathcal{L}^{\mathsf{eff}} \supset -\left(lpha + eta rac{\mathcal{H}^{\dagger}\mathcal{H}}{\Lambda^2}
ight) (ar{\mathcal{Q}}_L t_R \mathcal{H}) + \mathsf{h.c.}$$

Inserting $H = (0, (v + h)/\sqrt{2})^T$ yields

$$\mathcal{L}^{\text{eff}} \supset -\underbrace{\left(\alpha + \beta \frac{v^2}{2\Lambda^2}\right)}_{\equiv y_t^{\text{SM}}} \underbrace{\frac{v}{\sqrt{2}} \overline{t}_L t_R}_{\equiv y_t^{\text{SM}} + 2\beta \frac{v^2}{2\Lambda^2}} \underbrace{\frac{h}{\sqrt{2}} \overline{t}_L t_R}_{\equiv y_t^{\text{SM}} + 2\beta \frac{v^2}{2\Lambda^2}}} \underbrace{\frac{h}{\sqrt{2}} \overline{t}_L t_R}_{\equiv y_t^{\text{SM}} + 2\beta \frac{v^2}{2\Lambda^2}} \underbrace{\frac{h}{\sqrt{2}} \overline{t}_L t_R}_{\equiv y_t^{\text{SM}} + 2\beta \frac{v^2}{2\Lambda^2}}} \underbrace{\frac{h}{\sqrt{2}} \overline{t}_L t_R}_{E} t_R}_{E} \underbrace{\frac{h}{\sqrt{2}} \overline{t}_L t_R}$$

- α , β can be complex
- Test with collider and low-energy experiments

CP violation – reminder

- In the SM, only CP violation comes from electroweak sector (CKM phase)
- Switch off weak interactions:

 $K_1 = rac{1}{\sqrt{2}} (K^0 + ar{K}^0), \ K_2 = (K^0 - ar{K}^0)/\sqrt{2}$

are CP-even / CP-odd eigenstates

- Weak interactions lead to a superposition via box diagrams K_L and K_S
- They are not CP eigenstates
- Analogy would be scalar h^0 and pseudoscalar A^0 Higgs in 2HDM
- If Higgs potential is not CP symmetric, lightest mass eigenstate is superposition $p h^0 + q A^0$

Outline

- CP violation in htt
- CP violation in hbb
- CP violation in $h\tau\tau$
- CP violation in hVV couplings
- Summary

From $h \rightarrow \gamma \gamma$...

• In the SM, Yukawa coupling to fermion f is

$$\mathcal{L}_{Y} = -\frac{y_{f}}{\sqrt{2}}\bar{f}fh$$

We will look at modification

$$\mathcal{L}'_{Y} = -rac{y_{f}}{\sqrt{2}} \left(\kappa_{f}\,\overline{f}\,f + i\widetilde{\kappa}_{f}\,\overline{f}\,\gamma_{5}f
ight)h$$

• New contributions will modify Higgs production cross section and decay rates

... to electric dipole moments

- Attaching a light fermion line leads to EDM
- Indirect constraint on *CP*-violating Higgs coupling
- SM "background" enters at three- and four-loop level
- Complementary to collider measurements
- Constraints depend on additional assumptions

Electric Dipole Moments (EDMs) – Generalities

[Adapted from Pospelov et al., 2005]

Anomalous *htt* **couplings**

Constraints from $gg \rightarrow h$

- $\bullet \ gg \to h \ {\rm generated} \ {\rm at} \ {\rm one} \ {\rm loop}$
- Have effective potential

$$V_{\rm eff} = -c_g \, \frac{\alpha_s}{12\pi} \, \frac{h}{v} \, G^a_{\mu\nu} \, G^{\mu\nu,a} - \tilde{c}_g \, \frac{\alpha_s}{8\pi} \, \frac{h}{v} \, G^a_{\mu\nu} \, \widetilde{G}^{\mu\nu,a}$$

c_g, č_g given in terms of loop functions
 κ_g ≡ c_g/c_{g,SM}, κ̃_g ≡ 3č_g/2c_{g,SM}

$$\frac{\sigma(\text{gg} \to h)}{\sigma(\text{gg} \to h)_{\text{SM}}} = |\kappa_{\text{g}}|^2 + |\tilde{\kappa}_{\text{g}}|^2 = \kappa_t^2 + 2.6 \,\tilde{\kappa}_t^2 + 0.11 \,\kappa_t \left(\kappa_t - 1\right)$$

Constraints from $h \rightarrow \gamma \gamma$

- $h \rightarrow \gamma \gamma$ generated at one loop
- Have effective potential

$$V_{\rm eff} = -c_{\gamma} \frac{\alpha}{\pi} \frac{h}{v} F_{\mu\nu} F^{\mu\nu} - \tilde{c}_{\gamma} \frac{3\alpha}{2\pi} \frac{h}{v} F_{\mu\nu} \widetilde{F}^{\mu\nu}$$

$$\frac{\Gamma(h \to \gamma \gamma)}{\Gamma(h \to \gamma \gamma)_{\rm SM}} = |\kappa_{\gamma}|^2 + |\tilde{\kappa}_{\gamma}|^2 = (1.28 - 0.28 \,\kappa_t)^2 + (0.43 \,\tilde{\kappa}_t)^2$$

LHC input

- Naive weighted average of ATLAS, CMS $\kappa_{g,\rm WA}=0.91\pm0.08\,,\quad\kappa_{\gamma,\rm WA}=1.10\pm0.11$
- $\bullet~{\rm We~set}~\kappa^2_{g/\gamma,{\rm WA}}=|\kappa_{g/\gamma}|^2+|\tilde\kappa_{g/\gamma}|^2$

[CMS-PAS-HIG-13-005]

Electron EDM

- EDM induced via "Barr-Zee" diagrams [Weinberg 1989, Barr & Zee 1990]
- $|d_e/e| < 8.7 \times 10^{-29} \, \mathrm{cm}$ (90% CL) [ACME 2013] with ThO molecules
- Constraint on $\tilde{\kappa}_t$ vanishes if Higgs does not couple to electron

ACME result on electron EDM

Order of Magnitude Smaller Limit on the Electric Dipole Moment of the Electron

The ACME Collaboration⁺: J. Baron¹, W. C. Campbell², D. DeMille³, J. M. Doyle¹, G. Gabrielse¹, Y. V. Gurevich^{1,++}, P. W. Hess¹, N. R. Hutzler¹, E. Kirilov^{1,#}, I. Kozynyev^{1,†}, B. R. O'Leary¹, C. D. Panda¹, M. F. Parsons¹, E. S. Petrik¹, B. Spann¹, A. C. Vutha¹, and A. D. West¹

The Standard Model (SM) of particle physics fails to explain dark matter and why matter survived annihilanotion with antimatter following the Big Bang. Extensions to the SM, such as weak-scale Supersymmetry, may explain one or both of these phenomena by positing the existence of new particles and interactions that are asymmetric under time-reversal (T). These theories nearly always predict a small, yet potentially measurable $(10^{-27}-10^{-30} e \text{ cm})$ electron electric dipole moment (EDM, d_e), C which is an asymmetric charge distribution along the spin (\vec{S}) . The EDM is also asymmetric under T. Using the polar molecule thorium monoxide (ThO), we measure $d_e = (-2.1 \pm 3.7_{\text{stat}} \pm 2.5_{\text{syst}}) \times 10^{-29} e \text{ cm. This corresponds}$ to an upper limit of $|d_e| < 8.7 \times 10^{-29} e$ cm with 90 percent confidence, an order of magnitude improvement in sensitivity compared to the previous best limits. Our result constrains T-violating physics at the TeV energy scale. The exceptionally high internal effective electric field (\mathcal{E}_{eff}) of The exceptionally high internal effective electric field (\mathcal{E}_{eff}) of heavy neutral atoms and molecules can be used to precisely probe for d_r via the energy shift $U = -\vec{d_r} \cdot \vec{\mathcal{E}}_{eff}$, where $\vec{d_r} = d_r \vec{S}/(\hbar/2)$. Valence electrons travel relativistically near the heavy nucleus, is prepared using optical pumping and state preparation lasers. Parallel detertic $(\tilde{\mathcal{E}})$ and magnetic $(\tilde{\mathcal{E}})$ field scent torques on the electric and magnetic dipole moments, causing the spin vector to precess in the zy plane. The precession angle is measured with a readout laser and fluorescence detection. A change in this angle as $\tilde{\mathcal{E}}_{dif}$ is reversed is proportional to d_c .

FIG. 1. Schematic of the apparatus (not to scale). A collimated pulse of ThO molecules enters a magnetically shielded region. An aligned spin

Expect order-of-magnitude improvements!

Workshop "Fundamental Physics at the Intensity Frontier" [arXiv:1205.2671 [hep-ex]]

Neutron EDM

• Three operators; will mix, need to perform RGE analysis

$$\frac{d_n}{e} = \left\{ (1.0 \pm 0.5) \left[-5.3 \kappa_q \tilde{\kappa}_t + 5.1 \cdot 10^{-2} \kappa_t \tilde{\kappa}_t \right] \right\}$$

+
$$(22 \pm 10) \, 1.8 \cdot 10^{-2} \, \kappa_t \tilde{\kappa}_t \Big\} \cdot 10^{-25} \, \mathrm{cm}$$
.

- $w \propto \kappa_t \tilde{\kappa}_t$ subdominant
- $|d_n/e| < 2.9 imes 10^{-26} \, {
 m cm}$ (90% CL) [Baker et al., 2006]

Combined constraints on top coupling

- Assume SM couplings to electron and light quarks
- Future projection for 3000fb⁻¹ @ high-luminosity LHC [J. Olsen, talk at Snowmass Energy Frontier workshop]
- Factor 90 (300) improvement on electron (neutron) EDM [Fundamental Physics at the Energy Frontier, arXiv:1205.2671]

Combined constraints on top couplings

- Set couplings to electron and light quarks to zero
- Contribution of Weinberg operator will lead to strong constraints in the future scenario

Anomalous *hbb* couplings

Collider constraints

- Modifications of $gg \to h$, $h \to \gamma \gamma$ due to $\kappa_b \neq 1$, $\tilde{\kappa}_b \neq 0$ are subleading
- $\bullet\,\Rightarrow\,$ Main effect: modifications of branching ratios / total decay rate

$$Br(h \to b\bar{b}) = \frac{(\kappa_b^2 + \tilde{\kappa}_b^2)Br(h \to b\bar{b})_{SM}}{1 + (\kappa_b^2 + \tilde{\kappa}_b^2 - 1)Br(h \to b\bar{b})_{SM}}$$
$$Br(h \to X) = \frac{Br(h \to X)_{SM}}{1 + (\kappa_b^2 + \tilde{\kappa}_b^2 - 1)Br(h \to b\bar{b})_{SM}}$$

• Use naive averages of ATLAS / CMS signal strengths $\hat{\mu}_X$ for $X = b\bar{b}$, $\tau^+\tau^-$, $\gamma\gamma$, WW, ZZ

• $\hat{\mu}_X = Br(h \to X)/Br(h \to X)_{SM}$ up to subleading corrections of production cross section

RGE analysis of the *b*-quark contribution to EDMs

- EDMs suppressed by small bottom Yukawa
- \approx 3 scale uncertainty in CEDM Wilson coefficient
- Two-step matching at M_h and m_b :

- Integrate out Higgs
- $\mathcal{O}_1^q = \bar{q}q\,\bar{b}i\gamma_5 b$

Mixing into

Rooooa

- Mixing into
- $\mathcal{O}_4^q = \bar{q}\sigma_{\mu\nu}T^aq\,\bar{b}i\sigma^{\mu\nu}\gamma_5T^ab$

Matching onto

•
$$\mathcal{O}_6^q = -\frac{i}{2} \frac{m_b}{g_s} \bar{q} \sigma^{\mu\nu} T^a \gamma_5 q G^a_{\mu\nu}$$

RGE analysis of the *b*-quark contribution to EDMs

Combined constraints on bottom couplings

- Assume SM couplings to electron and light quarks
- Future projection for 3000fb⁻¹ @ high-luminosity LHC
- Factor 90 (300) improvement on electron (neutron) EDM

Combined constraints on bottom couplings

- Set couplings to electron and light quarks to zero
- Contribution of Weinberg operator will lead to competitive constraints in the future scenario

Anomalous $h\tau\tau$ couplings

CP violation in $h \rightarrow \tau^+ \tau^-$

[Harnik et al., Phys.Rev. D88 (2013) 7, 076009 [arXiv:1308.1094[hep-ph]]]

•
$$\mathcal{L}'_{Y} \supset -\frac{y_{\tau}}{\sqrt{2}}h\bar{\tau}(\cos\Delta + i\gamma_{5}\sin\Delta)\tau$$

- Consider the decay $h \to \tau^+ \tau^-$ where $\tau \to \rho \nu$ and $\rho^\pm \to \pi^\pm \pi^0$
- $\tau^+ \tau^-$ spin correlation sensitive to the CP phase Δ
- au spin information encoded in momentum distribution of its decay products

- Using some well-justified approximations, write differential cross section as c - A cos(Θ - 2Δ)
- $\bullet\,$ Here, Θ depends on the final-state momenta
- $\bullet\,$ Find Δ as minimum in the Θ distribution

CP violation in $h \rightarrow \tau^+ \tau^-$

- At ILC can reconstruct both neutrino momenta
- At LHC use "collinear approximation" [Ellis et al., Nucl. Phys. B (297) 221 (1988)]
- Accuracy of 4.4° (ILC), 11.5° (high-lumi LHC)

Combined constraints on τ couplings

- Effect of modified $h\tau\tau$ coupling on κ_{γ} , $\tilde{\kappa}_{\gamma}$ again subleading
- Get simple constraint from modification of branching ratios

[Harnik et al., Phys.Rev. D88 (2013) 7, 076009 [arXiv:1308.1094[hep-ph]]]

Radiative Higgs decays

More EFT

$$\mathcal{L}^{\mathsf{eff}} = \mathcal{L}^{\mathsf{SM}} + \mathcal{L}^{\mathsf{dim.6}} + \dots$$

$$egin{aligned} Q_{HD} &\equiv (H^{\dagger}D_{\mu}H)^{*}(H^{\dagger}D_{\mu}H)\,, \ Q_{HWB} &\equiv (H^{\dagger}\sigma^{a}H)W^{a}_{\mu
u}B^{\mu
u}\,, \end{aligned}$$

$$\begin{split} Q_{HW} &\equiv (H^{\dagger}H) W^{a}_{\mu\nu} W^{a\mu\nu} \,, \\ Q_{H\widetilde{W}} &\equiv (H^{\dagger}H) \widetilde{W}^{a}_{\mu\nu} W^{a\mu\nu} \,, \\ Q_{HB} &\equiv (H^{\dagger}H) B_{\mu\nu} B^{\mu\nu} \,, \\ Q_{H\widetilde{B}} &\equiv (H^{\dagger}H) \widetilde{B}_{\mu\nu} B^{\mu\nu} \,, \\ Q_{H\widetilde{W}B} &\equiv (H^{\dagger}\sigma^{a}H) \widetilde{W}^{a}_{\mu\nu} B^{\mu\nu} \,. \end{split}$$

• $Q_{HD} \propto S$, $Q_{HWB} \propto T$

• Test with collider and low-energy experiments

$h \rightarrow \gamma \gamma$ vs. $h \rightarrow ZZ$

- \tilde{c} and \tilde{c}_{ZZ} couplings are CP odd
- CP violation only in dim.-5 operators, generated at one loop
- $h \rightarrow ZZ$: CP-conserving contribution generated at tree level \Rightarrow Need $\mathcal{O}(10^{-2}) - \mathcal{O}(10^{-3})$ measurement to see CP violation
- h → γγ: CP-conserving contribution generated at one loop
 ⇒ Large O(1) CP-violating effects are possible

 $h \rightarrow ZZ^* \rightarrow 4\ell$

[CMS-HIG-13-002]

- f_{a3} related to $Z_{\mu\nu}\widetilde{Z}^{\mu\nu}$ interaction
- f_{a3} < 0.47 @ 95% CL

$pp \rightarrow h + 2j$ in gluon fusion

- In VBF $hZ_{\mu}Z^{\mu}$ vs. $hZ_{\mu\nu}\widetilde{Z}^{\mu\nu}$
- In gluon fusion $hG_{\mu\nu}\widetilde{G}^{\mu\nu}$ vs. $hG_{\mu\nu}\widetilde{G}^{\mu\nu}$
- In both cases main sensitivity from angular correlations of tagging jets
- Use $\sin(|\Delta \phi_{jj}|/2)$ [Del Duca et al., 2006; Klamke et al., 2007]
- The model: $\mathcal{L} = \cos(\alpha) y_f \bar{\psi}_f \psi_f h + \sin(\alpha) \tilde{y}_f \bar{\psi}_f i \gamma_5 \psi_f h$

More recent ideas

$h\to\gamma\gamma$ with converted photons

[Bishara et al., JHEP 1404 (2014) 084 [arXiv:1312.2955[hep-ph]]]

- Total rate $\Gamma_{h\to\gamma\gamma}$ always quadratic in the CP-violating parameter
 - Rate is always enhanced by CPV contribution
- Construct an observable in $h\gamma\gamma$ linear in the CP-violating parameter \Rightarrow differential rate
- Effects can be $\mathcal{O}(1)$
- The measurement is very challenging

Limits from electron EDM

• Constraint on $y_e \cdot \tilde{c}$ from electron EDM

- $\tilde{c} \lesssim 10^{-3}$ for SM electron Yukawa [McKeen et al., Phys.Rev. D86 (2012) 113004 [arXiv:1208.4597[hep-ph]] updated with new ACME result]
- Vanishes if Higgs does not couple to electron, or if there are cancellations

 $h \rightarrow \gamma \gamma$ – how it works (in principle)

- Higgs is a scalar no information on \tilde{c} from angular distribution of photons
- Need to measure photon polarization
- For perfect linear polarization analyzers

$$\frac{d\Gamma}{d\phi} = \frac{2}{\pi} \Gamma_{h \to \gamma\gamma} \underbrace{\cos^2(\phi + \xi)}_{\supset \hat{c}\tilde{c} \sin 2\phi}$$

- Here $\xi \equiv \tan^{-1}(\tilde{c}/\hat{c})$
- Shift in the modulation of the rate, linear in ξ

$h \rightarrow \gamma \gamma$ – how it works (in practice)

- Need to measure opening angles of $\mathcal{O}(10^{-4})$ to $\mathcal{O}(10^{-3})$
- At the limit of ATLAS / CMS pixel detectors
- Single angle carries information about CPV, can take φ

$h \rightarrow \gamma \gamma$ – how it works (maybe in the future)

• Differential spectrum has following form

$$rac{d {\sf \Gamma}_{{\sf H}{\sf B}{\sf H}}}{d arphi} = {\cal A} + {\cal B} \cos(2 \xi + 2 arphi)$$

- Possible to find large effects in parts of phase space
- Choose cuts that select phase space regions with large effects
- Unrealistic for LHC

Other Observables – $q \bar{q} ightarrow Wh$

[Delaunay et al., Phys.Rev. D89 (2014) 035004 [arXiv:1308.4930[hep-ph]]]

- Define up-down asymmetry $A_{CP} = \frac{N_{\uparrow} N_{\downarrow}}{N_{\uparrow} + N_{\downarrow}}$
- At Tevatron $A_{CP}^{p\bar{p}}\simeq -23\%\ldots -6.3\%$
- Initial state symmetric at LHC need additional cuts

Other Observables – $h \rightarrow \ell^+ \ell^- \gamma$

[Chen et al., arXiv:1405.6723[hep-ph]]

- Analoguous to "direct CP violation" in flavor physics
- ullet Instead of triple products use "strong" phases of off-shell Z, γ
- Weak phases from coefficients in

 $\mathcal{L} \supset h/v(A_1F^{\mu\nu}Z_{\mu\nu} + A_2F^{\mu\nu}\tilde{Z}_{\mu\nu} + A_3F^{\mu\nu}F_{\mu\nu} + A_4F^{\mu\nu}\tilde{F}_{\mu\nu})$

• Lepton A_{FB} is CPV observable

Other Observables – $h \rightarrow \ell^+ \ell^- \gamma$

- ... may be seen at high-luminosity LHC
- Can consider Z final state
- Or cross diagram to get $A_{FB}(e^+e^-
 ightarrow hZ)$
- Or look at $A_{FB}(q\bar{q} \rightarrow hZ) 100$ TeV collider?

- CP violation in the Higgs sector is not so easy to see
- EDMs give strong bounds on CP violation
 - ... but depend on additional assumptions
- Will have huge experimental progress in the future

Outlook

Appendix

Mercury EDM

- Diamagnetic atoms also provide constraints
- $|d_{\rm Hg}/e| < 3.1 imes 10^{-29} \, {\rm cm}$ (95% CL) [Griffith et al., 2009]
- Dominant contribution from CP-odd isovector pion-nucleon interaction

$$\frac{d_{\rm Hg}}{e} = -(4^{+8}_{-2}) \left[3.1 \,\tilde{\kappa}_t - 3.2 \cdot 10^{-2} \,\kappa_t \tilde{\kappa}_t \right] \cdot 10^{-29} \,\rm cm$$

• Again, $w \propto \kappa_t \tilde{\kappa}_t$ subdominant, but does not vanish if Higgs does not couple to light quarks

Constraints from EDMs

- Contributions to EDMs suppressed by small Yukawas; still get meaningful constraints in future scenario
- For electron EDM, simply replace charges and couplings
- Have extra scale $m_b \ll M_h \Rightarrow \log m_b^2/M_h^2$

$$\begin{split} d_q(\mu_W) &\simeq -4 e \, Q_q \, N_c \, Q_b^2 \, \frac{\alpha}{(4\pi)^3} \sqrt{2} G_F \, m_q \, \kappa_q \tilde{\kappa}_b \, \frac{m_b^2}{M_h^2} \left(\log^2 \frac{m_b^2}{M_h^2} + \frac{\pi^2}{3} \right) \,, \\ \tilde{d}_q(\mu_W) &\simeq -2 \, \frac{\alpha_s}{(4\pi)^3} \sqrt{2} G_F \, m_q \, \kappa_q \tilde{\kappa}_b \, \frac{m_b^2}{M_h^2} \left(\log^2 \frac{m_b^2}{M_h^2} + \frac{\pi^2}{3} \right) \,, \\ w(\mu_W) &\simeq -g_s \, \frac{\alpha_s}{(4\pi)^3} \, \sqrt{2} G_F \, \kappa_b \tilde{\kappa}_b \, \frac{m_b^2}{M_h^2} \left(\log \frac{m_b^2}{M_h^2} + \frac{3}{2} \right) \,. \end{split}$$