

T2K Experiment Results & Prospects

- Neutrino Oscillations
 - Introduction
- The T2K Experiment
 - Beam
 - Near Detector
 - Far Detector
- Results
 - Disappearance analysis
 - Appearance search
- Future potential
 - The hunt for CP-violation

FLASY

Neutrino Mixing The PMNS Matrix

with $c_{ij} = \cos(\theta_{ij})$, $s_{ij} = \sin(\theta_{ij})$, $\theta_{ij} = \text{mixing angle and } \Delta m_{ij}^2 = \text{mass}^2$ difference

A.Weber, FLASY2014, Brighton

The T2K Experiment

- A Long-baseline Experiment to study neutrino oscillations
 - Baseline 295 km
 - Beam power up to 230 kW
 - Detectors
 Near and far

FLASY

Producing Neutrinos

Far Detector off-axis (2.5°) Near Decay volume target/ Muon (Super-K) Detector Horn detector (30 GeV from on-axis MR synchrotron) $-\pi -$ 118 m 0 m 295 km 280 m Using NA61 data to constrain Oscillation Prob.@ E_v (GeV) 1.4 hadron production 0° $E_{\nu} = \frac{0.43E_{\pi}}{1+\nu^2\theta^2}$ 1.2 0.2 ^{ਟੂ} 3500 1 3000 0.8 OA2° 2500 D.6 2000 0.4 OA2.5° OAB 2 degree 1500 OAB 2.5 degree 0.2 OAB 3 degree OA3° 1000 D **h** 2 3 D 1 4 5 6 7 8 9 10 500 p_{π} (GeV/c) **Off-Axis beam** 0 ō 0.5 1.5 2 2.5 3.5 1 3 GeV

A.Weber, FLASY2014, Brighton

FLASY

Data Taken

FLASY 2014

- Data Set: 6.57 x 10²⁰ PoT (8% of design goal)
- Increase power in future
 - More protons / bunch
 - Higher repetition rate

ND280 detector

- Off-axis: ND280
 - 0.2 T magnet (UA1/NOMAD)
 - Plastic scintillator detectors: Fine Grained Detector (FGD), π⁰ detector (P0D), ECals and SMRD, Time projection chambers (TPC)
- On-axis: INGRID

- FLASY 2014
- Select different event classes in near detector
 - Negative muon & something/nothing
- Constrains flux and cross section uncertainties

Reduced Systematics

		P
Flux + cross section (ND280 constrained)	3.1	2.7
Cross section (ND280-independent)	4.7	5.0
π Hadronic Interactions	2.3	3.5
SK Detector	2.9	3.6
Total	6.8	7.6

FLASY

SUPERKAMIOKANDE INSTITUTE FOR CORING RAY RESEARCH UNIVERSITY OF TOYYO

MICCEN SEKKE

A.Weber, FLASY2014, Brighton

Super-Kamiokande IV

I2K beam dt = 2463.6 ng

Inner: 2350 hits, 7009 pe

Duter: 1 hits, 0 pe

Trigger: 0x80000007

D_wall: 644.0 cm e-like, p = 690.1 MeV/c

72K Beam Run 430013 Spill 4033842

Run 69739 Sub 201 Event 48168772

Far Detector Events

 Contract of the system
 2014

 Image: Solution of the system
 Signature

 Image: Solution of the system
 Signature

Charge (pe)

 • 246.7

 • 23.3-66.7

 • 20.2-23.3

 • 17.3-20.2

 • 14.7-27.3

 • 10.0-21.2

 • 0.0-10.0

 • 6.2

2.2-3.3 1.3-2.2 0.7-1.3 0.2-0.7

580 472 354 206 10 500 1000 1500 2000 Times (ns)

$P_e = 690 \text{ MeV/c} 0 \text{ decay-e}$

<u>Super-K has excellent particle ID</u> These events are split into three selected streams: v_µ, v_e and low energy events.

$P_{\mu} = 953 \text{ MeV/c} 1 \text{ decay-e}$

Times (ns)

FLASY

- Event Selection
 - Fully contained,
 - no π⁰
 - No decay electrons

First ever observation (>5o) of an explicit v appearance channel

- Comparing with reactor measurements
 - best overlap is for the normal hierarchy δ_{cp}=-π/2.

Lucky point!

 Need to increase θ₂₃ to account for high event rate

FLASY

DATA 120 selected events

Best-fit Expectation with Oscillations

Maximal mixing is not the same as maximum <u>disappearance if θ_{13} is not zero!</u>

68% (dashed) and 90% (solid) CL Contours

Disappearance Measurement

3.2

Events/0.10 GeV

60

40

20

0

Ratio to no oscillations 2.0

0.7

 $\sin^2(\theta_{23})$

0.6

0.65

FLASY

The World Scene

		Best-fit ± FC 68% CL (Δm ² units 10 ⁻³ eV ² /c ⁴)		
NH	$sin^2\theta_{23}$	0.514 ^{+0.055} -0.056		
	Δm_{32}^2	2.51 ± 0.10		
ІН	$sin^2\theta_{23}$	0.511 ± 0.055		
	Δm_{13}^2	2.48 ± 0.10		

FLASY

Putting it All Together

Likelihood ratio fit to both $v_{\mu} + v_{e}$ event samples

Plot includes constraint from reactor experiments as given by PDG 2013.

T2K has a slight hint for the normal hierarchy with a value of δ_{CP} of $-\pi/2$

(%)	NH	IH	Sum	Ŗ
sin²θ ₂₃ ≤ 0.5	18	8	26%	ELIN
sin ² θ_{23} > 0.5	50	24	74%	NIN
Sum	68%	32%		NRY

A.Weber, FLASY2014, Brighton

FLASY

Run Status

The width of the beam is comparable to the measured Gaussians in the previous runs.

The detectors are all working well.

<u>Here is our first identified</u> <u>anti-neutrino event from</u> <u>an anti-neutrino test run!</u>

Future Sensitivity

T2K best sensitivity: 50% v/50% anti-v Anti-nu running: large new physics program. FLASY

FLASY

T2K and NOvA

T2K: 50% v/50% anti-v

5% error on signal, 10% on background

FLASY

- T2K has taken 8% of its nominal PoT
- World leading results
 - -7.3σ electron neutrino appearance
 - Most precise measurement of θ_{23}
- Combination with reactor measurements – Hint that δ_{CP} = - $\pi/2$
- Improved sensitivity with data to come
 Can be lucky to "discover" CP violation
- More results to come
 - Cross sections, sterile neutrinos, exotics...

Backup

Who is Who

FLASY 2014

Ubi es?

NA61/SHINE

- hadron(π, K) yield
 30 GeV p + C
- High-acceptance
 ToFs and spectrometers
- 2cm thin target $(4\%\lambda_1)$
- π⁺ analysis:
 - dE/dx only analysis low momenta (Phys.Rev.C84.2011.034604)
 - dE/dx+ToF analysis high momenta (Phys.Rev.C85.2011.035210)

$$\sigma(p)/p^{2} \approx 2 \times 10^{-3}, 7 \times 10^{-3}, 3 \times 10^{-2} (\text{GeV/c})^{-1}$$

for $p > 5, p = 2, p = 1 \text{ GeV/c}$
$$\sigma(\text{dE/dx})/(\text{dE/dx}) \approx 0.04$$

$$\sigma(\text{TOF-F}) \approx 115 \text{ ps}$$

$$\boxed{\frac{\sigma(dE/dx)}{dE/dx + \text{TOF}}}$$

Predicted Flux

FLASY 2014

- Primary pions modelled with NA61 data
- v_{μ} flux
 - Pions dominant at low energy
 - Kaons important in tail
- v_e flux
 - For low energy from muons

CC Interaction

 u_{μ} μ^{-} $^{\cdot}W^{+}$ $n \pi^{\perp,0}$ NX CC-nonQE (CCnQE) **CC-Quasi Elastic** = all CC that is not QE (CCQE) u_{μ} u_{μ} μ^{-} μ^{-} W W^+ $n \pi^{\pm,0}$ D NNX

A.Weber, FLASY2014, Brighton

FLASY