Inert 2HDM with local U(1)_H gauge symmetry and related issues

Collaboration with Yuji Omura (Nagoya U.) and C. Yu (KIAS)

Based on : PLB 171, 202 (2012); JHEP 1401, 016; and arXiv:1405.2138

> FLASY 2014 June 17-21, 2014, U of Sussex, UK

Two Higgs doublet model

- Many high-energy models predict extra Higgs doublets.
 - SUSY, GUT, flavor symmetric models, etc.
- Two Higgs doublet model could be an effective theory of a high-energy theory.
- Two (or multi) Higgs doublet model itself is interesting.
 - Higgs physics (heavy Higgs, pseudoscalar, charged Higgs physics)
 - dark matter physics (one of Higgs scalar or extra fermions could be CDM.)

Ma, PRD73; Barbieri, Hall, Rychkov, PRD74

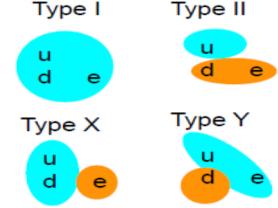
- baryon asymmetry of the Universe Shu, Zhang, PRL111
- neutrino mass generation Kanemura, Matsui, Sugiyama, PLB727

- can resolve experimental anomalies (top A_{FB} at Tevatron, $B \rightarrow D(*) \tau v$ at BABAR) Ko,Omura,Yu,EPJC73;JHEP1303 2

2HDM with Z_2 symmetry (2HDMw Z_2)

- One of the simplest models to extend the SM Higgs sector.
- In general, flavor changing neutral currents (FCNCs) appear.
- A simple way to avoid the FCNC problem is to assign ad hoc Z_2 symmetry.

Туре	H_1	H_2	U_R	D_R	E _R	N _R	Q_L, L
Ι	+	_	+	+	+	+	+
II	+	_	+	_	_	+	+
Х	+	_	+	+	_	_	+
Y	+	_	+	_	+	_	+



Fermions of same electric charges get their masses from one Higgs VEV.

$$\mathcal{L} = \overline{L}_i (y_{1ij}^E H_1 + y_{2ij}^E H_2) E_{Rj} + \text{H.c.} \quad \text{or vice versa}$$

NO FCNC at tree level.

Generic problems of 2HDM

- It is well known that discrete symmetry could generate a domain wall problem when it is spontaneously broken.
- Usually the Z_2 symmetry is assumed to be broken softly by a dim-2 operator, $H_1^{\dagger}H_2$ term.

The softly broken Z₂ symmetric 2HDM potential $V = m_1^2 H_1^{\dagger} H_1 + m_2^2 H_2^{\dagger} H_2 - (m_{12}^2 H_1^{\dagger} H_2 + h.c.) + \frac{1}{2} \lambda_1 (H_1^{\dagger} H_1)^2 + \frac{1}{2} \lambda_2 (H_2^{\dagger} H_2)^2 + \lambda_3 (H_1^{\dagger} H_1) (H_2^{\dagger} H_2) + \lambda_4 (H_1^{\dagger} H_2) (H_2^{\dagger} H_1) + \frac{1}{2} \lambda_5 [(H_1^{\dagger} H_2)^2 + h.c.]$

• the origin of the Z_2 symmetry and the softly breaking term?

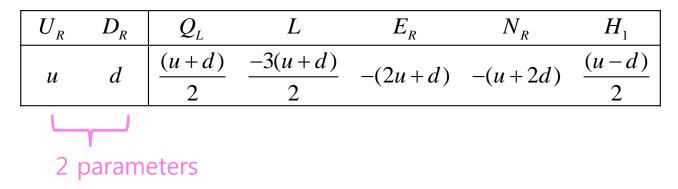
 Z_2 symmetry in 2HDM can be replaced by new U(1)_H symmetry associated with Higgs flavors.

Type-I 2HDM

• Only one Higgs couples with fermions.

$$V_{y} = y_{ij}^{U} \overline{Q}_{Li} \widetilde{H}_{1} U_{Rj} + y_{ij}^{D} \overline{Q}_{Li} H_{1} D_{Rj} + y_{ij}^{E} \overline{L}_{i} H_{1} E_{Rj} + y_{ij}^{N} \overline{L}_{i} \widetilde{H}_{1} N_{Rj}$$

• anomaly free $U(1)_H$ without extra fermions except RH neutrinos.



 In other Types of 2HDMs, extra fermions are required in order to cancel gauge anomaly.

 \rightarrow one of extra fermions can be a candidate for the cold dark matter.

Type-I 2HDM

Only one Higgs couples with fermions.

$$V_{y} = y_{ij}^{U} \overline{Q}_{Li} \widetilde{H}_{1} U_{Rj} + y_{ij}^{D} \overline{Q}_{Li} H_{1} D_{Rj} + y_{ij}^{E} \overline{L}_{i} H_{1} E_{Rj} + y_{ij}^{N} \overline{L}_{i} \widetilde{H}_{1} N_{Rj}$$

• anomaly free $U(1)_{H}$ without no extra fermions except RH neutrinos.

U_R	D_R	$Q_{\scriptscriptstyle R}$	L	E_{R}	N_{R}	H_{1}	Туре
и	d	$\frac{(u+d)}{2}$	$\frac{-3(u+d)}{2}$	-(2u+d)	-(u+2d)	$\frac{(u-d)}{2}$	
0	0	0	0	0	0	0	$h_2 \neq 0$
1/3	1/3	1/3	-1	-1	-1	0	$U(1)_{B-L}$
1	-1	0	0	-1	1	1	$U(1)_R$
2/3	-1/3	1/6	-1/2	-1	0	1/2	$U(1)_{\gamma}$

SM fermions are U(1)_H singlets.
Z_H is fermiophobic and Higgphilic.

Ko,Omura,Yu, PLB717,202(2013)

U(1)_H symmetry beomes Dark Gauge Symmetry

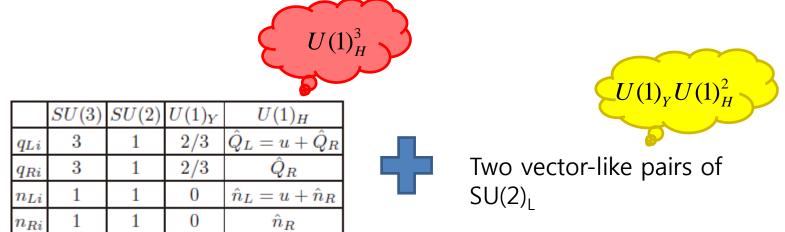
Type-II 2HDM

• H₁ couples to the up-type fermions, while H₂ couples to the down-type fermions. $U = \tilde{U} =$

$$V_{y} = y_{ij}^{U} Q_{Li} H_{1} U_{Rj} + y_{ij}^{D} Q_{Li} H_{2} D_{Rj} + y_{ij}^{E} L_{i} H_{2} E_{Rj} + y_{ij}^{N} L_{i} H_{1} N_{Rj}$$

U_R	D_{R}	$Q_{\scriptscriptstyle L}$	L	E_R	N_R	H_1	H_{2}
и	0	0	0	0	и	и	0

• Requires extra chiral fermions for cancellation of gauge anomaly.



Mixing between new chiral fermions and SM fermions is prohibited by $U(1)_{\rm H}$ charge assignment.

One of extra fermions could be a candidate for CDM.

Type-II 2HDM

• H₁ couples to the up-type fermions, while H₂ couples to the down-type fermions.

 $V_{y} = y_{ij}^{U} \overline{Q}_{Li} \tilde{H}_{1} U_{Rj} + y_{ij}^{D} \overline{Q}_{Li} H_{2} D_{Rj} + y_{ij}^{E} \overline{L}_{i} H_{2} E_{Rj} + y_{ij}^{N} \overline{L}_{i} \tilde{H}_{1} N_{Rj}$

U_{R}	D_R	$Q_{\scriptscriptstyle L}$	L	E_R	N_R	H_1	H_2
и	0	0	0	0	и	и	0

 Φ

• Requires extra chiral fermions for cancellation of gauge anomaly.

for example, $E_6 \to SO(10) \times U(1)_{\psi} \to SU(5) \times U(1)_{\chi} \times U(1)_{\psi}$.

	SU(3)	SU(2)	$U(1)_Y$	$U(1)_H$	$U(1)_{\psi}$	$U(1)_{\chi}$	$U(1)_{\eta}$
Q^i	3	2	1/6	-1/3	1	-1	-2
U_R^i	3	1	2/3	2/3	-1	1	2
D_R^i	3	1	-1/3	-1/3	-1	-3	-1
L_i	1	2	-1/2	0	1	3	1
E_R^i	1	1	-1	0	-1	1	2
N_R^i	1	1	0	1	-1	5	5
H_1	1	2	1/2	0	2	2	-1
H_2	1	2	1/2	1	-2	2	4

	SU(3)	SU(2)	$U(1)_Y$	$U(1)_H$	$U(1)_{\psi}$	$U(1)_{\chi}$	$U(1)_{\eta}$
q_L^i	3	1	-1/3	2/3	-2	2	4
q_R^i	3	1	-1/3	-1/3	2	2	-1
l_L^i	1	2	-1/2	0	-2	-2	1
l_R^i	1	2	-1/2	-1	2	-2	-4
n_L^i	1	1	0	-1	4	0	-5
	SU(3)	SU(2)	$U(1)_Y$	$U(1)_H$	$U(1)_{\psi}$	$U(1)_{\chi}$	$U(1)_{\eta}$
\vdash	~ /	~ /	173	× /	177	× 7A	N 7.4

0 1

1

 $-4 \mid 0 \mid 5$

Type-II 2HDM

• H₁ couples to the up-type fermions, while H₂ couples to the down-type fermions.

 $V_{y} = y_{ij}^{U} \overline{Q}_{Li} \widetilde{H}_{1} U_{Rj} + y_{ij}^{D} \overline{Q}_{Li} H_{2} D_{Rj} + y_{ij}^{E} \overline{L}_{i} H_{2} E_{Rj} + y_{ij}^{N} \overline{L}_{i} \widetilde{H}_{1} N_{Rj}$

U_{R}	D_R	$Q_{\scriptscriptstyle L}$	L	E_R	N_R	H_1	H_2
и	0	0	0	0	и	и	0

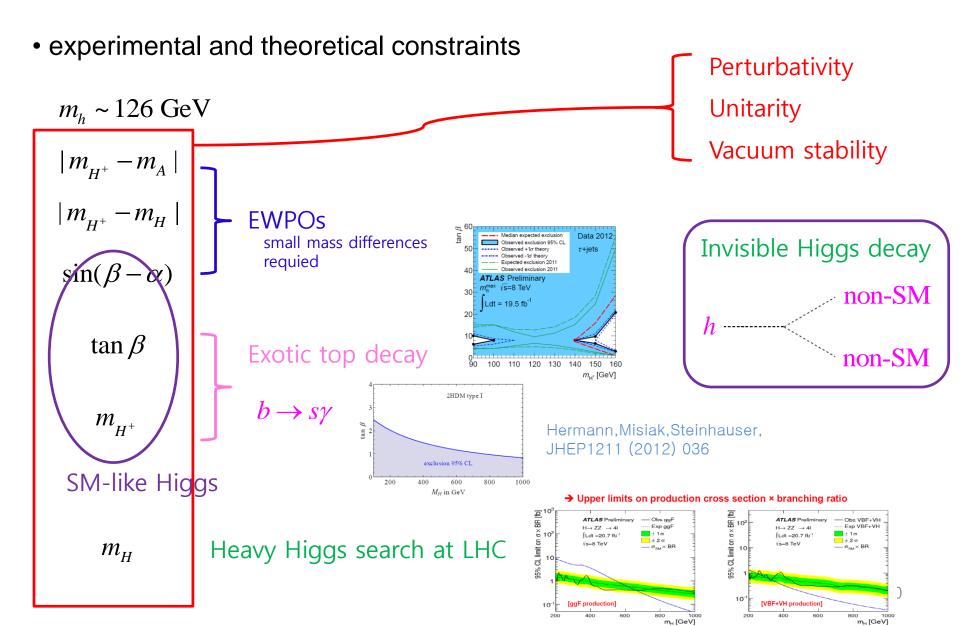
• Requires extra chiral fermions for cancellation of gauge anomaly.

for example, $E_6 \to SO(10) \times U(1)_{\psi} \to SU(5) \times U(1)_{\chi} \times U(1)_{\psi}$.

						1	1									
	SU(3)	SU(2)	$U(1)_Y$	$U(1)_H$	$U(1)_{\psi}$	$U(1)_{\chi}$	$U(1)_{\eta}$			SU(3)	SU(2)	$U(1)_Y$	$U(1)_H$	$U(1)_{\psi}$	$U(1)_{\chi}$	$U(1)_{\eta}$
Q^i	3	2	1/6	-1/3	1	-1	-2	q	l_L^i	3	1	-1/3	2/3	-2	2	4
U_R^i	3	1	2/3	2/3	-1	1	2		l_R^i	3	1	-1/3	-1/3	2	2	-1
D_R^i	3	1	-1/3	-1/3	-1	-3	-1		-	1	0	1/9		0	0	
L_i	1	2	-1/2	0	1	3	1	l	L^{i}	1	2	-1/2	0	-2	-2	1
E_R^i	1	1	-1	0	-1	1	2	l	$\stackrel{i}{R}$	1	2	-1/2	-1	2	-2	-4
N_R^i	1	1	0	1	-1	5	5	n	n_L^i	1	1	0	-1	4	0	-5
H_1	1	2	1/2	0	2	2	-1			SU(3)	SU(2)	U(1)	$U(1)_H$	$U(1)_{\psi}$	$U(1)_{\gamma}$	$U(1)_{\eta}$
H_2	1	2	1/2	1	-2	2	4		_	~ /				$U(1)\psi$		
	I			Le	ptop	bhoc	bic	E6 by	Φ	ILRos	ner	0	1	-4	0	5

9

Constraints



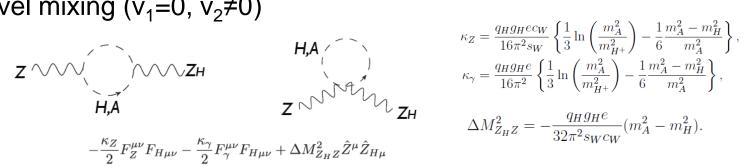
$Z-Z_H$ mixing

tree-level mixing (v_i≠0)

$$\Delta M_{ZZH}^2 = -\frac{\hat{M}_Z}{v}g_H \sum_{i=1}^2 q_{H_i} v_i^2.$$

$$\tan 2\xi = \frac{2\Delta M_{ZZ_H}^2}{\hat{M}_{Z_H}^2 - \hat{M}_Z^2}$$

• loop-level mixing ($v_1=0, v_2\neq 0$)



 $\Delta M_{Z_H Z}^2 = -\frac{q_H g_H e}{32\pi^2 s_W c_W} (m_A^2 - m_H^2).$

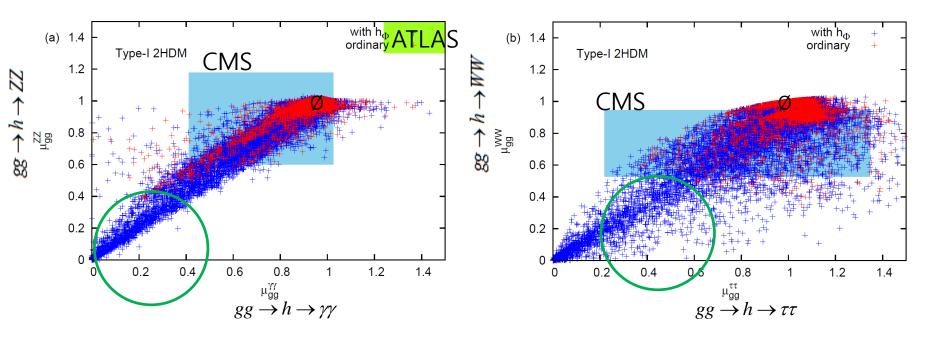
The mixing can appear because of $SU(2)_1$ $U(1)_y$ breaking effects.

- collider bound depends on the $U(1)_{H}$ charge assignment.
- In the fermiophobic Z_H case, the Z_H boson can be produced through the Z- Z_{H} mixing and the bound for the mixing angle is

 $\sin \xi d O(10^{-2}) \sim O(10^{-3})$

Type-I 2HDM with h_{ϕ}

• Assume the Z_H boson is heavy.



- consistent with CMS in the 1σ level while consistent with ATLAS in the 2σ .
- difficult to distinguish because the current experimental values are consistent with the SM prediction.
- essential to discover the extra scalar bosons and the new gauge boson.

Inert Doublet Model (IDMwZ₂)

• a 2HDM ~ one of the simplest extension

• One of Higgs doublets does not develop VEV and exact Z_2 symmetry is imposed. (Still there is a stability issue with Z_2)

• The new Higgs doublet does not participate in the EW symmetry breaking.

• Under the Z_2 symmetry, SM particles are even, but the new Higgs doublet is odd.

• Viable DM candidate

$$H_{1} = \begin{pmatrix} H^{+} \\ \frac{1}{\sqrt{2}} (H) + i A \end{pmatrix}, \quad H_{2} = \begin{pmatrix} G^{+} \\ \frac{1}{\sqrt{2}} (v + h) + i G^{0} \end{pmatrix}$$

DM candidates SM-like Higgs

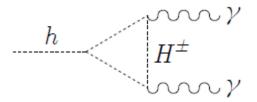
Inert Doublet Model (IDMwZ₂)

• CP-conserving potential

forbidden by the Z₂ symmetry

$$V = \mu_1 (H_1^{\dagger} H_1) + \mu_2 (H_2^{\dagger} H_2) - \mu_{12} (H_1^{\dagger} H_2 + \text{h.c.}) + \frac{\lambda_1}{2} (H_1^{\dagger} H_1)^2 + \frac{\lambda_2}{2} (H_2^{\dagger} H_2)^2 + \lambda_3 (H_1^{\dagger} H_1) (H_2^{\dagger} H_2) + \lambda_4 |H_1^{\dagger} H_2|^2 + \frac{\lambda_5}{2} \{ (H_1^{\dagger} H_2)^2 + h.c. \}.$$

- Type-I Yukawa interactions ~ only H_2 couples to the SM fermions.
- The h decay to two photons receives additional contribution through charged Higgs loop.



• H,A,H^{\pm} ~ do not couple to SM fermions at tree level.

- We replace the Z_2 symmetry by U(1) gauge symmetry.
- A SM-singlet Phi has to be added.

1

• Without Phi, Z_H boson becomes massless.

$$V = (m_1^2 + \tilde{\lambda}_1 |\Phi|^2)(H_1^{\dagger}H_1) + (m_2^2 + \tilde{\lambda}_2 |\Phi|^2)(H_2^{\dagger}H_2) - (m_{12}^2 H_1^{\dagger}H_2 + \text{h.c.})$$

+ $\frac{\lambda_1}{2}(H_1^{\dagger}H_1)^2 + \frac{\lambda_2}{2}(H_2^{\dagger}H_2)^2 + \lambda_3(H_1^{\dagger}H_1)(H_2^{\dagger}H_2) + \lambda_4 |H_1^{\dagger}H_2|^2$
+ $\frac{\lambda_5}{2}\{(H_1^{\dagger}H_2)^2 + h.c.\} + m_{\Phi}^2 |\Phi|^2 + \lambda_{\Phi} |\Phi|^4$

- Phi breaks the U(1)_H symmetry while H_2 breaks the EW symmetry.
- The remnant symmetry of $U(1)_{H}$ is the origin of the exact Z_2 symmetry.

- We replace the Z_2 symmetry by U(1) gauge symmetry.
- A SM-singlet Phi has to be added.
- Without Phi, Z_H boson becomes massless.

forbidden by the Z₂ symmetry

$$V = (m_1^2 + \tilde{\lambda}_1 |\Phi|^2)(H_1^{\dagger}H_1) + (m_2^2 + \tilde{\lambda}_2 |\Phi|^2)(H_2^{\dagger}H_2) - (m_{12}^2 H_1^{\dagger}H_2 + \text{h.c.})$$

+ $\frac{\lambda_1}{2}(H_1^{\dagger}H_1)^2 + \frac{\lambda_2}{2}(H_2^{\dagger}H_2)^2 + \lambda_3(H_1^{\dagger}H_1)(H_2^{\dagger}H_2) + \lambda_4 |H_1^{\dagger}H_2|^2$
+ $\frac{\lambda_5}{2}\{(H_1^{\dagger}H_2)^2 + h.c.\} + m_{\Phi}^2 |\Phi|^2 + \lambda_{\Phi} |\Phi|^4$
forbidden by the U(1)_H symmetry (q_{H2}=0,q_{H1} \neq 0)

- Phi breaks the U(1)_H symmetry while H_2 breaks the EW symmetry.
- The remnant symmetry of $U(1)_{H}$ is the origin of the exact Z_2 symmetry.

• IDM + SM-singlet Phi.

forbidden by the Z_2 symmetry

$$V = (m_1^2 + \tilde{\lambda}_1 |\Phi|^2)(H_1^{\dagger}H_1) + (m_2^2 + \tilde{\lambda}_2 |\Phi|^2)(H_2^{\dagger}H_2) - (m_{12}^2 H_1^{\dagger}H_2 + \text{h.c.})$$

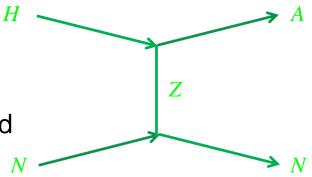
+ $\frac{\lambda_1}{2}(H_1^{\dagger}H_1)^2 + \frac{\lambda_2}{2}(H_2^{\dagger}H_2)^2 + \lambda_3(H_1^{\dagger}H_1)(H_2^{\dagger}H_2) + \lambda_4 |H_1^{\dagger}H_2|^2$
+ $\frac{\lambda_5}{2}\{(H_1^{\dagger}H_2)^2 + h.c.\} + m_{\Phi}^2 |\Phi|^2 + \lambda_{\Phi} |\Phi|^4$

forbidden by the U(1)_H symmetry $(q_{H_2}=0,q_{H_1}\neq 0)$

• Without λ_5 , H and A are degenerate.

$$m_A = \sqrt{m_H^2 - \lambda_5 v^2}$$

• Direct searches for DM at XENON100 and LUX exclude this degenerate case.



• IDM + SM-singlet Phi.

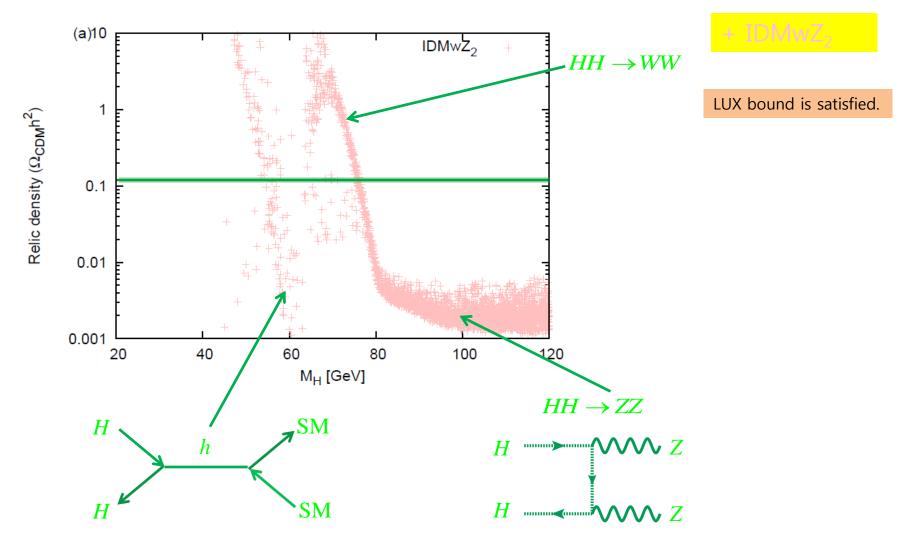
forbidden by the Z_2 symmetry

$$V = (m_1^2 + \tilde{\lambda}_1 |\Phi|^2)(H_1^{\dagger}H_1) + (m_2^2 + \tilde{\lambda}_2 |\Phi|^2)(H_2^{\dagger}H_2) - (m_{12}^2 H_1^{\dagger}H_2 + \text{h.c.}) + \frac{\lambda_1}{2}(H_1^{\dagger}H_1)^2 + \frac{\lambda_2}{2}(H_2^{\dagger}H_2)^2 + \lambda_3(H_1^{\dagger}H_1)(H_2^{\dagger}H_2) + \lambda_4 |H_1^{\dagger}H_2|^2 + \{c_l \left(\frac{\Phi}{\Lambda}\right)^l (H_1^{\dagger}H_2)^2 + h.c.\} + m_{\Phi}^2 |\Phi|^2 + \lambda_{\Phi} |\Phi|^4$$

- The λ_5 term can effectively be generated by a higher-dimensional operator.

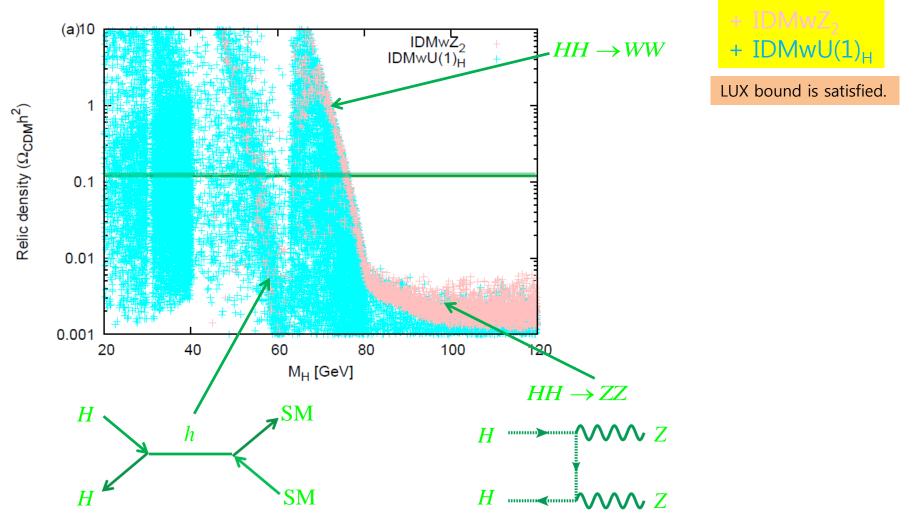
• It could be realized by introducing a singlet S charged under U(1)_H with $q_S=q_{H_1}$.

Relic density (low mass) $\Omega_{CDM}h^2 = 0.1199 \pm 0.0027$



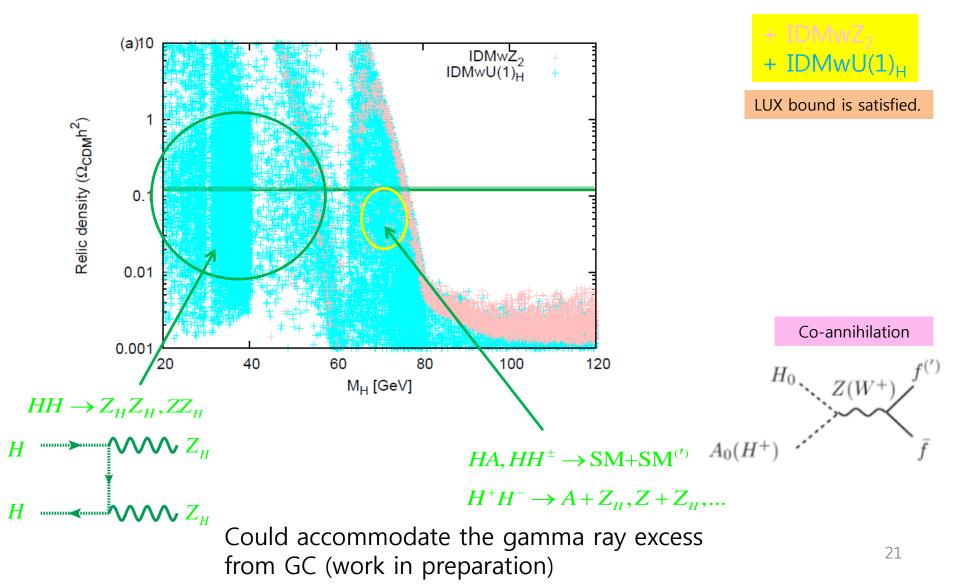
Relic density (low mass)

 $\Omega_{\rm CDM} h^2 = 0.1199 \pm 0.0027$

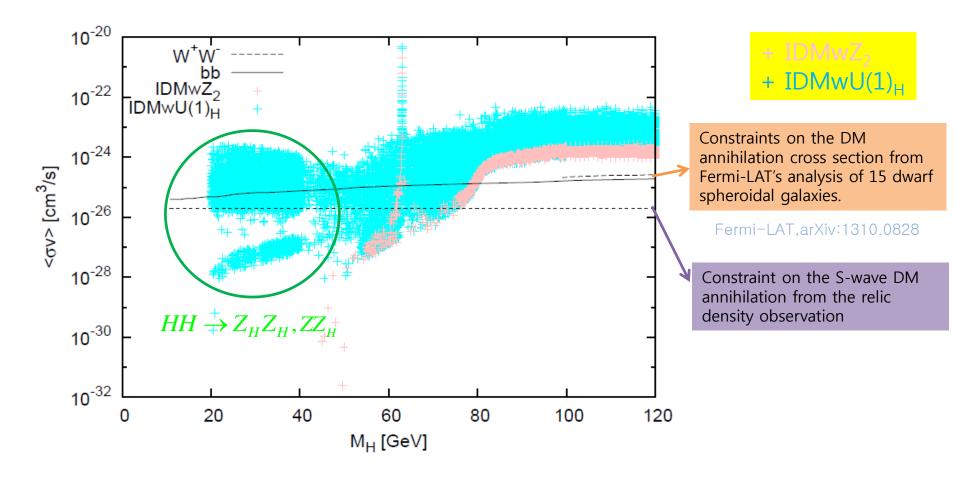


Relic density (low mass)

 $\Omega_{\rm CDM} h^2 = 0.1199 \pm 0.0027$

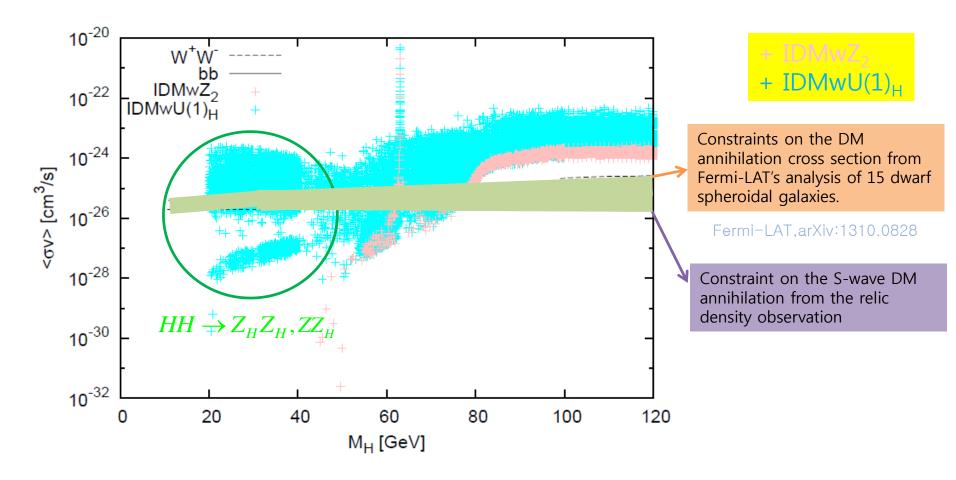


Indirect searches (low mass)



• All points satisfy constraints from the relic density observation and LUX experiments.

Indirect searches (low mass)



 But, indirect DM signals depend on the decay patterns of produced particles from annihilation or decay of DMs.

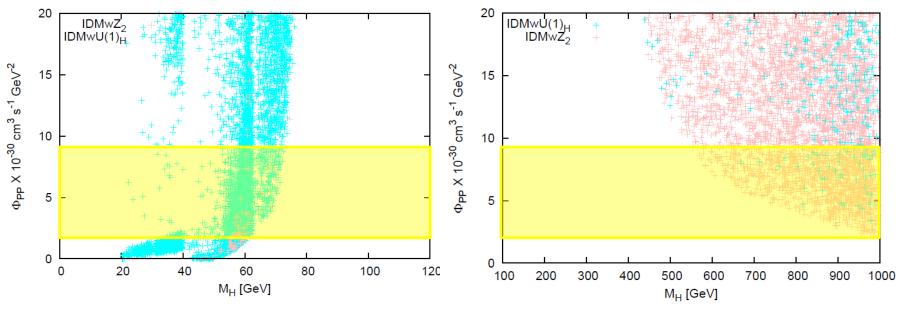
Gamma ray flux from DM annihilation

• Dwarf spheroidal galaxies are excellent targets to search for annihilating DM signatures because of DM-dominant nature without astrophysical backgrounds like hot gas.

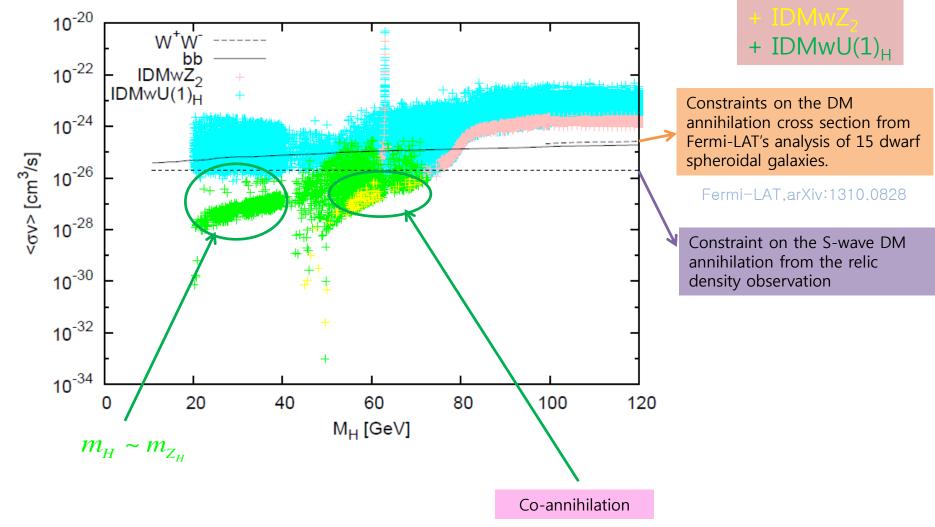
$$\phi_s(\Delta\Omega) = \underbrace{\frac{1}{4\pi} \frac{\langle \sigma v \rangle}{2m_{\rm DM}^2} \int_{E_{\rm min}}^{E_{\rm max}} \underbrace{\frac{\mathrm{d}N_{\gamma}}{\mathrm{d}E_{\gamma}} \mathrm{d}E_{\gamma}}_{\Phi_{\rm PP}} \cdot \underbrace{\int_{\Delta\Omega} \left\{ \int_{\rm l.o.s.} \rho^2(r) \mathrm{d}l \right\} \mathrm{d}\Omega'}_{J\text{-factor}} \cdot \underbrace{\int_{\Phi_{\rm PP}} \int_{\Phi_{\rm PP}} \frac{\mathrm{d}N_{\gamma}}{\mathrm{d}E_{\gamma}} \mathrm{d}E_{\gamma} \cdot \underbrace{\int_{\Delta\Omega} \left\{ \int_{\rm l.o.s.} \rho^2(r) \mathrm{d}l \right\} \mathrm{d}\Omega'}_{J\text{-factor}} \cdot \underbrace{\int_{\Phi_{\rm DM}} \int_{\Phi_{\rm PP}} \frac{\mathrm{d}N_{\gamma}}{\mathrm{d}E_{\gamma}} \mathrm{d}E_{\gamma} \cdot \underbrace{\int_{\Delta\Omega} \left\{ \int_{\mathrm{l.o.s.}} \rho^2(r) \mathrm{d}l \right\} \mathrm{d}\Omega'}_{about the distribution of DM}}$$

A 95% upper bound is $\Phi_{PP} = 5.0^{+4.3}_{-4.5} \times 10^{-30} \text{ cm}^3 \text{s}^{-1} \text{GeV}^{-2}$

Geringer-Sameth, Koushiappas, PRL107

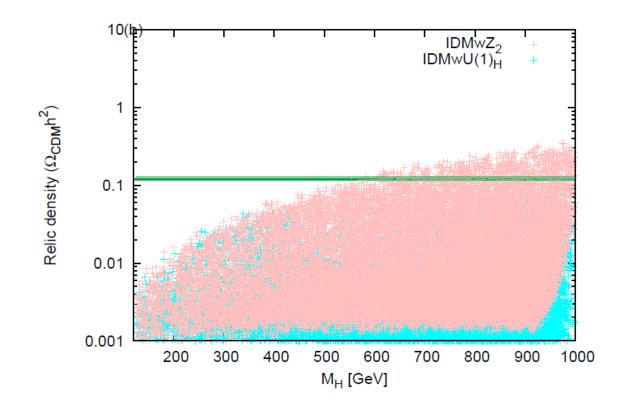


Indirect searches (low mass)



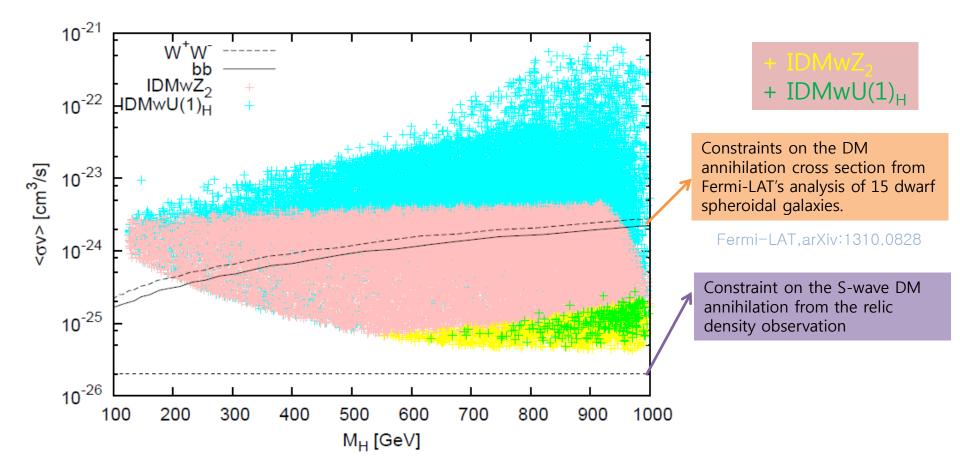
Relic density (high mass)

 $\Omega_{\rm CDM} h^2 = 0.1199 \pm 0.0027$



IDMwl

Indirect searches (high mass)



Conclusions

• 2HDM may be an effective theory of a high-energy theory and useful to test the underlying theory.

• 2HDM can easily be extended to a gauged model and the U(1) gauge symmetry could be the origin of Z_2 symmetry.

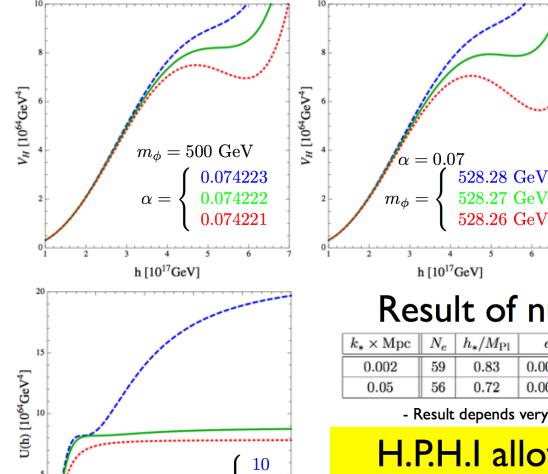
• The U(1) extension to inert doublet model could introduce dark matter candidates whose stability are guaranteed by the remnant discrete gauge symmetry of U(1)_H.

- In type-I, a light CDM scenario is possible in the IDMwU(1)_H.
- Type-II with local $U(1)_{H}$ is under study (stay tuned)

General aspects for Local Dark Gauge Symmetry

- Stability of EW scale CDM guaranteed dynamically like QED + electron
- Massive dark Higgs and dark gauge boson appear in addition to the DM and can modify the DM phenomenology completely
- •Allowed DM mass region can be lower than DM models without fark gauge symmetry
- •Sizable self interaction among CDM possible by light dark Higgs or dark gauge bosons
- Higgs can have nonstandard decay modes into dark Higgs and/or dark gauge boson, and the signal strengths universally reduced from 1
- Dark Higgs stabilizes the EW vacuum up to Planck scale, and also opens a new dim for the Higgs inflation (r~0.1 possible)
- These points are discussed in detail in recent papers with my collaboratators

Higgs portal Higgs inflation



30

50

10

20

h [1017GeV]

30

 $m_t = 173.2 \text{ GeV}$ $M_h = 125.5 \text{ GeV}$

Ko, Park arXiv: 1405.1635

* Inflection point control $(lpha,m_{\phi})$ & $\lambda_{\Phi H}$

Result of numerical analysis

$k_* \times \mathrm{Mpc}$	Ne	$h_*/M_{\rm Pl}$	ε,	η_*	$10^{9}P_{S}$	n_s	r
0.002	59	0.83	0.00448	-0.02465	2.2639	0.9238	0.0717
0.05	56	0.72	0.00525	-0.0019	2.1777	0.9647	0.084

- Result depends very sensitively on $\alpha, m_{\Phi} \text{ and } \lambda_{\Phi H}$ -

H.P.H.I allows Higgs inflation matching to BICEP2 result without resorting to m_t and M_h. (with S.Baek, Suyong Choi, P. Gondolo, T. Hur, D.W.Jung, Sunghoon Jung, J.Y.Lee, W.I.Park, E.Senaha, Yong Tang in various combinations)

- Strongly interacting hidden sector (0709.1218 PLB,1103.2571 PRL)
- Light DM in leptophobic Z' model (1106.0885 PRD)
- Singlet fermion dark matter (1112.1847 JHEP)
- Higgs portal vector dark matter (1212.2131 JHEP)
- Vacuum structure and stability issues (1209.4163 JHEP)
- Singlet portal extensions of the standard seesaw models with unbroken dark symmetry (1303.4280 JHEP)
- Hidden sector Monopole, VDM and DR (1311.1035)
- Self-interacting scalar DM with local Z3 symmetry (1402.6449)
- And a few more, including Higgs-portal assisted Higgs inflation, Higgs portal VDM for gamma ray excess from GC, and DM-sterile nu's etc.

Back up

Higgs Potential

• in the ordinary 2HDM with Z₂ symmetry

$$V = m_1^2 H_1^{\dagger} H_1 + m_2^2 H_2^{\dagger} H_2 + (m_{12}^2 H_1^{\dagger} H_2 + h.c.) + \frac{1}{2} \lambda_1 (H_1^{\dagger} H_1)^2 + \frac{1}{2} \lambda_2 (H_2^{\dagger} H_2)^2 + \lambda_3 (H_1^{\dagger} H_1) (H_2^{\dagger} H_2) + \lambda_4 (H_1^{\dagger} H_2) (H_2^{\dagger} H_1) + \frac{1}{2} \lambda_5 [(H_1^{\dagger} H_2)^2 + h.c.].$$
not invariant under U(1)_H

• in the 2HDM with U(1)_H, we include an extra singlet scalar Φ , which makes Z_H heavy.

$$V = \hat{m}_{1}^{2} (|\Phi|^{2}) H_{1}^{\dagger} H_{1} + \hat{m}_{2}^{2} (|\Phi|^{2}) H_{2}^{\dagger} H_{2} - (m_{3}^{2}(\Phi) H_{1}^{\dagger} H_{2} + h.c.) \leftarrow H_{1}^{\dagger} H_{2} \Phi$$

$$+ \frac{\lambda_{1}}{2} (H_{1}^{\dagger} H_{1})^{2} + \frac{\lambda_{2}}{2} (H_{2}^{\dagger} H_{2})^{2} + \lambda_{3} (H_{1}^{\dagger} H_{1}) (H_{2}^{\dagger} H_{2}) + \lambda_{4} |H_{1}^{\dagger} H_{2}|^{2} \qquad \text{invariant under U(1)}_{+}$$

$$+ m_{\Phi}^{2} |\Phi|^{2} + \lambda_{\Phi} |\Phi|^{4}. \qquad \text{no } \lambda 5 \text{ terms!}$$

• neutral Higgs
$$\begin{pmatrix}
h_{\Phi} \\
h_{1} \\
h_{2}
\end{pmatrix} = \begin{pmatrix}
1 & 0 & 0 \\
0 & \cos \alpha - \sin \alpha \\
0 & \sin \alpha & \cos \alpha
\end{pmatrix}
\begin{pmatrix}
\cos \alpha_{1} & 0 - \sin \alpha_{1} \\
0 & 1 & 0 \\
\sin \alpha_{1} & 0 & \cos \alpha_{1}
\end{pmatrix}
\begin{pmatrix}
\cos \alpha_{2} - \sin \alpha_{2} & 0 \\
\sin \alpha_{2} & \cos \alpha_{2} & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
\widetilde{h} \\
H \\
h
\end{pmatrix}$$

a pair of charged Higgs + 1 pseudoscalar Higgs + 3 neutral Higgs bosons