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Figure 2. Higgs and top (pole) mass determinations for di↵erent boundary conditions at the Planck scale. The
coloured bands correspond to the conditions discussed in the text and which are also labelled in the insert. The
middle of each band is the best value, while the width of the band is a “RGE error band” inferred from assuming
that all omitted higher orders in the beta functions beyond two loops are limited by the di↵erence between the one
and two loop results. Note that the Veltman condition is truncated at the point where its Higgs mass prediction
violates the vacuum stability bound (both at two-loops). The gray-hatched line at the bottom is the lower direct
Higgs mass bound from LEP. Similarly the purple (brown) lines indicate the LHC Higgs searches at 95% (90%) CL
from the 2010 data. The black dashed lines show the electroweak precision fit from GFitter [21, 22] for 68%, 95%
and 99% confidence intervals (which include limits from radiative corrections and also the direct searches).

curves shink accordingly. In our plot, the aforemen-
tioned “RGE error band” is represented by the band-
width of each curve, with its center representing the
Higgs mass obtained from two-loop RGE running.
The upper edges of the bandwidths consist of the
Higgs masses obtained from one-loop RGEs.

We consider also the uncertainty on the curves
due to the error of strong coupling constant ↵s =
0.1184(7) [29] and we obtain ±1GeV uncertainty to
the Higgs mass, which is negligible when quadrati-
cally added to the bandwidth in Fig.(2). Due to the
relatively large “RGE error band”, the error prop-
agation from the strong coupling constant can be
safely ignored. The theoretical error on the Higgs
mass due to the matching uncertainty [18, 30] be-
tween top Yukawa MS coupling and top pole mass
is also considered. Comparing our vacuum stability

band obtained with Casas et al. [12, 13], a discrep-
ancy of around ±7GeV for the Higgs mass value ob-
tained via two-loop RGE is observed. This mismatch
can be explained by the omission of two-loop QCD
matching condition by the authors of Refs. [12, 13],
as they only considered one-loop QCD, electroweak
and QED contribution in the top mass matching
condition. Since we would like to consider only the
uncertainties due to the number of loops of the beta
function used but not the errors caused by omis-
sion of better matching precision, we include the
QCD matching between top Yukawa MS coupling
and top pole mass up to three-loop. The resulting
Higgs mass determined by the vacuum stability with
two-loop RGE agrees with Ellis et al. [31]. The ↵↵s

correction [32] is neglected in our analysis as it only
gives a small contribution. The Higgs pole mass is
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The SM does  not, by itself, has a fine 
tuning problem (Bardeen,`95).

The SM is perturbative
at least till the Planck scale.
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Scale Invariant Extension of the SM

* Low-energy physics is responsible 
  for the origin of low energy scales.

Our conservative approach to BSM

* No large intermediate scale 
  below the Planck scale.
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Scenario below the Planck ScalePlanck

TeV

???

BSM:
cl. scale invariant,
renormalizable, perturbative theory

Dynamical chiral SB (DχSB)
in a hidden sector

DχSB in QCDGeV

EWSB
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from DχSB  in QCD????

from DχSB in a hidden QCD

98%  +  2%

The Cake of the Universe

MWIMP ≃10 GeV~few TeV 

26.8%+4.9%=31.7% from DχSB
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Planck scale e↵ectively does not enter as a physical scale into the particle physics action. In
this case, of course, the old argument by Bardeen [7] can be applied, stating that the naive
quadratic divergencies are spurious and only logarithmic terms related to the conformal
anomaly survive.

The proposed scenario does, however, not work for the pure Standard Model due to the
observed low energy parameters: The large top coupling makes Coleman-Weinberg sym-
metry breaking [9] not possible [10, 13] and new (bosonic) degrees of freedom have to be
introduced to stabilize the potential. Even if the top mass were low enough then this would
still not work, since Coleman-Weinberg symmetry breaking would lead to a Higgs mass
which is too small. This implies that some new fields must be added in order to realize these
ideas, i.e. it unavoidably predicts new physics at accessible energy scales. Contrary to that
there cannot be any intermediate scale physics coupling sizeably to the Higgs sector3.

If we accept the proposition of classical scale invariance of the particle physics action in
conjunction with a direct Planck scale embedding, then there are a couple of aspects which
might act as a guide to model building in this direction:

• The hierarchy between the QCD and EW scales is rather mild, for which reason it
might be a good idea to have similar origin of both scales, namely the condensation
in a strongly coupled sector.

• Since there is strong indication for dark matter (DM), and since if the DM scale
close to EW scale, thermal freeze-out can produce right abundance of DM (the so-
called WIMP miracle), it might be interesting to consider a scenario where both scales
originate from a QCD-like condensation in a hidden sector.

We consider the dynamical details of a model proposed earlier in [12, 15] which consists of
a hidden SU(3)H gauge sector coupled via a real singlet scalar S via a Higgs portal interaction
to the SM:

LH = �1

2
Tr F 2 + Tr  ̄(i�µDµ � yS) , (1)

where the hidden sector fermion  transforms as a fundamental representation of SU(3)H.
The trace is taken over the flavor as well as the color indices. The LSM+S part of the total
Lagrangian LT = LH + LSM+S contains the SM gauge and Yukawa interactions along with
the scalar potential

VSM+S = �H(H
†H)2 +

1

4
�SS

4 � 1

2
�HSS

2(H†H) , (2)

where HT = (H+ , (h + iG)
p
2) is the SM Higgs doublet field, and H+ and G are the

would-be Nambu-Goldstone fields. Note that in our Lagrangian no mass term is present
and all the coupling constants are dimensionless as required by classical scale invariance.
The classical scale invariance is quantum mechanically violated: It is broken not only by

3 Very weakly coupled models such as low-to intermediate scale seesaw models do not give a large threshold

correction to the Higgs mass [14].

3

No dimensional parameters

Perturbatively renormalizable, and vertex 
functions for non-exceptional momenta 
exist. (Poggio+Quinn,`76, see also Loewenstein
+Zimmermann,`76)

   The model(s)

Classically scale invariant
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 (Hur, Jung, Ko+Lee,arXiv:0709.1218+1103.2571;
Heikinheimo,arXiv:1304.7006`76; 
Holthausen, Kubo, Lim, Lindner, arXiv:1310.4423; KLL, arXiv:1405.1052)

aiming to explain the recent observations of the galactic keV X-ray [43, 44] here.) The
upper limits on the velocity-averaged annihilation cross section hv�i given by Fermi LAT
and HESS constrain the electric charge Q of the hidden fermions. We find that the hv�i
is 10�30 ⇠ 10�26 cm3/s for Q = 1/3, which can well satisfy the experimental constraints of
Fermi LAT and HESS.

Since the hidden sector (strictly speaking it is no longer a hidden sector, because the
fermions are electrically charged) can now communicate through gauge boson exchange
(photon and Z boson) with the SM sector, the hidden sector could be produced at ILC. We
postpone these interesting processes for future studies, as our main priority in this paper is
to find a prescription to obtain gauge invariant amplitudes. This is because we approximate
the strongly coupled QCD-like sector by the Nambu-Jona-Lasinio model (NJL) [45, 46] (see
[47, 48] for reviews), which is defined with a finite cuto↵ ⇤ that violates gauge invariance.
To overcome this problem, we propose least subtraction procedure. In the NJL model the
cuto↵ ⇤ is a physical parameter and a finite ⇤ is essential to describe e↵ectively D�SB. We
therefore stress that we keep the subtraction terms to the minimum necessary.

II. THE MODEL

We consider an extension of the model studied in [33–36] which consists of a hidden
QCD-like sector coupled via a real singlet scalar S to the SM. The fermion  in the hidden
sector belongs to the fundamental representation of the hidden gauge group SU(3)H . With
this setting D�SB in the hidden sector does not break the SM gauge symmetries, thereby
avoiding the FCNC problem. This is one of the main di↵erences to technicolor model. If we
further assume that the Yukawa coupling  ̄ S respects SU(Nf )V flavor symmetry, there is
only one coupling constant y for the Yukawa coupling, so that in the hidden sector there are
only two independent parameters; the gauge coupling constant gH and the Yukawa coupling
y.

In extending the model we impose that neither the SM gauge symmetry nor the SU(Nf )V
flavor symmetry is broken in the hidden sector. If we further impose that the matter content
remains unchanged, then there is a unique possibility for the extension that the hidden
(Dirac) fermion carries a common U(1)Y charge Q 2. This implies that the hidden sector
Lagrangian of the extended model is written as

LH = �1

2
Tr F 2 + Tr  ̄(i�µ@µ + gGµ + g0QBµ � yS) , (1)

where Gµ is the gauge field for the hidden QCD, and B is the U(1)Y gauge field. The trace
is taken over the flavor as well as the color indices. The LSM+S part of the total Lagrangian
LT = LH + LSM+S, which contains the SM gauge and Yukawa interactions along with the
scalar potential

VSM+S = �H(H
†H)2 +

1

4
�SS

4 � 1

2
�HSS

2(H†H) , (2)

2 The new gauge coupling contributes only to ⇧Y Y of the gauge boson self-energy diagrams so that the

S, T, U parameters remain unchanged.
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Landau pole constraint  ( Q=0 )
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Figure 2. The allowed regions for the parameters �S and y (the Q = 1TeV scale) are shaded for

di↵erent value of �HS .

C. Bounds from requiring survival up to the Planck scale

Before we perform a scan of parameters, the parameter space can be constrained by the
following assumptions: As we assume that the SM with the hidden sector is scale invariant
up to the Planck scale, all parameters have to be perturbative up to the Planck scale in
accordance to the renormalization group equations. This crucial assumption constrains the
allowed parameter region of �H , �S, �HS and y. The one-loop beta functions for the hidden
sector and modified SM are given as

16⇡2��H
= �H(�9g22 � 3g21 + 12y2t ) + 24�2

H +
3

4
g42 +

3

8
(g21 + g22)

2 � 6y4t +
1

2
�2
HS,

16⇡2��HS
= �2�HS

✓
2�HS � 3�S +

9

4
g22 +

3

4
g21 � 3y2t � 6�H � 18y2

◆
,

16⇡2��S
= 2�2

HS + 18�2
S + 72y2�S � 18y4,

16⇡2�y = 3y(7y2 � 4g24),

16⇡2�g4 = �9g34, (21)

with the rest of the SM RGE remained unchanged.
We can impose some of the boundary conditions of the hidden sector couplings based

on theoretical reasoning. The hidden gauge sector is strongly interacting at the vicinity of
Q ⇡ 1TeV, i.e. g24(Q) ⇡ 4⇡. The Higgs quartic coupling �H can be obtained from the
Higgs mass measurement [24, 25]. Although in the model the measured Higgs mass depends
mainly on two parameters, �H and �HS, lowering �H(Q) < 0.13 will destabilize the Higgs
potential while increasing �H(Q) > 0.14 will require a larger mixing with the S field, which
is strongly constrained. Therefore we have chosen �H(Q) ⇡ 0.13 for the rest of our analysis.

The rest of the couplings, i.e. �HS, �S and y have to be determined from the RGE,
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2) is the SM Higgs doublet field, and H+ and G are the

would-be Nambu-Goldstone fields. Note that in our Lagrangian no mass term is present
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mDM < 2M

*In between

mS > mDM

ϕ = 〈“BCS”|Φ|“BCS”〉 = − 1

4G

(
diag(σ,σ, σ) + i(λa)Tφa

)

Φij = ψ̄i(1− γ5)ψj

χ =
∂ < ūu >1/3

∂m1

SU(3)V × U(1)V

(NF = NC = 3)

α4 = g24/4π ∼ 1 at 1 TeV

0.13 <∼ λH <∼ 0.14 at 1 TeV

< h >←< S >←< σ >

< h >↔< S >↔< σ >

2



(DχSB)
Dynamical Chiral Symmetry Breaking
in the hidden sector

How to deal with  this nonperturbative effect  ?

*Direct approach: Lattice gauge theory

*Effective theory approach:

Sigma models
. . . . 

Nambu-Jona-Lasinio (NJL)model

At low energy:
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4-fermi 6-fermi

The same global symmetry

The Yukawa:

*Renormalization of the energy momentum tensor

*Callen-Symanzik equation

*Interpretation of the mass scale in the Coleman-Weinberg po-

tential

*Mean field approximation (self consistent field) Many body par-

ticle system is approximated through ”free particles” moving in a

mean field, which is a background field, and the quantum fluctua-

tions of these free particles produce corrections to the mean field.

leadind to a selfconsistency equation (gap equation).

Hartree-Fock approximation

*Fermionic theory

*Bosonized theory

*In between

U(3)L × U(3)R → U(3)V

U(1)A → Z3

Tpc # 0.164 GeV (LQCD and TWQCD, 2011)

Tc # 0.154 GeV (LQCD and TWQCD, 2011)

1

The 6-fermi (anomaly term):

*Renormalization of the energy momentum tensor

*Callen-Symanzik equation

*Interpretation of the mass scale in the Coleman-Weinberg po-

tential

*Mean field approximation (self consistent field) Many body par-

ticle system is approximated through ”free particles” moving in a

mean field, which is a background field, and the quantum fluctua-

tions of these free particles produce corrections to the mean field.

leadind to a selfconsistency equation (gap equation).

Hartree-Fock approximation

*Fermionic theory

*Bosonized theory

*In between

U(3)L × U(3)R → U(3)V

U(1)A → Z3

Tpc # 0.164 GeV (LQCD and TWQCD, 2011)

Tc # 0.154 GeV (LQCD and TWQCD, 2011)

1

(Kobayashi+Maskawa,`70, Shifman, Vainshtein, 
Zakharov,`80, t Hooft, `86)

* mu problem, Kim Nieles

*Renormalization of the energy momentum tensor

*Callen-Symanzik equation

*Interpretation of the mass scale in the Coleman-Weinberg

potential

*Mean field approximation (self consistent field) Many body par-

ticle system is approximated through ”free particles” moving in a

mean field, which is a background field, and the quantum fluctua-

tions of these free particles produce corrections to the mean field.

leadind to a selfconsistency equation (gap equation).

Hartree-Fock approximation

*Fermionic theory

*Bosonized theory

*In between

SU(3)V ⇥ U(1)V

(NF = NC = 3)

g2h/4⇡ <⇠ 1 at 1 TeV

0.13 <⇠ �H <⇠ 0.14 at 1 TeV

1

Finally:
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where

�ij =  ̄i(1� �5) j =
1

2
�ajiTr  ̄�

a(1� �5) 

(�†)ij =  ̄i(1 + �5) j =
1

2
�ajiTr  ̄�

a(1 + �5) , (4)

and �a are the Gell-Mann matrices with �0 =
p
2/3 1. The last term in (3) is present due to

chiral anomaly of the axial U(1)A (or instanton e↵ect) [20], and it breaks U(1)A down to Z3

(for nf = 3), implying that the Lagrangian LNJL has a global symmetry SU(3)V ⇥U(1)V ⇥Z3.
As noted earlier, the chiral symmetry SU(3)L ⇥ SU(3)R is explicitly broken by the Yukawa
coupling with the singlet S. The e↵ective Lagrangian LNJL has four parameters; y , G , GD

and the cuto↵ ⇤ 4, which have canonical dimensions of 0,�2, �5, and 1 respectively. Since
the original Lagrangian LH has only two independent parameters, the parameters G , GD

and ⇤ are not independent and can be related by the NJL approach. We will use relations
from observed hadron physics which we will then scale up to obtain the NJL parameters.

To deal with the non-renormalizable Lagrangian (3) we will use a self-consistent mean-
field (SCMF) approximation which has been intensely studied by by Hatsuda and Kunihiro
in the past [21–23]. While the general features of the model in Eq. (1) should be similar for
any number of dark color nc and hidden flavor nf (as long as the theory is asymptotically
free and confining), we here restrict ourselves to nf = nc = 3, which allows us to make the
rough but justifiable estimation that we can approximately use (up to an overall scale) the
values of G , GD and ⇤ that correspond to the real world of hadrons. (In contrast to [21–23],
we use a four-dimensional cuto↵ ⇤. ) This allows us to eliminate the extra free parameters.
Under this assumption, we calculate the actual values for G , GD and ⇤ in the Appendix
A. Here we briefly outline this approximation method [21–23].

One assumes that the dynamics of the theory creates a chiral symmetry breaking con-
densate

h0| ̄i j|0i ⌘ d̄ i j = � 1

4G
diag(�, �, �) , (5)

which is treated as a classical field �(x). Since we assume the explicit breaking of the
SU(3)L ⇥ SU(3)R flavor symmetry to be small, the other important e↵ective fields are given
by the dark pions

�a = �2iG \ ̄�5�a . (6)

We thus restrict our discussion (in a more complete treatment, one may add terms involving
⌘ or ⇢ mesons) to the mean fields collected in

b� = ' = � 1

4G

�
diag(�, �, �) + i(�a)T�a

�
. (7)

In the self-consistent mean field approximation one splits up the NJL lagrangian (3) into
the sum

LNJL = L0 + LI ,

4 We need a cuto↵ ⇤ because LNJL contains unrenormalizable interactions.

5

�ij =  ̄i(1� �5) j

� =
@ < ūu >1/3

@m1

SU(3)V ⇥ U(1)V

(NF = NC = 3)

↵h = g2h/4⇡ <⇠ 1 at 1 TeV

0.13 <⇠ �H <⇠ 0.14 at 1 TeV

< h > < S > < � >

< h >$< S >$< � >

(�0 = � � yS)

V (S, �)|GD=0,h=0 =
1

8G
�2 + V (� � yS) +

1

4
�SS

4

=
1

8G
�02 + V (�0) +

2y

8G
�0S +

2y2

8G
S2 +

1

4
�SS

4

2

is unchanged 3. (HT = (H+ , (h + iG)
p
2) is the SM Higgs doublet field, with H+ and G

as the would-be Nambu-Goldstone fields.)
Here we follow [36] in which the NJL model is used to describe D�SB in the hidden sector,

restricting ourselves to Nc = Nf = 3, because in this case the NJL model parameters, up-to
an overall scale, can be fixed from hadron physics [48, 49]. So at low energy we replace the
Lagrangian LH by

LNJL = Tr  ̄(i�µ@µ + g0Q�µBµ � yS) + 2G Tr �†�+GD (det�+ h.c.) , (3)

where

Bµ = cos ✓WAµ � sin ✓WZµ , g0 = e/ cos ✓W , (4)

�ij =  ̄i(1� �5) j =
1

2
�ajiTr  ̄�

a(1� �5) , (5)

and �a are the Gell-Mann matrices with �0 =
p

2/3 1. The last term in (3), which ex-
hibits a six fermi interaction, is present due to chiral anomaly of the axial U(1)A. The
chiral symmetry U(3)L ⇥U(3)R is explicitly broken down to its diagonal subgroup U(3)V =
SU(3)F ⇥ U(1)V by the Yukawa coupling with the singlet S. To deal with the non-
renormalizable Lagrangian (3) we have used in [36] a self-consistent mean-field approx-
imation which has been intensely studied by Hatsuda and Kunihiro [48, 49] for hadron
physics. The e↵ective Lagrangian LNJL has three dimensional parameters G,GD and the
cuto↵ ⇤, which have canonical dimensions of �2, �5 and 1, respectively. Since the original
Lagrangian LH has only one independent scale, the parameters G,GD and ⇤ are not inde-
pendent. We obtain the NJL parameters for the hidden QCD from the upscaling of actual
values of G,GD and the cuto↵ ⇤ from QCD hadron physics. That is, we assume that the
dimensionless combinations

G1/2⇤ = 1.1 , G
1/5
D ⇤ = 1.2 , (6)

which are satisfied for hadrons, remain unchanged for a higher scale of ⇤ [36].
In what follows we briefly outline the approximation method [48, 49]. One assumes that

the dynamics of the theory creates a chiral symmetry breaking condensate

h0| ̄i j|0i = � 1

4G
diag(�, �, �) , (7)

which is treated as a classical field �. The vacuum |0i is defined by the annihilation operator
of the constituent fermion  in the background of the mean fields. We restrict our discussion
(in a more complete treatment, one may add terms involving ⌘ or ⇢ mesons) to the mean
fields collected in

' ⌘ h0| ̄(1� �5)�
a |0i = � 1

4G

�

diag(�, �, �) + i(�a)T�a

�

. (8)

3 This classically scale invariant model is perturbatively renormalizable, and the Green’s functions are

infrared finite [50, 51].
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   Dark Matter

Because of SU(3)V the hidden pions are 
stable and hence can be dark matter.

15

Global symmetry:

�ij =  ̄i(1� �5) j

� =
@ < ūu >1/3

@m1

SU(3)V ⇥ U(1)V

(NF = NC = 3)

↵h = g2h/4⇡ <⇠ 1 at 1 TeV

0.13 <⇠ �H <⇠ 0.14 at 1 TeV

< h > < S > < � >

< h >$< S >$< � >

(�0 = � � yS)

V (S, �)|GD=0,h=0 =
1

8G
�2 + V (� � yS) +

1

4
�SS

4

=
1

8G
�02 + V (�0) +

2y

8G
�0S +
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*Dark Matter mass

*Dark Matter coupling to the singlet S
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Figure 4. One-loop diagrams contributing to the DM-DM-S coupling.

terms, its mass is generated at one-loop and it is defined as the zero of the inverse propagator:

�DM(p
2) = � 1

2G
+

GD

8G3
h�i �

✓
1� GD

8G2
h�i

◆2

2ncI1(p
2, hMi) + GD

G2
ncI2(hMi) , (23)

where I1 and I2 are given in Eq. (A17), respectively, and the term hMi = h�i + yhSi �
GD/8G2h�i2 is given in Eq. (10).

The dark matter mass mDM vanishes if y = 0, due to the chiral symmetry that emerges in
this limit. For the minimum given in Eq. (12) and y = 0.0052, we obtain mDM = 473GeV,
where the rescaling factor (defined in Eq. (11)) in this example is f ' 11760. Fig. 3 shows
the DM mass mDM and constituent quark mass M as a function of y, where the scalar
couplings are fixed at the values given in Eq. (12). Note that the NJL approximation is only
valid when mDM < M , as when the constituent mass M is lighter we cannot integrate out
the fermions. This observation will constrain our parameter space for y later.

Before we calculate the annihilation cross section of our DM, we need to know how it
communicates with the SM sector. It turns out that the dark pion is connected to the
SM sector via the messenger scalar S only through loop-suppressed interactions: The DM-
DM-S coupling is generated from the one-loop diagrams shown in Fig. 4. We find that the
three-point vertex function is given by

�DM�DM�S(p, p
0,M) = 2ncy

✓
1� GDh�i

8G2

◆2

I5a(p, p
0,M) + ncy

GD

4G2
I5b(p, p

0,M) , (24)

where

I5a(p, p
0,M) =

Z
d4k

i(2⇡)4
Tr(k/+M)�5(k/� p/+M)(k/+ p0/+M)�5

((k � p)2 �M2)(k2 �M2)((k + p0)2 �M2)
,

I5b(p, p
0,M) =

Z
d4k

i(2⇡)4
Tr(k/� p0/+M)(k/+ p/+M)

((k � p0)2 �M2)((k + p)2 �M2)
. (25)

When computing the relic abundance of DM and its cross section with matter, we will need
�DM�DM�S(p, p0,M) for p = p0 = (mDM,0) and for p = �p0, which are denoted by s and
t. (The integrals can be computed analytically for these momentum configurations.) Using
the expressions

�s
a = I5a(p, p

0,M)|p=p0=(mDM,0) , �t
a = I5a(p, p

0,M)|p=�p0,p2=m2
DM

,

�s
b = I5b(p, p

0,M)|p=p0=(mDM,0) , �t
b = I5b(p, p

0,M)|p=�p0,p2=m2
DM

, (26)
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*Goldberger-Treiman relation:

f⇡G⇡qq ' M

*Gell-Mann-Oakes-Renner relation:

f 2
⇡m

2
⇡ ' �1

2
(mu +md) < ūu+ d̄d >

1.65⇥ 108 MeV4

8
><

>:

1.99⇥ 108 MeV4 (⇤4)

1.62⇥ 108 MeV4 (⇤3)
(1)

< h > , < S > , < � >

y = 0.0052 ,�H = 0.13 (2)

�HS = 0.01 , �S = 0.19 (3)

mh = 126 GeV

⌦h2 <⇠ 0.12

2mDM ' mS

⇠ 0.2 y M

⇠ 0.23 y GeV

=  ⇠ 2.4 GeV

y , �H , �HS , �S
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Figure 7. Diagram contributing to the direct detection of DM. The DM-DM-S coupling is t, which is

given in (27).

where Y
1

is the asymptotic value of the ratio nDM/s, s0 = 2970/cm3 is the entropy density
at present, ⇢c = 3H2/8⇡G = 1.05⇥ 10�5ĥ2 GeV/cm3 is the critical density, ĥ is the dimen-
sionless Hubble parameter, Mpl = 1.22 ⇥ 1019 GeV is the Planck energy, and g

⇤

= 115.75
is the number of the e↵ectively massless degrees of freedom at the freeze-out temperature.
Further, xf is the ratio mDM/T at the freeze-out temperature and can be obtained from [26]

xf = ln
0.0764Mplhv�i(5/4)mDM

(g
⇤

xf )1/2
. (35)

We multiplied with 8 in (34), because there are 8 DM particles.
We next come to the spin-independent elastic cross section o↵ the nucleon �SI , which is

given by [27]

�SI =
1

⇡

"
tf̂mN

2vhmDM

 
⇠(2)2 ⇠(2)1

m2
S

+
⇠(1)2 ⇠(1)1

m2
h

!#2✓
mNmDM

mN +mDM

◆2

, (36)

where t is given in (27), mN is the nucleon mass, and f̂ ⇠ 0.3 stems from the nucleonic
matrix element [28].

The constraints to be imposed are: vh = 246GeV, mh = 125.9± 1.2GeV, ⌦ĥ2 < 0.1187,
and |⇠(1)1 | & 0.9, where these uncertainties correspond to 3�. We only assume that the relic
abundance is less than the observed value as there could be another DM contribution such
as the dark baryon. In Fig. 8 we show in the mDM � �SI plane the area in which all these
constraints are satisfied. Naively one may expect an extended area in the mDM � �SI plane,
because we still have two free parameters. But we see from Fig. 8 that the allowed area is
a narrow strip. This is because the coupling s is so small that we have to use the resonant
e↵ect of the s-channel diagrams in Fig. 6. That is, 2mDM ' mS is required to obtain a
realistic value of ⌦ĥ2, implying that an extra freedom is used in the parameter space. This
model predicts no signal from the next generation direct DM detection experiments such as
XENON1T and LUX. The parameter space of {�H ,�S,�HS, y} that can yield the allowed
direct detection cross section and DM mass subjected by constraints above are given by
�H ⇡ 0.13, �S 2 (0.11, 0.2), �HS 2 (0.001, 0.05) and y 2 (0.003, 0.007). We have also
explicitly checked that mDM < M such that the NJL method can be validly applied. This

15

S h

�a

�a

h, t, Z,W+

h, t, Z,W�

S

�a

�a

h

h

Figure 6. Annihilation of DM into the SM particles. The s-channel DM-DM-S coupling is s, which is

given in Eq. (27).

s-wave contribution to the s-channel annihilation cross sections, which are further enhanced
by resonance e↵ects. We find that the s-wave contribution to the thermal average hv�i is
given by

hv�i = 1

32⇡m3
DM

⇥
(m2

DM �M2
W )1/2aW + (m2

DM �M2
Z)

1/2aZ

+(m2
DM �M2

t )
3/2at + (m2

DM �m2
h)

1/2ah
�
+O(v2) , (30)

where

aW = 4(s/vh)
2 |�hs|2 M4

W

✓
3 + 4

m4
DM

M4
W

� 4
m2

DM

M2
W

◆
,

aZ = 2(s/vh)
2 |�hs|2 M4

Z

✓
3 + 4

m4
DM

M4
Z

� 4
m2

DM

M2
Z

◆
,

at = 24(s/vh)
2 |�hs|2 m2

t ,

ah =
1

2
(s/vh)

2(MW/g)2 | 24�H�hs � 4�HS(vs/vh)�ss|2 , (31)

with vh = 246 GeV, and

�hs =
⇠(2)2 ⇠(2)1

4m2
DM �m2

S + i�SmS

+
⇠(1)2 ⇠(1)1

4m2
DM �m2

h

,

�ss =
⇠(2)2 ⇠(2)2

4m2
DM �m2

S + i�SmS

+
⇠(1)2 ⇠(1)2

4m2
DM �m2

h

. (32)

Here s and ⇠0s are given in Eq. (27) and Eq. (20), respectively, g ' 0.632 is the SU(2)L
gauge coupling, and

�S =
(�HShSi)2
8⇡m2

S

r
m2

S

4
�m2

h (33)

is the decay width of S.
Given the annihilation cross cessation we can now compute the relic abundance. To this

end we use the approximate formula [26]

⌦ĥ2 = 8⇥ Y
1

s0mDM

⇢c/ĥ2
with Y �1

1

= 0.264g1/2
⇤

MplmDMhv�i/xf , (34)
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*If the singlet S is lighter 
than Dark Matter:
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Figure 5. One-loop contributions to the DM-DM-S-S coupling.

t. (The integrals can be computed analytically for these momentum configurations.) Using
the expressions

�s
a = I5a(p, p

0,M)|p=p0=(mDM,0) , �t
a = I5a(p, p

0,M)|p=�p0,p2=m2
DM

,

�s
b = I5b(p, p

0,M)|p=p0=(mDM,0) , �t
b = I5b(p, p

0,M)|p=�p0,p2=m2
DM

, (27)

we obtain the couplings

s = 2ncy

✓
1� GDh�i

8G2

◆2

�s
a + ncy

GD

4G2
�s
b ,

t = 2ncy

✓
1� GDh�i

8G2

◆2

�t
a + ncy

GD

4G2
�t
b . (28)

If the mass of scalar S is su�ciently lighter than the DM mass, additional couplings
shown in Fig. 5 will contribute to annihilation cross section. The four-point vertex function
is given as

�DM�DM�S�S =2ncy
2

✓
1� GDh�i

8G2

◆2

(I6a(p, p
0, q0,M) + I6a(p, p

0, q,M))

+ ncy
2 GD

4G2
(I6b(p, p

0, q0,M) + I6b(p, p
0, q,M)) (29)

with the integrals given as

I6a(p, p
0, q0,M) =

Z
d4k

i(2⇡)4
Tr�5(/k +M)�5(/k � /p0 +M)(/k + /p0 � /q0 +M)(/k � /p+M)

(k2 �M2)((k + p0)2 �M2)((k + p0 � q0)2 �M2)((k � p)2 �M2)
,

I6b(p, p
0, q0,M) =

Z
d4k

i(2⇡)4
Tr(/k + /p0 +M)(/k + /p0 � /q0 +M)(/k � /p+M)

((k + p0)2 �M2)((k + p0 � q0)2 �M2)((k � p)2 �M2)
. (30)

This four-point function is only required when computing the relic abundance of DM, hence
we only consider the case for p = p0 = (mDM,0) and denote the coupling as {s.

B. Dark Matter Relic Abundance and its Direct Detection

Now we are in position to compute the relic abundance of DM and its cross section
with nuclei. In Fig. 6 we show the diagrams for DM annihilation into the SM particles.
The t-channel contributions are of O(y4) due to two DM�DM � S coupling insertions,
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A large Yukawa y means a heavy DM.

23

If the singlet is lighter than DM, then two DMs can be annihi-
lated into two singlets through diagrams. So for a large Yukawa
coupling we may obtain a large annihilation cross section and
obtain a correct relic abundance of DM.

y2

24

This graph shows the spin independent annihilation cross sec-
tion against the DM mass. We have a large DM mass in this
case, because of the large y. In the published version this case
is not considered. So the result here is tentative and is more
interesting.

25

Here I would like to mention a bit about the phase transitions in
the model. There are three order parameters in this model. In
the electroweak sector we have the electroweak phase transition,
while in the hidden sector we have the chiral phase transition.
The three order parameters have back reaction each other of
course. We can compute the VEVs including these back reac-
tions in the NJL approach. The electroweak phase transition
is intimately related to the electroweak Baryogenesis. In the
case at hand there will be no EW Baryogenesis, because the
hidden sector and the presence of the singlet can not introduce
extra CP phases which are needed to achieve the electroweak
Baryogenesis.
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Figure 5. Left:The spin-independent cross section o↵ nucleon against mDM, where ⌦h2 = 0.1187±0.005(3�)

[52] is imposed. The XENON100 [53] and LUX [55] limits are ⇠ 10�44 cm2 for mDM = 0.7TeV, while the

XENON1T sensitivity is two orders of magnitudes higher than that of XENON100 [55]. Right: The mass

of the singlet S against mDM. If mDM < mS , then �SI . 10�48 cm2 [36] .

imaginary part. Another way5 is to utilize a gauge invariant regularization such as the
Pauli-Villars regularization [47, 58] which preserves gauge invariance by construction but
breaks chiral symmetry explicitly. The drawback is however, for a finite regulator mass,
it is not clear whether the breaking of chiral symmetry results from the regulator or from
non-perturbative e↵ect. Moreover, the regulator fields are “ghost” fields, which are not
completely decoupled at a finite cuto↵ ⇤.

We will propose another method, which we call “least subtraction procedure”. In the NJL
model as a cuto↵ theory the cuto↵ ⇤ is a physical parameter, and a finite ⇤ is essential
to describe e↵ectively D�SB. If we subtract too much from the amplitude to restore gauge
invariance, we may lose information on non-perturbative e↵ects. Therefore, we stress that
we keep the subtraction terms to the minimum as necessary. The details of least subtraction
procedure is given in Appendix A, where we consider the photon self-energy, the S-�-� as
well as the �-�-�-� vertex functions. The results are applied to the next section for the
calculation of the DM annihilation cross section into two �’s.

V. MONOCHROMATIC �-RAY LINE FROM DM ANNIHILATION

The charge Q of the hidden fermion is a free parameter. It can be constrained from the
indirect detection of DM, e.g. the upper bound on �(�� ! ��) for �-ray lines given in
[40–42]. The four-point �-�-�-� coupling6 is generated at one-loop as is shown in Fig. 2 ⇠ 4,
which predicts the DM annihilation into two monochromatic photons of energymDM. Similar
processes have been calculated in a universal extra dimension model [39], for instance. In
Appendix A it is shown how to restore gauge invariance of the four-point amplitude, with
the result given in (A32). If we neglect the mass of Z against mDM, the four-point functions

5 ⇣-function regularization was also used in [57] to obtain a gauge invariant e↵ective potential in the

presence of the electromagnetic field as an external field.
6 The U(1)Y gauge invariance and the SU(3)F flavor symmetry together with the reality of � forbid the

existence of the ��Bµ coupling.
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FIG. 5. The LUX 90% confidence limit on the spin-
independent elastic WIMP-nucleon cross section (blue),
together with the ±1� variation from repeated trials, where
trials fluctuating below the expected number of events for
zero BG are forced to 2.3 (blue shaded). We also show
Edelweiss II [44] (dark yellow line), CDMS II [45] (green
line), ZEPLIN-III [46] (magenta line), CDMSlite [47] (dark
green line), XENON10 S2-only [20] (brown line), SIMPLE [48]
(light blue line) and XENON100 100 live-day [49] (orange
line), and 225 live-day [50] (red line) results. The inset
(same axis units) also shows the regions measured from annual
modulation in CoGeNT [51] (light red, shaded), along with
exclusion limits from low threshold re-analysis of CDMS II
data [52] (upper green line), 95% allowed region from
CDMS II silicon detectors [53] (green shaded) and centroid
(green x), 90% allowed region from CRESST II [54] (yellow
shaded) and DAMA/LIBRA allowed region [55] interpreted
by [56] (grey shaded). Results sourced from DMTools [57].

upper limit on the number of expected signal events
ranges, over WIMP masses, from 2.4 to 5.3. A variation
of one standard deviation in detection e�ciency shifts
the limit by an average of only 5%. The systematic
uncertainty in the position of the NR band was estimated
by averaging the di↵erence between the centroids of
simulated and observed AmBe data in log(S2b/S1). This
yielded an uncertainty of 0.044 in the centroid, which
propagates to a maximum uncertainty of 25% in the high
mass limit.

The 90% upper C. L. cross sections for spin-
independent WIMP models are thus shown in Fig. 5
with a minimum cross section of 7.6⇥10�46 cm2 for a
WIMP mass of 33 GeV/c2. This represents a significant
improvement over the sensitivities of earlier searches [45,
46, 50, 51]. The low energy threshold of LUX permits
direct testing of low mass WIMP hypotheses where
there are potential hints of signal [45, 51, 54, 55].
These results do not support such hypotheses based
on spin-independent isospin-invariant WIMP-nucleon
couplings and conventional astrophysical assumptions

for the WIMP halo, even when using a conservative
interpretation of the existing low-energy nuclear recoil
calibration data for xenon detectors.

LUX will continue operations at SURF during 2014
and 2015. Further engineering and calibration studies
will establish the optimal parameters for detector
operations, with potential improvements in applied
electric fields, increased calibration statistics, decaying
backgrounds and an instrumented water tank veto
further enhancing the sensitivity of the experiment.
Subsequently, we will complete the ultimate goal of
conducting a blinded 300 live-day WIMP search further
improving sensitivity to explore significant new regions
of WIMP parameter space.
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imaginary part. Another way5 is to utilize a gauge invariant regularization such as the
Pauli-Villars regularization [47, 58] which preserves gauge invariance by construction but
breaks chiral symmetry explicitly. The drawback is however, for a finite regulator mass,
it is not clear whether the breaking of chiral symmetry results from the regulator or from
non-perturbative e↵ect. Moreover, the regulator fields are “ghost” fields, which are not
completely decoupled at a finite cuto↵ ⇤.

We will propose another method, which we call “least subtraction procedure”. In the NJL
model as a cuto↵ theory the cuto↵ ⇤ is a physical parameter, and a finite ⇤ is essential
to describe e↵ectively D�SB. If we subtract too much from the amplitude to restore gauge
invariance, we may lose information on non-perturbative e↵ects. Therefore, we stress that
we keep the subtraction terms to the minimum as necessary. The details of least subtraction
procedure is given in Appendix A, where we consider the photon self-energy, the S-�-� as
well as the �-�-�-� vertex functions. The results are applied to the next section for the
calculation of the DM annihilation cross section into two �’s.

V. MONOCHROMATIC �-RAY LINE FROM DM ANNIHILATION

The charge Q of the hidden fermion is a free parameter. It can be constrained from the
indirect detection of DM, e.g. the upper bound on �(�� ! ��) for �-ray lines given in
[40–42]. The four-point �-�-�-� coupling6 is generated at one-loop as is shown in Fig. 2 ⇠ 4,
which predicts the DM annihilation into two monochromatic photons of energymDM. Similar
processes have been calculated in a universal extra dimension model [39], for instance. In
Appendix A it is shown how to restore gauge invariance of the four-point amplitude, with
the result given in (A32). If we neglect the mass of Z against mDM, the four-point functions

5 ⇣-function regularization was also used in [57] to obtain a gauge invariant e↵ective potential in the

presence of the electromagnetic field as an external field.
6 The U(1)Y gauge invariance and the SU(3)F flavor symmetry together with the reality of � forbid the

existence of the ��Bµ coupling.
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Monochromatic Gamma Ray Line 
800 GeV from DM annihilation

however, due to finite detector energy resolution this line cannot be distinguished from the
E� = mDM line. Therefore, we simply add both cross sections. So we compute hv�i��+�Z =
hv�(�� ! ��)i+ hv�(�� ! �Z)i with Q = 1/3 as a function of mDM for di↵erent values of
�H , �S and �HS. As noticed in the previous section, we have not included the annihilation
modes into ��, �Z,ZZ in calculating the relic abundance. In this way we can obtain a
separate information on the size of the annihilation cross section producing the line �-ray
spectrum of DM in this model 7.

As we see from Fig. 6 (left) strong constraints are given for mDM ' 0.6 (0.5)TeV:
hv�i��+�Z . 3 (7) ⇥ 10�28 cm3/s. Since our DM is heavier than 0.7TeV (see Fig. 5), these
strong constraints do not apply. Above 0.7TeV, the upper bound is about one order of
magnitude larger than that for mDM = 0.6 TeV, so that the constraints can well be satisfied
even for Q > 1/3, as we can see from Fig. 6 (right). An interesting feature of the present
model is that the �-ray line energy is constrained between ⇠ 0.7TeV and ⇠ 0.9TeV, be-
cause the DM mass mDM is constrained as it is explained in the previous section. Another
feature of the model related to �-ray lines is that the production cross section of �-ray lines
is in the same order in 1/N expansion (i.e. in one-loop order) as the total annihilation cross
section of DM. That is, hv�iHH,ff̄ ,WW,··· ⇠ hv�i��+�Z in the present model. This is similar to
one of three exceptions, forbidden channels, considered in [59]. In the case of the forbidden
channels the tree-level processes are kinematically forbidden, which should be contrasted to
the present case in which the Nambu-Goldstone DM has no contact with the messenger field
S at the tree-level.

The di↵erential �-ray flux is given by

d�

dE�

/ hv�i�� dN
��

dE�

+ hv�i�Z dN
�z

dE�Z

' hv�i��+�Z �(E� �mDM) . (17)

Prospects observing such line spectrum is discussed in detail in [39]. Obviously, with an
increasing energy resolution the chance for the observation increases. Observations of �-ray
lines of energies between ⇠ 0.7TeV and ⇠ 0.9TeV TeV not only fix the charge of the hidden
sector fermion, but also yields a first experimental hint on the hidden sector.

VI. CONCLUSION

The Nambu-Goldstone theorem predicts in the presented model for the hidden sector,
where chiral symmetry is dynamically broken and hence a scale is created, the existence
of a DM candidate. This generated scale is transmitted to the SM sector via a real SM
singlet scalar S to trigger spontaneous breaking of electroweak gauge symmetry. With a
non-zero U(1)Y hypercharge Q of the hidden sector fermion the hidden sector is no longer
dark, and new possibilities to test experimentally the hidden sector are open. We studied
in this paper the possibility of DM annihilation and found that this model allows DM to
annihilate into two photons, producing a �-ray line spectrum. We found that the �-ray line
energy must be between 0.7TeV and 0.9TeV with the velocity-averaged annihilation cross

7 If the contribution is so large that we have to include it, then we control the size by varying Q.
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FIG. 2. Upper limits on γ-ray flux from monochromatic line
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20%, depending on the energy and the statistics in the
individual spectrum bins. The maximum shift is ob-
served in the extragalactic limit curve and amounts to
40%. In total, the systematic error on the flux upper
limits is estimated to be about 50%. All flux upper
limits were cross-checked using an alternative analysis
framework [24], with an independent calibration of cam-
era pixel amplitudes, and a different event reconstruction
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profile with parameters described in [20] was used. Limits ob-
tained by Fermi-LAT, assuming the Einasto profile as well, are
shown for comparison (black arrows with open data points)
[15].

and event selection method, leading to results well con-
sistent within the quoted systematic error.
For the Einasto parametrization of the DM density

distribution in the Galactic halo [20], limits on the
velocity-weighted DM annihilation cross section into γ
rays, 〈σv〉χχ→γγ , are calculated from the CGH flux limits
using the astrophysical factors given in [8]. The result is
shown in Fig. 4 and compared to recent results obtained
at GeV energies with the Fermi-LAT instrument.

SUMMARY AND CONCLUSIONS

For the first time, a search for spectral γ-ray signatures
at very-high energies was performed based on H.E.S.S.
observations of the central Milky Way halo region and ex-
tragalactic sky. Both regions of interest exhibit a reduced
dependency of the putative DM annihilation flux on the
actual DM density profile. Upper limits on monochro-
matic γ-ray line signatures were determined for the first
time for energies between ∼ 500GeV and ∼ 25TeV, cov-
ering an important region of the mass range of particle
DM. Additionally, limits were obtained on spectral sig-
natures arising from internal bremsstrahlung processes,
as predicted by the models BM2 and BM4 of [14]. It
should be stressed that the latter results are valid for
all spectral signatures of comparable shape. Besides, all
limits also apply for potential signatures in the spectrum
of cosmic-ray electrons and positrons.
Flux limits on monochromatic line emission from the

central Milky Way halo were used to calculate upper lim-
its on 〈σv〉χχ→γγ . Limits are obtained in a neutralino
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 Phase Transitions (PT) 
at finite Temperature

Three order parameters:

*Renormalization of the energy momentum tensor

*Callen-Symanzik equation

*Interpretation of the mass scale in the Coleman-Weinberg

potential

*Mean field approximation (self consistent field) Many body par-

ticle system is approximated through ”free particles” moving in a

mean field, which is a background field, and the quantum fluctua-

tions of these free particles produce corrections to the mean field.

leadind to a selfconsistency equation (gap equation).

Hartree-Fock approximation

*Fermionic theory

*Bosonized theory

*In between

< h > , < S > , < � >

y = 0.0052 ,�H = 0.13 (1)

�HS = 0.01 , �S = 0.19 (2)

mh = 126 GeV

⌦h2 <⇠ 0.12

2mDM ' mS

1

EWPT Chiral PT

EW Baryogenesis Gravitational wave BG
(Hogan,`83; Witten,`84;
....)

(Kuzmin+Rubakov+Shaposhnikov,`85; 
Klinkhamer+Manton,`84;
....)
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Dark pions can be realistic CDM.

 Conclusion

* QCD-like hidden sector
   is an attractive scale invariant extension 
   of the SM.

With Q =0 the hidden sector is no longer 
dark: 
Monochromatic gamma lines can be 
produced, and
hidden hadron  could be probed at collider 
experiments, opening hidden Hadron Physics.

For mS < mDM, the model can be tested soon.

24



THANK YOU VERY MUCH FOR
YOUR ATTENTION.

25



Ours Hatsuda+Kunihiro, `94NJL 
QCD (2G)�1/2 326 MeV 330 MeV

(�GD)
�5 437 MeV 404 MeV

⇤ 924 MeV 631 MeV

m1 6.6 MeV 5.5 MeV

m3 127 MeV 136 MeV

m⇡ 138 MeV 138 MeV

f⇡ 93 MeV 93 MeV

mK 496 MeV 496 MeV

Mu = M1 337 MeV 335 MeV

Ms = M3 503 MeV 527 MeV

<  ̄1 1 >
NP �(250 MeV)3 �(245 MeV)3

<  ̄3 3 >
NP �(221 MeV)3 �(226 MeV)3

�H / g2

m2 ' m2
0 + ⇤2/16⇡2

m2 ' m2
0 � ⇤2/16⇡2

⇤

⇤cut M 2
H

⇥µ⌫

5

⇥µ
µ = �i Oi +M 2

Hj
Xj + ⇤2

cut Y

dim.[O] = 4 , dim.[X ] = 2

 

pk · @

@pk
� �i

@

@gi
+ n(1 + �)� 4

!

�(p2k,M
2
H , gi) / M 2

H �M2
H
(p2k,M

2
H , gi)

{

6

Input

⇥µ
µ = �i Oi +M 2

Hj
Xj + ⇤2

cut Y

dim.[O] = 4 , dim.[X ] = 2

 

pk · @

@pk
� �i

@

@gi
+ n(1 + �)� 4

!

�(p2k,M
2
H , gi) / M 2

H �M2
H
(p2k,M

2
H , gi)

{

6

NJL 

26

NJL in the mean field approximation



Least Subtraction Procedure
to restore Gauge Invariance

But gauge invariance is broken by cutoff!!

Kubo, Lee+Lindner, arXiv:1405.1052 ;

Subtraction  to the minimum necessary.
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FIG. 2. Upper limits on γ-ray flux from monochromatic line
signatures, derived from the CGH region (red arrows with
full data points) and from extragalactic observations (black
arrows with open data points). For both data sets, the solid
black lines show the mean expected limits derived from a large
number of statistically randomized simulations of fake back-
ground spectra, and the gray bands denote the corresponding
68% CL regions for these limits. Black crosses denote the flux
levels needed for a statistically significant line detection in the
CGH dataset.
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FIG. 3. Flux upper limits on spectral features arising from
the emission of a hard photon in the DM annihilation pro-
cess. Limits are exemplary shown for features of comparable
shape to those arising in the models BM2 and BM4 given in
[14]. The monochromatic line limits, assuming mχ = Eγ , are
shown for comparison.

20%, depending on the energy and the statistics in the
individual spectrum bins. The maximum shift is ob-
served in the extragalactic limit curve and amounts to
40%. In total, the systematic error on the flux upper
limits is estimated to be about 50%. All flux upper
limits were cross-checked using an alternative analysis
framework [24], with an independent calibration of cam-
era pixel amplitudes, and a different event reconstruction
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FIG. 4. Limits on the velocity-weighted cross section for DM
annihilation into two photons calculated from the CGH flux
limits (red arrows with full data points). The Einasto density
profile with parameters described in [20] was used. Limits ob-
tained by Fermi-LAT, assuming the Einasto profile as well, are
shown for comparison (black arrows with open data points)
[15].

and event selection method, leading to results well con-
sistent within the quoted systematic error.
For the Einasto parametrization of the DM density

distribution in the Galactic halo [20], limits on the
velocity-weighted DM annihilation cross section into γ
rays, 〈σv〉χχ→γγ , are calculated from the CGH flux limits
using the astrophysical factors given in [8]. The result is
shown in Fig. 4 and compared to recent results obtained
at GeV energies with the Fermi-LAT instrument.

SUMMARY AND CONCLUSIONS

For the first time, a search for spectral γ-ray signatures
at very-high energies was performed based on H.E.S.S.
observations of the central Milky Way halo region and ex-
tragalactic sky. Both regions of interest exhibit a reduced
dependency of the putative DM annihilation flux on the
actual DM density profile. Upper limits on monochro-
matic γ-ray line signatures were determined for the first
time for energies between ∼ 500GeV and ∼ 25TeV, cov-
ering an important region of the mass range of particle
DM. Additionally, limits were obtained on spectral sig-
natures arising from internal bremsstrahlung processes,
as predicted by the models BM2 and BM4 of [14]. It
should be stressed that the latter results are valid for
all spectral signatures of comparable shape. Besides, all
limits also apply for potential signatures in the spectrum
of cosmic-ray electrons and positrons.
Flux limits on monochromatic line emission from the

central Milky Way halo were used to calculate upper lim-
its on 〈σv〉χχ→γγ . Limits are obtained in a neutralino

Constraints from
FermiLAT and HESS Prediction with Q=1/3

< v� > (DMDM ! ��) against mDM

* mu problem, Kim Nieles

*Renormalization of the energy momentum tensor

*Callen-Symanzik equation

*Interpretation of the mass scale in the Coleman-

Weinberg potential

*Mean field approximation (self consistent field) Many

body particle system is approximated through ”free par-

ticles” moving in a mean field, which is a background

field, and the quantum fluctuations of these free parti-

cles produce corrections to the mean field. leadind to a

selfconsistency equation (gap equation).

Hartree-Fock approximation

*Fermionic theory

*Bosonized theory

mS < mDM

⇠ 10�47 cm2

y <⇠ 0.38

1

28

mDM < mS

0.2 0.3 0.4 0.5 0.6
mDM [TeV ]

10-31

10-30

<v
σ
> γ
γ+
γZ

 [ 
cm

3  / 
s ]


