Systematic studies of texture zeros in lepton mass matrices

Patrick Otto Ludl

Faculty of Physics, University of Vienna

Brighton, June 20th, 2014

Der Wissenschaftsfonds.

FWF Project P 24161-N16

Patrick Ludl (University of Vienna)

Flavour symmetries in the lepton sector

One of the most interesting questions in flavour physics:

 \rightarrow Question for flavour symmetries.

- \Rightarrow Two possibilities:
 - Abelian symmetries \rightarrow texture zeros in the mass matrices.
 - Non-Abelian symmetries.

Non-Abelian symmetries

Approach intensively studied recently: residual symmetries in the mass matrices:

 \rightarrow Lam; Hernandez, Smirnov; Toorop, Feruglio, Hagedorn; Holthausen, Lim, Lindner; Hagedorn, Meroni, Vitale; King, Neder, Stuart; Lavoura, POL; . . .

R.M. Fonseca and W. Grimus,

Classification of lepton mixing matrices from residual symmetries [arXiv:1405.3678 [hep-ph]].

Result of this paper:

- Assuming Majorana neutrinos → Classification of all possible mixing matrices fully determined by residual symmetries.
- 16 sporadic mixing matrices, 1 infinite series of mass matrices.
- Only members of the infinite series of mixing matrices are compatible with the data at 3σ.

$$U|^{2} = \frac{1}{3} \begin{pmatrix} 1 & 1 + \operatorname{Re}\sigma & 1 - \operatorname{Re}\sigma \\ 1 & 1 + \operatorname{Re}(\omega\sigma) & 1 - \operatorname{Re}(\omega\sigma) \\ 1 & 1 + \operatorname{Re}(\omega^{2}\sigma) & 1 - \operatorname{Re}(\omega^{2}\sigma) \end{pmatrix}; \quad \omega = e^{2\pi i j/3}; \quad \sigma = e^{2\pi i p/n}.$$

Patrick Ludl (University of Vienna)

Abelian symmetries

Abelian symmetries impose texture zeros (TZ) in the mass matrices.

In this talk we focus on texture zeros in the *lepton* mass matrices.

Mostly studied situation:

- Diagonal charged-lepton mass matrix M_{ℓ} + TZ in the neutrino mass matrix M_{ν} :
 - Dirac neutrinos: Hagedorn, Rodejohann¹
 - Majorana neutrinos: Frampton, Glashow, Marfatia; Xing²,...
- TZ in M_{ℓ} and M_{ν} , both non-diagonal + additional symmetries (e.g. Hermitian mass matrices, Fritzsch textures).

 \rightarrow Our aim: Study all types of texture zeros (without other imposed symmetries) in M_{ℓ} and M_{ν} .

Patrick Ludl (University of Vienna)

¹Hagedorn, Rodejohann, JHEP **0507** (2005) 034.

²Frampton, Glashow, Marfatia, Phys. Lett. **B 536** (2002) 79; Xing, Phys. Lett. **B 530** (2002) 159.

Systematic studies of texture zeros in the lepton mass matrices

POL and Walter Grimus: *A complete survey of texture zeros in the lepton mass matrices.* [arXiv:1406.3546 [hep-ph]].

Three parts:

- Classification of texture zeros in the lepton mass matrices.
- Which sets of texture zeros are compatible with the experimental observations?
- What is the predictive power of texture zeros?

I. Classification of texture zeros in the lepton mass matrices

Classification of texture zeros in the lepton mass matrices

Setting:

	fields	mass term	mass matrix	
charged leptons	3 ℓ _{iL} , 3 ℓ _{iR}	$-\overline{\ell_L}M_\ell\ell_R + H.c.$	M_ℓ complex $3 imes 3$	
Dirac νs	3 ν _{iL} , 3 ν _{iR}	$-\overline{\nu_R}M_D\nu_L + H.c.$	M_D complex 3×3	
Majorana νs	3 v _{iL}	$\frac{1}{2}\nu_L^T C^{-1} M_L \nu_L + \text{H.c.}$	M_L c. symm. 3×3	

How many different types of texture zeros (TTZ) in the lepton mass matrices?

- \rightarrow number is **huge**:
 - Dirac neutrinos: (M_{ℓ}, M_D) : $2^9 \times 2^9 = 262144$ different TTZ.
 - Majorana neutrinos: (M_{ℓ}, M_L): 2⁹ × 2⁶ = 32768 different TTZ.

Texture zeros and weak-basis transformations

Lepton masses and mixing matrix $U_{\rm PMNS}$ invariant under weak-basis transformations.

 \Rightarrow Use weak-basis transformations to **divide texture zeros into** equivalence classes making the same physical predictions.³

Field redefinition: $\ell_{L,R} = V_{L,R}^{(\ell)} \ell'_{L,R}$, $\nu_{L,R} = V_{L,R}^{(\nu)} \nu'_{L,R}$ matrices $V_{L,R}^{(\ell,\nu)}$ unitary (kinetic terms invariant); $V_L^{(\ell)} = V_L^{(\nu)}$ (gauge invariance).

Transformation of mass matrices under weak-basis transformations Dirac neutrinos: $M'_{\ell} = V_L^{\dagger} M_{\ell} V_R^{(\ell)}$ and $M'_D = V_R^{(\nu)\dagger} M_D V_L$. Majorana neutrinos: $M'_{\ell} = V_L^{\dagger} M_{\ell} V_R^{(\ell)}$ and $M'_L = V_L^{T} M_L V_L$.

³Hagedorn, Rodejohann, JHEP **0507** (2005) 034.

Texture zeros and weak-basis transformations

Weak-basis transformations which leave the number of texture zeros in a mass matrix invariant:

 $V_L \text{ and } V_R^{(\ell,\nu)} \text{ are (up to phases) permutation matrices}$ $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}.$

 \rightarrow "weak-basis permutations"

 \Rightarrow Can divide TTZ into equivalence classes.

Equivalence classes of texture zeros

Take all TTZ and

- Remove textures which do not make any predictions at all. (Some TTZ may always be created through weak-basis transformations.⁴)
- Charged-lepton masses non-zero and non-degenerate \rightarrow Only allow textures with rank $(M_{\ell}) = 3$.
- Neutrino masses non-degenerate \rightarrow Only allow textures with $\operatorname{rank}(M_{\nu}) = 2$ or 3.
- Arrange remaining textures into equivalence classes using weak-basis permutations.
- Dirac neutrinos 2^{18} TTZ \rightarrow **570 classes.**
- Majorana neutrinos $2^{15}~\text{TTZ} \rightarrow \textbf{298}$ classes.

Patrick Ludl (University of Vienna)

 \Rightarrow

⁴ Branco, Emmanuel-Costa, Gonzalez Felipe, Phys. Lett. **B 477** (2000) 147; Branco, Emmanuel-Costa, Gonzalez Felipe, Serodio, Phys. Lett. **B 670** (2009) 340.

II. Which sets of texture zeros are compatible with the experimental observations?

 χ^2 -analysis

Tested which TTZ are compatible with the experimental observations by means of a $\chi^2\mbox{-analysis.}$

About 75% of all TTZ are compatible with the experimental observations!

For further investigation: Go through list of compatible textures and keep only maximally restrictive TTZ.

Maximally restrictive types of texture zeros

A set of texture zeros compatible with experiment is **maximally restrictive**, if imposing an additional texture zero it becomes incompatible with the physical observations.

Results of the χ^2 -analysis

Neutrino nature	Dirac		Majorana	
Neutrino mass spectrum	normal	inverted	normal	inverted
Number of textures	570	570	298	298
Compatible with experiment	434	433	218	228
Compatible and maximally restrictive	30	29	33	27

 \rightarrow Out of all possibilities: Only about 30 maximally restrictive viable classes of texture zeros for each Dirac and Majorana neutrinos and normal and inverted spectrum.

III.What is the predictive power of texture zeros?

Patrick Ludl (University of Vienna) Systematic studies of texture zeros

Predictivity measures for models with texture zeros

Lepton physics observables:

• Already measured:

 $m_e, m_\mu, m_\tau, \Delta m_{21}^2, \Delta m_{31}^2, \sin^2\theta_{12}, \sin^2\theta_{23}, \sin^2\theta_{13}.$ • Probably measured in the (near?) future:

 m_0 , δ , $m_{\beta\beta}$, two Majorana phases.

Idea behind our predictivity measures

Given a viable set of texture zeros and **fixing all but one** of the (already measured) observables to their experimentally observed values, how much can the **remaining observable at most deviate** from its experimental or best-fit value?

Predictivity measures for models with texture zeros

Predictivity criteria:

 Charged-lepton masses: A set of texture zeros correctly predicts m_ℓ ∈ {m_e, m_µ, m_τ} if (fixing all other parameters to their experimental values):

$$rac{1}{2}m_\ell^{ ext{exp}} \leq m_\ell \leq 2m_\ell^{ ext{exp}}.$$

• Oscillation parameters: A set of texture zeros correctly predicts $\mathcal{O} \in \{\Delta m_{21}^2, \Delta m_{31}^2, s_{12}^2, s_{23}^2, s_{13}^2\}$ if (fixing all other parameters to their experimental values):

 \mathcal{O} can deviate from its best-fit value by at most 10σ .

Not yet measured observables *O* ∈ {*m*₀, *δ*, *m*_{ββ}, Majorana phases}: A set of texture zeros correctly predicts *O* if (fixing all measured observables to their experimental values):

$$\frac{\mathcal{O}^{\max} - \mathcal{O}^{\min}}{\operatorname{range}(\mathcal{O})} \leq 0.2.$$

Results of the predictivity analysis

We investigated only the **maximally restrictive TTZ** compatible with the data.

- None of the investigated textures can predict any of the charged-lepton masses.
- No set of texture zeros can predict any of the five neutrino oscillation parameters.
- Most investigated textures can predict m_0 . (Mostly $m_0 = 0$.)
- Dirac neutrinos: Maximally predictive and compatible textures: $\delta \in \{0, \pi\}$. (\rightarrow no CP violation in neutrino oscillations).
- Majorana neutrinos: Many textures can predict δ (also $\delta \neq 0, \pi$.)
- None of the textures for Majorana neutrinos can predict the Majorana phases.
- Almost all maximally restrictive and compatible sets of textures in (M_{ℓ}, M_L) predict $m_{\beta\beta}$.
- $m_{\beta\beta}$ can be big (larger than 0.1 eV) or small (normal neutrino mass spectrum). Inverted spectrum: $m_{\beta\beta} < 0.1$ eV.

Patrick Ludl (University of Vienna)

Conclusions

- Three families of leptons.
- Discussed Dirac and Majorana neutrinos.
- Required tree-level mass matrices to be compatible with exp. data.
- Same gauge structure as standard model: ℓ_R , ν_R gauge singlets.
- Classified all possible texture zeros in (M_{ℓ}, M_D) or (M_{ℓ}, M_L) , also non-diagonal M_{ℓ} .
- Through weak-basis permutations: **570** classes of TZ for Dirac neutrinos, **298** classes for Majorana neutrinos.
- Maximally restrictive classes: about 30 for each Dirac/Majorana and normal/inverted neutrino mass spectrum.
- For maximally restrictive textures: predictivity analysis.
- None of these textures can predict an already measured observable.

In summary:

Texture zeros are astonishingly weak in their predictions. Predictive mass matrices need also **relations among the non-zero matrix**

elements.

Patrick Ludl (University of Vienna)

Thank you for your attention!