Lepton Masses and Mixing Angles from Point Interactions

Yukihiro Fujimoto (Osaka Univ.)

Based on arXiv:1405.5872

Collaborating with

Kenji Nishiwaki Makoto Sakamoto Ryo Takahashi (Harish-Chandra Research Inst.)(Kobe Univ.)(Simane Univ.)

Mysteries of the Standard Model 2

Mysteries of the Standard Model 2

Generations

Who ordered the same packages in this world...?

Mysteries of the Standard Model 2

Generations

Who ordered the same packages in this world...?

Lepton & Neutrino masses

Charged lepton masses> Why hierarchical ...?Neutrino masses-> Why so tiny ...?

Mysteries of the Standard Model 2

Generations

Who ordered the same packages in this world...?

Lepton & Neutrino masses

Charged lepton masses —> Why hierarchical ...? Neutrino masses —> Why so tiny ...?

Flavor mixing angles

What determine the flavor mixing structure ...?

Mysteries of the Standard Model 2

Generations

Who ordered the same packages in this world...?

Lepton & Neutrino masses

Charged lepton masses —> Why hierarchical ...? Neutrino masses —> Why so tiny ...?

Flavor mixing angles

What determine the flavor mixing structure ...?

CP phase

What determine the value of CP phase ...?

Purpose

Purpose

We want to clarify the mysteries of the Standard Model

Purpose

We want to clarify the mysteries of the Standard Model

Generation Flavor mixing Mass Hierarchy CP phase Neutrino masses

Purpose

We want to clarify the mysteries of the Standard Model

Generation Flavor mixing Mass Hierarchy CP phase Neutrino masses

in the context of higher-dimensional gauge theories.

Idea

Lepton masses and mixing angles from point interactions

4

- Extra dimension
- Point interactions (Extra boundary points)
 y-dependent scalar VEV

Lepton masses and mixing angles from point interactions

Extra dimension

Point interactions (Extra boundary points) y-dependent scalar VEV

$$\Psi(x, y)$$

 $y = 0$
 $y = L$

Lepton masses and mixing angles from point interactions

Extra dimension

Point interactions (Extra boundary points)

y-dependent scalar VEV

$$\begin{array}{ccc} & \Psi(x,y) \\ \circ & & \\ y = 0 & y = L_1 & y = L_2 & y = L \end{array}$$

Lepton masses and mixing angles from point interactions

Extra dimension

Point interactions (Extra boundary points)

y-dependent scalar VEV

The positions of the point interactions

Lepton masses and mixing angles from point interactions

□ Extra dimension

Point interactions (Extra boundary points) y-dependent scalar VEV

Lepton masses and mixing angles from point interactions

□ Extra dimension

Point interactions (Extra boundary points) y-dependent scalar VEV

Lepton masses and mixing angles from point interactions

Extra dimension

Point interactions (Extra boundary points) y-dependent scalar VEV

Lepton masses and mixing angles from point interactions

□ Extra dimension

Point interactions (Extra boundary points)
 y-dependent scalar VEV

Lepton masses and mixing angles from point interactions

Point interactions (Extra boundary points) y-dependent scalar VEV

The positions of the point interactions

Lepton masses and mixing angles from point interactions

Extra dimension

Point interactions (Extra boundary points) y-dependent scalar VEV

L(x, y)SU(2) doublet

Lepton masses and mixing angles from point interactions

□ Extra dimension

Point interactions (Extra boundary points) y-dependent scalar VEV

L(x, y)SU(2) doublet

Lepton masses and mixing angles from point interactions

Extra dimension

Point interactions (Extra boundary points) y-dependent scalar VEV

Lepton masses and mixing angles from point interactions

Extra dimension

Point interactions (Extra boundary points) y-dependent scalar VEV

L(x, y)SU(2) doublet

Lepton masses and mixing angles from point interactions

Extra dimension

Point interactions (Extra boundary points) y-dependent scalar VEV

L(x, y)SU(2) doublet

Lepton masses and mixing angles from point interactions

Extra dimension

Point interactions (Extra boundary points) y-dependent scalar VEV

Lepton masses and mixing angles from point interactions

Extra dimension

□ Point interactions (Extra boundary points) □ y-dependent scalar VEV : $\langle \Phi(y) \rangle \sim e^{M_{\Phi}y}$

Lepton masses and mixing angles from point interactions

Extra dimension

□ Point interactions (Extra boundary points) □ y-dependent scalar VEV : $\langle \Phi(y) \rangle \sim e^{M_{\Phi}y}$

Lepton masses and mixing angles from point interactions

5

Extra dimension

Point interactions (Extra boundary points) **y-dependent scalar VEV**: $\langle H(y) \rangle \sim v e^{i \frac{\theta}{L} y}$

Lepton masses and mixing angles from point interactions

5

Extra dimension

Point interactions (Extra boundary points) **y-dependent scalar VEV**: $\langle H(y) \rangle \sim v e^{i \frac{\theta}{L} y}$

Features

6

□ Flavor mixing

The Flavor mixing was controlled by the configuration of the extra dimension with restricted form.

□ Flavor mixing

The Flavor mixing was controlled by the configuration of the extra dimension with restricted form.

Mass matrices

$$M^{(\nu)} = \begin{pmatrix} m_{11}^{(\nu)} & m_{12}^{(\nu)} & \mathbf{0} \\ \mathbf{0} & m_{22}^{(\nu)} & m_{23}^{(\nu)} \\ m_{31}^{(\nu)} & \mathbf{0} & m_{33}^{(\nu)} \end{pmatrix} \qquad M^{(e)} = \begin{pmatrix} m_{11}^{(e)} & m_{12}^{(e)} & m_{13}^{(e)} \\ \mathbf{0} & m_{22}^{(e)} & m_{23}^{(e)} \\ \mathbf{0} & \mathbf{0} & m_{33}^{(e)} \end{pmatrix}$$

□ Flavor mixing

The Flavor mixing was controlled by the configuration of the extra dimension with restricted form.

Flavor mixing

The Flavor mixing was controlled by the configuration of the extra dimension with restricted form.

□ CP phase

The origin of the CP phase for the leptons and the quarks is the same: Higgs VEV.

□ Flavor mixing

The Flavor mixing was controlled by the configuration of the extra dimension with restricted form.

CP phase

The origin of the CP phase for the leptons and the quarks is the same: Higgs VEV.

$$\langle H(y) \rangle = \begin{pmatrix} 0 \\ \frac{v}{\sqrt{2}} \end{pmatrix} e^{i\frac{\theta}{L}y} \longrightarrow \begin{bmatrix} \text{Quarks} & \longrightarrow & \delta_{\text{CP}} \\ & & & & \end{bmatrix} \\ \begin{bmatrix} \text{Leptons} & \longrightarrow & \delta'_{\text{CP}} \\ & & & & & \end{bmatrix}$$
Features

□ Flavor mixing

The Flavor mixing was controlled by the configuration of the extra dimension with restricted form.

□ CP phase

The origin of the CP phase for the leptons and the quarks is the same: Higgs VEV.

—> CP phase of the leptons can be a prediction after fitting the CP phase of the quarks !!

Lepton masses and mixing angles from point interactions

□ SU(2)×U(1) gauge theory on a circle

Lepton masses and mixing angles from point interactions

□ SU(2)×U(1) gauge theory on a circle

with { One generation fermions Higgs doublet & gauge singlet scalar

Lepton masses and mixing angles from point interactions

□ SU(2)×U(1) gauge theory on a circle

with { One generation fermions Higgs doublet & gauge singlet scalar

Lepton masses and mixing angles from point interactions

□ SU(2)×U(1) gauge theory on a circle

with { One generation fermions Higgs doublet & gauge singlet scalar

 $\Phi(x,y)$

Symmetry Breaking & CP source

Mass hierarchy

Lepton masses and mixing angles from point interactions

□ SU(2)×U(1) gauge theory on a circle

- with { One generation fermions Higgs doublet & gauge singlet scalar
- Point interactions (Extra boundary points)

Lepton masses and mixing angles from point interactions

□ SU(2)×U(1) gauge theory on a circle

with { One generation fermions Higgs doublet & gauge singlet scalar

Point interactions (Extra boundary points)

★ Gauge fields do not feel point interactions.

$$W_{MN}^{(a)}(x,y)$$
$$B_{MN}(x,y)$$
$$y = L y = 0$$

Lepton masses and mixing angles from point interactions

SU(2)×U(1) gauge theory on a circle

with { One generation fermions Higgs doublet & gauge singlet scalar

Point interactions (Extra boundary points)

★ Gauge fields do not feel point interactions.
★ Fermions feel several point interactions.

Lepton masses and mixing angles from point interactions

□ SU(2)×U(1) gauge theory on a circle

with { One generation fermions Higgs doublet & gauge singlet scalar

Point interactions (Extra boundary points)

- ★ Gauge fields do not feel point interactions.
- ★ Fermions feel several point interactions.
- ★ Higgs & singlet scalar feel one point interaction.

Lepton masses and mixing angles from point interactions

SU(2)×U(1) gauge theory on a circle

with { One generation fermions Higgs doublet & gauge singlet scalar

Point interactions (Extra boundary points)

- ★ Gauge fields do not feel point interactions.
- \bigstar Fermions feel several point interactions.
- ★ Higgs & singlet scalar feel one point interaction.

Impose boundary conditions

Lepton masses and mixing angles from point interactions

□ SU(2)×U(1) gauge theory on a circle

with { One generation fermions Higgs doublet & gauge singlet scalar

Point interactions (Extra boundary points)

- ★ Gauge fields do not feel point interactions.
- ★ Fermions feel several point interactions.
- ★ Higgs & singlet scalar feel one point interaction.

Impose boundary conditions

compatible with $\begin{cases} \star 5d \text{ gauge invariance} \\ \star \text{ action principle} \quad \text{etc.} \end{cases}$

Boundary Conditions (BC's)

Yukihiro Fujimoto, 2014.06.20 FLASY2014 @ Sussex Univ.

8

Boundary Conditions (BC's)

□ Gauge fields

***** Periodic BC

Yukihiro Fujimoto, 2014.06.20 FLASY2014 @ Sussex Univ.

Q

Boundary Conditions (BC's)

□ Gauge fields

***** Periodic BC

Higgs doublet

★ Twisted BC

Boundary Conditions (BC's)

Gauge singlet scalar

***** Robin BC

Boundary Conditions (BC's)

Gauge singlet scalar

***** Robin BC

Two parameters

Boundary Conditions (BC's)

Gauge singlet scalar

***** Robin BC

Boundary Conditions (BC's)

Fermions

***** Dirichlet BC

Boundary Conditions (BC's)

Fermions

★ Dirichlet BC

Boundary Conditions (BC's)

Fermions

★ Dirichlet BC

Generation

Generation

Triply-degenerated chiral zero modes via point interactions

$$\Psi_R(x,0) = 0 \qquad \qquad \Psi_R(x,L) = 0$$

Generation

Triply-degenerated chiral zero modes via point interactions

$$\Psi_R(x,0) = 0 \qquad \Psi_R(x,L_1) = 0 \qquad \Psi_R(x,L_2) = 0 \qquad \Psi_R(x,L) = 0$$

Generation

Triply-degenerated chiral zero modes via point interactions

Generation

Triply-degenerated chiral zero modes via point interactions

 $\Psi_{R}(x,0) = 0 \qquad \Psi_{R}(x,L_{1}) = 0 \qquad \Psi_{R}(x,L_{2}) = 0 \qquad \Psi_{R}(x,L) = 0$ $\Psi(x,y) = \sum_{j=1}^{3} \psi_{L}^{(j)}(x) g_{0}^{(j)}(y) + (KK - modes)$ 4-dim. mass eigenstates — Mode functions

Generation

Triply-degenerated chiral zero modes via point interactions

 $\Psi_R(x,0) = 0 \qquad \Psi_R(x,L_1) = 0 \qquad \Psi_R(x,L_2) = 0 \qquad \Psi_R(x,L) = 0$ $\Psi(x,y) = \sum_{j=1}^3 \psi_L^{(j)}(x) g_0^{(j)}(y) + (\text{KK} - \text{modes})$ $\mathcal{D}^{\dagger} g_0^{(j)}(y) = 0 \quad (\mathcal{D}^{\dagger} \equiv -\partial_y + M_F)$ Bulk mass

Generation

Triply-degenerated chiral zero modes via point interactions

Generation

Triply-degenerated chiral zero modes via point interactions

Generation

Triply-degenerated chiral zero modes via point interactions

Lepton mass hierarchy

Lepton mass hierarchy

□ Three localized SU(2) doublet zero modes

Lepton mass hierarchy

□ Three localized SU(2) doublet zero modes

Lepton mass hierarchy

□ Three localized SU(2) doublet zero modes

Lepton mass hierarchy

□ Three localized SU(2) doublet zero modes

Lepton mass hierarchy

Three localized SU(2) doublet zero modes
& Three localized SU(2) singlet zero modes

Lepton mass hierarchy

Three localized SU(2) doublet zero modes
& Three localized SU(2) singlet zero modes

□ The Robin BC can produce a y-dependent VEV $\langle \Phi(y) \rangle \sim e^{My}$

Lepton mass hierarchy

Three localized SU(2) doublet zero modes
& Three localized SU(2) singlet zero modes

□ The Robin BC can produce a y-dependent VEV $\langle \Phi(y) \rangle \sim e^{My}$

Lepton mass hierarchy

Three localized SU(2) doublet zero modes
& Three localized SU(2) singlet zero modes

□ The Robin BC can produce a y-dependent VEV $\langle \Phi(y) \rangle \sim e^{My}$

Tiny neutrino masses

Tiny neutrino masses

13

Three localized SU(2) doublet and singlet with y-dependent VEV

Tiny neutrino masses

Three localized SU(2) doublet and singlet with y-dependent VEV

□ Large bulk mass produce tiny neutrino masses $|M_L L| \sim |M_E L| \sim O(100)$

Tiny neutrino masses

- Three localized SU(2) doublet and singlet with y-dependent VEV
- □ Large bulk mass produce tiny neutrino masses $|M_L L| \sim |M_E L| \sim O(100)$

Tiny neutrino masses

- Three localized SU(2) doublet and singlet with y-dependent VEV
- □ Large bulk mass produce tiny neutrino masses $|M_L L| \sim |M_E L| \sim O(100)$

CP phase

<u>CP phase</u>

Twisted BC for the Higgs produce y-dependent phase to the Higgs VEV.

YF, K.Nishiwaki, M.Sakamoto, PRD 88,115007(2013)

CPphase

Twisted BC for the Higgs produce y-dependent phase to the Higgs VEV.

YF, K.Nishiwaki, M.Sakamoto, PRD 88,115007(2013)

CPphase

14

Twisted BC for the Higgs produce y-dependent phase to the Higgs VEV.

YF, K.Nishiwaki, M.Sakamoto, PRD 88,115007(2013)

Each element of mass matrices acquires own phases through the overlap integrals.

Flavor mixing

☐ The configuration of the point interactions

Flavor mixing

The configuration of the point interactions

★ In general, the positions of the point interactions can change with respect to the fermions.

Flavor mixing

The configuration of the point interactions

★ In general, the positions of the point interactions can change with respect to the fermions.

Flavor mixing

The configuration of the point interactions

★ In general, the positions of the point interactions can change with respect to the fermions.

Flavor mixing

□ The configuration of the point interactions

★ In general, the positions of the point interactions can change with respect to the fermions.

Flavor mixing

The configuration of the point interactions

★ In general, the positions of the point interactions can change with respect to the fermions.

Flavor mixing

The configuration of the point interactions

★ In general, the positions of the point interactions can change with respect to the fermions.

Flavor mixing

The configuration of the point interactions

★ In general, the positions of the point interactions can change with respect to the fermions.

Flavor mixing

The configuration of the point interactions

★ In general, the positions of the point interactions can change with respect to the fermions.

Flavor mixing

The configuration of the point interactions

★ In general, the positions of the point interactions can change with respect to the fermions.

Flavor mixing

The configuration of the point interactions

★ In general, the positions of the point interactions can change with respect to the fermions.

Flavor mixing

The configuration of the point interactions

★ In general, the positions of the point interactions can change with respect to the fermions.

$$M^{(\nu)} = \begin{pmatrix} m_{11}^{(\nu)} & m_{12}^{(\nu)} & 0\\ 0 & m_{22}^{(\nu)} & m_{23}^{(\nu)}\\ m_{31}^{(\nu)} & 0 & m_{33}^{(\nu)} \end{pmatrix}$$

Flavor mixing

The configuration of the point interactions

★ In general, the positions of the point interactions can change with respect to the fermions.

Flavor mixing

The configuration of the point interactions

★ In general, the positions of the point interactions can change with respect to the fermions.

Flavor mixing

The configuration of the point interactions

★ In general, the positions of the point interactions can change with respect to the fermions.

$$M^{(\nu)} = \begin{pmatrix} m_{11}^{(\nu)} & 0 & 0 \\ m_{21}^{(\nu)} & m_{22}^{(\nu)} & m_{23}^{(\nu)} \\ m_{31}^{(\nu)} & 0 & m_{33}^{(\nu)} \end{pmatrix}$$

Flavor mixing

The configuration of the point interactions

★ In general, the positions of the point interactions can change with respect to the fermions.

$$M^{(\nu)} = \begin{pmatrix} m_{11}^{+} & 0 & 0^{\nu} \\ m_{21}^{(\nu)} & m_{22}^{(\nu)} & m_{23}^{(\nu)} \\ m_{31}^{(\nu)} & 0 & m_{33}^{(\nu)} \end{pmatrix}$$
all

We can't fill up the elements !!

of Parameters

16

More parameters than the physical quantities does not imply that we can always reproduce the experimental values.

—> Geometry restricts mass matrix forms !!

of Parameters

- 16
- More parameters than the physical quantities does not imply that we can always reproduce the experimental values.
 - —> Geometry restricts mass matrix forms !!
- □ parameters: 14

 $L^{(l)}$

 $L_{1}^{(\nu)}$

 $\lambda^{(\nu)} \qquad \lambda^{(e)}$

 $L_{\mathbf{n}}^{(l)}$

 $L_{0}^{(\nu)}$

 $L_{0}^{(e)}$

 $L_{2}^{(l)}$

 $L_{\mathbf{p}}^{(\mathbf{v})}$

 $L_2^{(e)}$

- $M_L \quad M_{\nu} \quad M_e \quad \longleftarrow \text{Bulk mass} \times 3$
 - Point interaction for doublet
 - Point interaction for v-singlet
 - ---- Point interaction for e-singlet
 - ← Yukawa coupling × 2

of Parameters

- More parameters than the physical quantities does not imply that we can always reproduce the experimental values.
 - —> Geometry restricts mass matrix forms !!

Lepton sector

Lepton sector

★ Three generations via point interactions.

Lepton sector

Lepton sector

- ★ Three generations via point interactions.
- ★ Lepton mass hierarchy from y-dep.VEV of the singlet scalar.

• electron - sector

Lepton sector

- ★ Three generations via point interactions.
- ★ Lepton mass hierarchy from y-dep.VEV of the singlet scalar.
- ★ Large bulk masses to produce tiny neutrino masses

Lepton sector

- ★ Three generations via point interactions.
- ★ Lepton mass hierarchy from y-dep.VEV of the singlet scalar.
- ★ Large bulk masses to produce tiny neutrino masses
- ★ Diagonal components might be compatible with off-diagonal one.
 → Large mixing

Yukihiro Fujimoto, 2014.06.20 FLASY2014 @ Sussex Univ.

U

Lepton sector

- ★ Three generations via point interactions.
- \star Lepton mass hierarchy from y-dep.VEV of the singlet scalar.
- \star Large bulk masses to produce tiny neutrino masses
- ★ Diagonal components might be compatible with off-diagonal one. -> Large mixing
- \star CP phase from $\langle H(\mathbf{y}) \rangle$ via the twisted BC

Yukihiro Fujimoto, 2014.06.20 FLASY2014 @ Sussex Univ.

→ y

Lepton sector

- ★ Three generations via point interactions.
- ★ Lepton mass hierarchy from y-dep.VEV of the singlet scalar.
- ★ Large bulk masses to produce tiny neutrino masses
- ★ Diagonal components might be compatible with off-diagonal one.
 → Large mixing
- * CP phase from $\langle H(y) \rangle$ via the twisted BC

Lepton sector

Typical example

$$m_1^{(\nu)} = 0.0092 \text{ eV}$$
, $m_2^{(\nu)} = 0.013 \text{ eV}$, $m_3^{(\nu)} = 0.018 \text{ eV}$
 $m_e = 0.519 \text{ MeV}$, $m_\mu = 106 \text{ MeV}$, $m_\tau = 1778 \text{ MeV}$

 $\sin^2 \theta_{12} = 0.333$, $\sin^2 \theta_{23} = 0.435$, $\sin^2 \theta_{13} = 0.0239$ $J_{\text{lepton}} = 0.0214 \ (\sin \delta = 0.607)$.

Conclusion and Discussion

Conclusion and Discussion

Generation **CP** phase Mass Hierarchy Flavor mixing **Tiny neutrino masses**

Conclusion and Discussion

- **Challenges for the future**
 - Point interactions from dynamics...?
 - Application to Gauge-Higgs Unification...?
 - Application to GUT...?
 - Radion stability with point interactions <- <u>Comming soon !?</u>
 - Point interactions on warped metric <- <u>currently underway.</u>
 - FCNC phenomenology
 - - •

Back up

Results

$$\begin{split} m_{\nu_1} &= 0.0092 \text{ eV}, \qquad m_{\nu_2} = 0.013 \text{ eV}, \qquad m_{\nu_3} = 0.018 \text{ eV}, \\ m_{\text{electron}} &= 0.519 \text{ MeV}, \qquad m_{\text{muon}} = 106 \text{ MeV}, \qquad m_{\text{tau}} = 1.778 \text{ GeV}, \\ \sin^2 \theta_{12} &= 0.333, \qquad \sin^2 \theta_{23} = 0.435, \qquad \sin^2 \theta_{13} = 0.0239, \\ J_{\text{lepton}} &= 0.0214 \quad (\sin \delta = 0.607). \end{split}$$

$$\begin{split} \sqrt{\frac{\delta m^2}{\delta m^{2(\text{exp.})}}} &= 1.03, \qquad \sqrt{\frac{\Delta m^2}{\Delta m^{2(\text{exp.})}}} = 0.285, \\ \frac{m_{\text{electron}}}{m_{\text{electron}}^{(\text{exp.})}} &= 1.02, \qquad \frac{m_{\text{muon}}}{m_{\text{muon}}^{(\text{exp.})}} = 0.995, \qquad \frac{m_{\text{tau}}}{m_{\text{tau}}^{(\text{exp.})}} = 1.00, \\ \frac{\sin^2 \theta_{12}}{\sin^2 \theta_{12}^{(\text{exp.})}} &= 1.08, \qquad \frac{\sin^2 \theta_{23}}{\sin^2 \theta_{23}^{(\text{exp.})}} = 1.02, \qquad \frac{\sin^2 \theta_{13}}{\sin^2 \theta_{13}^{(\text{exp.})}} = 1.02, \end{split}$$

$$\delta m^2 \equiv m_{
u_2}^2 - m_{
u_1}^2, \ \Delta m^2 \equiv m_{
u_3}^2 - \left(rac{m_{
u_1}^2 - m_{
u_2}^2}{2}
ight),$$

Parameters

$$\begin{split} \tilde{L}_{0}^{(L)} &= 0.2565, \qquad \tilde{L}_{1}^{(L)} = 0.5776, \qquad \tilde{L}_{2}^{(L)} = 0.9432, \\ \tilde{L}_{0}^{(\mathcal{N})} &= 0.08240, \qquad \tilde{L}_{1}^{(\mathcal{N})} = 0.3909, \qquad \tilde{L}_{2}^{(\mathcal{N})} = 0.7317, \\ \tilde{L}_{0}^{(E)} &= 0.277, \qquad \tilde{L}_{1}^{(E)} = 0.49, \qquad \tilde{L}_{2}^{(E)} = 0.79, \\ \tilde{M}_{L} &= -136.9, \qquad \tilde{M}_{\mathcal{N}} = 112.1, \qquad \tilde{M}_{E} = -2.00, \\ \tilde{M}_{\Phi} &= 8.67, \qquad \tilde{\lambda}_{\Phi} = 0.001, \qquad \frac{1}{\tilde{L}_{+}} = -6.07, \quad \frac{1}{\tilde{L}_{-}} = 8.69, \qquad \theta = 3, \\ \tilde{\mathcal{Y}}^{(\mathcal{N})} &= -0.0000309 - 9.15 \times 10^{-6} i, \qquad \tilde{\mathcal{Y}}^{(E)} = -0.00309 - 0.000915 i \end{split}$$

 $\sqrt{|\mathcal{Y}^{(\mathcal{N})}|} = 0.00568L \text{ and } \sqrt{|\mathcal{Y}^{(E)}|} = 0.0568L.$

Quark sector

Quark sector

Quark sector

Quark sector

Quark sector

Quark sector

Quark sector

□ Numerical results

$rac{m_{ m up}^{ m (ours)}}{m_{ m up}^{ m (exp.)}}=0.89$	97 $rac{m_{ m charm}^{ m (ours)}}{m_{ m charm}^{ m (exp.)}}=0.97$	$78 rac{m_{ m top}^{ m (ours)}}{m_{ m top}^{ m (exp.)}} = 1.00$
$rac{m_{ m down}^{ m (ours)}}{m_{ m down}^{ m (exp.)}} = 1.02$	$2 rac{m_{ ext{strange}}^{ ext{(ours)}}}{m_{ ext{strange}}^{ ext{(exp.)}}} = 1.0'$	7 $rac{m_{ m bottom}^{ m (ours)}}{m_{ m bottom}^{ m (exp.)}} = 1.00$
$egin{array}{c V_{ m CKM}^{ m (ours)} \ V_{ m CKM}^{ m (exp.)} \ 0 \end{array} = egin{bmatrix} 0\ 1\ 0\ 0 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$rac{J^{(m ours)}}{J^{(m exp.)}}=0.865$

Point interactions

Point interactions

Delta function potential

 $\lambda \, \delta(\mathbf{y})$

Yukihiro Fujimoto, 2014.06.20 FLASY2014 @ Sussex Univ.

y

Point interactions

Delta function potential

 $\lambda \, \delta(\mathbf{y})$

Infinite square well

Infinite well can be recognize as point interactions.

Point interactions

Orbifold fixed point

Point interactions

Orbifold fixed point

Fixed points can be recognized as point intearctions.

Zero-thick brane

Zero-thick brane can be recognized as point interactions in field theories.

Orbifold fixed point

Fixed points can be recognized as point intearctions.

Zero-thick brane

Zero-thick brane can be recognized as point interactions in field theories.

Effective theory

Point interactions

Point interaction is described by BC's.

Point interactions

Point interaction is described by BC's.

Conservation of the probability current

Point interactions

Point interaction is described by BC's.

Conservation of the probability current

General boundary condition for 1d QM

$$egin{aligned} (U-1)\left(egin{aligned} \psi(0+)\ \psi(0-) \end{array}
ight)+iL_0(U+1)\sigma_3\left(egin{aligned} \psi'(0+)\ \psi'(0-) \end{array}
ight)=0 \ dah \end{aligned}$$

(
$$U\in \mathrm{U}(2)$$
 , $\psi'\equiv rac{d\psi}{dy}$)

[1] M. Reed and B. Simon, Methods of modern mathematical physics II

- : Fourier analysis, self-adjointness. 1975.
- [2] P. Seva, J. Phys. 36 (1986)667-673.
- [3] T. Cheon, T. Fulop, and I. Tsutsui, Annals Phys. 294 (2001) 1-23,

Point interactions

◆ Point interaction (i) δ-type BC :

Point interactions

Point interaction

(i) δ -type BC : $U = e^{i(\theta + \frac{\pi}{2})} e^{i(\theta - \frac{\pi}{2})\sigma_1}$

Point interactions

• Point interaction (i) δ -type BC : $U = e^{i(\theta + \frac{\pi}{2})} e^{i(\theta - \frac{\pi}{2})\sigma_1}$

$$(U-1)\left(egin{array}{c}\psi(0+)\\psi(0-)\end{array}
ight)+iL_0(U+1)\sigma_3\left(egin{array}{c}\psi'(0+)\\psi'(0-)\end{array}
ight)=0$$

• Point interaction (i) δ -type BC : $U = e^{i(\theta + \frac{\pi}{2})} e^{i(\theta - \frac{\pi}{2})\sigma_1}$

◆ Point interaction

 (i) δ-type BC
 (ii) Dirichlet BC (Infinite square well)

- ◆ Point interaction
 (i) δ-type BC
 - (ii) Dirichlet BC (Infinite square well) : U = -1

♦ Point interaction (i) δ-type BC (ii) Dirichlet BC (Infinite square well) : U = -1 (U-1) (ψ(0+) ψ(0-)) + iL₀(U+1)σ₃ (ψ'(0+) ψ'(0-)) = 0

◆ Point interaction (i) δ-type BC (ii) Dirichlet BC (Infinite square well) : U = -1 (U-1) $\begin{pmatrix} \psi(0+) \\ \psi(0-) \end{pmatrix} + iL_0(U+1)\sigma_3 \begin{pmatrix} \psi'(0+) \\ \psi'(0-) \end{pmatrix} = 0$ ↓ $\phi(0+) = 0 = \psi(0-)$
♦ Point interaction

(i) δ-type BC
(ii) Dirichlet BC (Infinite square well)

(iii) Periodic BC :

Point interaction

(i) δ-type BC
(ii) Dirichlet BC (Infinite square well)
(iii) Periodic BC : U = σ₁

Point interaction

(i) δ-type BC
(ii) Dirichlet BC (Infinite square well)

(iii) Periodic BC : U = σ₁

$$(U-1)\left(egin{array}{c}\psi(0+)\\psi(0-)\end{array}
ight)+iL_0(U+1)\sigma_3\left(egin{array}{c}\psi'(0+)\\psi'(0-)\end{array}
ight)=0$$

♦ Point interaction

(i) δ-type BC
(ii) Dirichlet BC (Infinite square well)

(iii) Periodic BC : U = σ1

$$(U-1)\left(\begin{array}{c}\psi(0+)\\\psi(0-)\end{array}\right)+iL_0(U+1)\sigma_3\left(\begin{array}{c}\psi'(0+)\\\psi'(0-)\end{array}\right)=0$$

$$\downarrow$$

$$\left\{\begin{array}{c}\psi(0+)=\psi(0-)\\\psi'(0+)=\psi'(0-)\end{array}\right\}$$

- Point interaction
 - (i) δ-type BC
 - (ii) Dirichlet BC (Infinite square well)
 - (iii) Periodic BC
 - (vi) Anti-periodic BC
 - \bullet
 - •
 - •

Point interactions

Point interaction is described by BC's.

The low energy effective theory (zero mode) is sensitive to the BC's.

4 parameters (scalar)

1 parameters (scalar)

the Robin BC

$$\Phi(y_i) + r_i \partial_y \Phi(y_i) = 0$$

No parameter (spinor, gauge)

$$\mathcal{D}f_n(y_i) = g_n(y_i) = 0$$

or
$$\mathcal{D}^{\dagger}g_n(y_i) = f_n(y_i) = 0$$

Chiral fermion

Chiral fermion

□ M⁴ × Interval

Chiral fermion

□ M⁴ × Interval

\Box M⁴ × S¹ with point interaction

□ M⁴ × Interval

□ M⁴ × Interval

★Action

$$S = \int d^4x \int_0^L dy \,\overline{\Psi}(x, y) (i\gamma^{\mu}\partial_{\mu} + i\gamma^{y}\partial_{y} + M_F) \Psi(x, y)$$

Boundary conditions (BC's) $(\Psi = \Psi_R + \Psi_L)$
 $\Psi_R(x, y) = 0$ or $\Psi_L(x, y) = 0$ $\implies y = 0, L$

□ M⁴ × Interval

★Action

$$S = \int d^4x \int_0^L dy \,\overline{\Psi}(x,y) (i\gamma^\mu \partial_\mu + i\gamma^y \partial_y + M_F) \Psi(x,y)$$

★ Boundary conditions (BC's) $(\Psi = \Psi_R + \Psi_L)$

$$\Psi_R(x,y) = 0$$
 or $\Psi_L(x,y) = 0$ @ $y = 0, L$

BC's are obtained from the action principle, etc.

 $\delta S = 0$ \longrightarrow (E.O.M) + (Surface term $\overline{\Psi}_R \Psi_L = 0$)

Chiral fermion

$$S = \int d^4x \int_0^L dy \,\overline{\Psi}(x,y) (i\gamma^\mu \partial_\mu + i\gamma^y \partial_y + M_F) \Psi(x,y)$$

Chiral fermion

$$S = \int d^4x \int_0^L dy \,\overline{\Psi}(x,y) (i\gamma^{\mu}\partial_{\mu} + i\gamma^{y}\partial_{y} + M_F) \Psi(x,y)$$

$$4d \text{ mass eigenstates}$$

$$\Psi(x,y) = \sum_n \left(\psi_R^{(n)}(x) f_n(y) + \psi_L^{(n)}(x) g_n(y) \right)$$
Mode functions (Complete sets)

Chiral fermion

$$S = \int d^{4}x \int_{0}^{L} dy \,\overline{\Psi}(x, y) (i\gamma^{\mu} \partial_{\mu} + i\gamma^{y} \partial_{y} + M_{F}) \Psi(x, y)$$

$$\Psi(x, y) = \sum_{n} \left(\psi_{R}^{(n)}(x) f_{n}(y) + \psi_{L}^{(n)}(x) g_{n}(y) \right)$$

$$\left\{ \begin{array}{c} \mathcal{D}^{\dagger} \mathcal{D} f_{n}(y) = m_{n}^{2} f_{n}(y) \\ \mathcal{D} \mathcal{D}^{\dagger} g_{n}(y) = m_{n}^{2} g_{n}(y) \end{array} \right. \bigoplus \text{ boundary conditions}$$

$$\left\{ \begin{array}{c} \mathcal{D} \equiv \partial_{y} + M_{F} \\ \mathcal{D}^{\dagger} \equiv -\partial_{y} + M_{F} \end{array} \right.$$

Chiral fermion

$$S = \int d^4x \int_0^L dy \,\overline{\Psi}(x,y) (i\gamma^{\mu}\partial_{\mu} + i\gamma^{y}\partial_{y} + M_F) \Psi(x,y)$$

$$\Psi(x,y) = \sum_n \left(\psi_R^{(n)}(x) f_n(y) + \psi_L^{(n)}(x) g_n(y) \right)$$

$$\left\{ \begin{array}{l} \mathcal{D}^{\dagger} \mathcal{D} f_n(y) = m_n^2 f_n(y) \\ \mathcal{D} \mathcal{D}^{\dagger} g_n(y) = m_n^2 g_n(y) \end{array} \oplus \text{boundary conditions} \right.$$

$$\left\{ \begin{array}{l} \mathcal{D} \equiv \partial_y + M_F \\ \mathcal{D}^{\dagger} \equiv -\partial_y + M_F \end{array} \right.$$

$$\left\{ \begin{array}{l} \mathcal{D}^{\dagger} g_n(y) = m_n f_n(y) \\ \mathcal{D} f_n(y) = m_n g_n(y) \end{array} \right. \qquad \text{QM SUSY relation} \end{array} \right.$$

Chiral fermion

$$S = \int d^{4}x \int_{0}^{L} dy \,\overline{\Psi}(x,y) (i\gamma^{\mu}\partial_{\mu} + i\gamma^{y}\partial_{y} + M_{F})\Psi(x,y)$$

$$\Psi(x,y) = \sum_{n} \left(\psi_{R}^{(n)}(x)f_{n}(y) + \psi_{L}^{(n)}(x)g_{n}(y) \right)$$

$$\left\{ \begin{array}{c} \mathcal{D}^{\dagger}\mathcal{D}f_{n}(y) = m_{n}^{2}f_{n}(y) \\ \mathcal{D}\mathcal{D}^{\dagger}g_{n}(y) = m_{n}^{2}g_{n}(y) \end{array} \oplus \text{boundary conditions} \right.$$

$$\left\{ \begin{array}{c} \mathcal{D} \equiv \partial_{y} + M_{F} \\ \mathcal{D}^{\dagger} \equiv -\partial_{y} + M_{F} \\ \mathcal{D}^{\dagger} \equiv -\partial_{y} + M_{F} \end{array} \right.$$

$$\left\{ \begin{array}{c} \mathcal{D}^{\dagger}g_{n}(y) = m_{n}f_{n}(y) \\ \mathcal{D}f_{n}(y) = m_{n}g_{n}(y) \end{array} \right. \text{QM SUSY relation} \right.$$

$$= \int d^{4}x \left((\text{massless zero mode}) + \sum_{n=1}^{\infty} \overline{\psi^{(n)}}(x) (i\gamma^{\mu}\partial_{\mu} + m_{n}) \psi^{(n)}(x) \right) \right\}$$

Chiral fermion

Zero mode solution

$$\mathcal{D}f_0(y) = m_0 g_0(y) = 0$$

$$\mathcal{D}^{\dagger}g_0(y) = m_0 f_0(y) = 0$$

$$(\mathcal{D} \equiv \partial_y + M_F, \mathcal{D}^{\dagger} \equiv -\partial_y + M_F)$$

□ Zero mode solution

Chiral fermion

□ Spectrum

Chiral fermion

□ Spectrum

- Spectrum

Spectrum $\Psi_{R}(x,0) = 0$ $\Psi_{R}(x,L) = 0$ $\Psi_{L}(x,0) = 0$ (i) (ii) (iii) (iii)

Yukihiro Fujimoto, 2014.06.20 FLASY2014 @ Sussex Univ.

type (iii)

Mass hierarchy

□ The Robin BC can produce a y-dependent VEV

$$y$$

$$L$$

$$L$$

$$S = \int d^4x \int_0^L dy \ \Phi^{\dagger} (\partial^{\mu} \partial_{\mu} + \partial_y^2 - M^2) \Phi - \frac{\lambda}{2} (\Phi^{\dagger} \Phi)^2$$

Mass hierarchy

□ The Robin BC can produce a y-dependent VEV

$$\int_{0}^{y} \int_{L}^{\Phi} \frac{d^{4}x}{dy} \Phi^{\dagger}(\partial^{\mu}\partial_{\mu} + \partial_{y}^{2} - M^{2})\Phi - \frac{\lambda}{2}(\Phi^{\dagger}\Phi)^{2}$$

+ Robin boundary condition

$$\begin{cases} \Phi(0) + L_+ \partial_y \Phi(0) = 0\\ \Phi(L) - L_- \partial_y \Phi(L) = 0 \end{cases} \quad (-\infty \le L_\pm \le +\infty)$$

Mass hierarchy

□ VEV of the scalar

$$V_{\rm 4d} = \int_0^L dy \left[\Phi^{\dagger} (-\partial_y^2 + M^2) \Phi + \frac{\lambda}{2} (\Phi^{\dagger} \Phi)^2 \right]$$

Mass hierarchy

□ VEV of the scalar

$$V_{\rm 4d} = \int_0^L dy \left[\Phi^{\dagger} (-\partial_y^2 + M^2) \Phi + \frac{\lambda}{2} (\Phi^{\dagger} \Phi)^2 \right]$$

Find a solution to $\delta V_{4d} = 0$:

$$(-\partial_y^2 + M^2)\Phi(y) + \lambda |\Phi(y)|^2 \Phi(y) = 0$$

Mass hierarchy

□ VEV of the scalar

$$V_{\rm 4d} = \int_0^L dy \left[\Phi^{\dagger} (-\partial_y^2 + M^2) \Phi + \frac{\lambda}{2} (\Phi^{\dagger} \Phi)^2 \right]$$

Find a solution to $\delta V_{4d} = 0$: $(-\partial_y^2 + M^2)\Phi(y) + \lambda |\Phi(y)|^2 \Phi(y) = 0$ + Robin boundary condition $\begin{cases} \Phi(0) + L_+ \partial_y \Phi(0) = 0 \\ \Phi(L) - L_- \partial_y \Phi(L) = 0 \end{cases}$ $(-\infty \le L_{\pm} \le +\infty)$

Mass hierarchy

□ VEV of the scalar

(type-i)

$$\phi(y) = \mu_{-} \frac{\operatorname{sn}(\mu_{+}\sqrt{\frac{\lambda}{2}}(y-y_{0}),k)}{\operatorname{cn}(\mu_{+}\sqrt{\frac{\lambda}{2}}(y-y_{0}),k)}$$
, $\mu_{\pm} \equiv \frac{M^{2}}{\lambda}(1\pm\sqrt{1-\frac{4\lambda Q}{M^{4}}})$
 $k^{2} \equiv \frac{\mu_{+}^{2}-\mu_{-}^{2}}{\mu_{+}^{2}}$

Mass hierarchy

□ VEV of the scalar

Parameters which are determined by BC's

(type-i)

$$\phi(y) = \mu_{-} rac{\operatorname{sn}(\mu_{+}\sqrt{rac{\lambda}{2}}(y-y_{0}),k)}{\operatorname{cn}(\mu_{+}\sqrt{rac{\lambda}{2}}(y-y_{0}),k)}$$
, $\mu_{\pm} \equiv rac{M^{2}}{\lambda}(1\pm\sqrt{1-rac{4\lambda Q}{M^{4}}})$
 $k^{2} \equiv rac{\mu_{+}^{2}-\mu_{-}^{2}}{\mu_{\pm}^{2}}$

Mass hierarchy

□ VEV of the scalar

Parameters which are determined by BC's

(type-i)

$$\phi(y) = \mu_{-} rac{\operatorname{sn}(\mu_{+}\sqrt{rac{\lambda}{2}}(y-y_{0}),k)}{\operatorname{cn}(\mu_{+}\sqrt{rac{\lambda}{2}}(y-y_{0}),k)}$$
, $\mu_{\pm} \equiv rac{M^{2}}{\lambda}(1\pm\sqrt{1-rac{4\lambda Q}{M^{4}}})$, $\mu_{\pm} \equiv rac{M^{2}}{\lambda}(1\pm\sqrt{1-rac{4\lambda Q}{M^{4}}})$

,

$$\phi(y) = rac{
u}{\mathrm{cn}(\sqrt{rac{\lambda}{2}}rac{\mu}{k}(y-y_0),k)}$$

$$egin{aligned} \mu &\equiv rac{M^2}{\lambda}(1+\sqrt{1+rac{4\lambda|Q|}{M^4}})\
u &\equiv rac{M^2}{\lambda}(\sqrt{1+rac{4\lambda|Q|}{M^4}}-1)\
u &\equiv rac{\mu^2}{\mu^2+
u^2} \end{aligned}$$

<u>CP phase</u>

CPphase

□ VEV of the Higgs

★ Twisted BC

$$\langle H(y) \rangle = \begin{pmatrix} 0 \\ v/\sqrt{2} \end{pmatrix} e^{i\frac{\pi}{L}y}$$
Lepton masses and mixing angles from point interactions

CP phase

□ VEV of the Higgs

★ Twisted BC

$$\langle H(y) \rangle = \begin{pmatrix} 0 \\ v/\sqrt{2} \end{pmatrix} e^{i\frac{\pi}{L}y}$$

Yukihiro Fujimoto, 2014.06.20 FLASY2014 @ Sussex Univ.

Lepton masses and mixing angles from point interactions

CPphase

□ VEV of the Higgs

★ Twisted BC

$$\langle H(y) \rangle = \begin{pmatrix} 0 \\ v/\sqrt{2} \end{pmatrix} e^{i\frac{\pi}{L}y}$$

Yukihiro Fujimoto, 2014.06.20 FLASY2014 @ Sussex Univ.

Lepton masses and mixing angles from point interactions

<u>CP phase</u>

□ VEV of the Higgs

★ Twisted BC

$$\langle H(y) \rangle = \begin{pmatrix} 0 \\ v/\sqrt{2} \end{pmatrix} e^{i\frac{\pi}{L}y}$$

Yukihiro Fujimoto, 2014.06.20 FLASY2014 @ Sussex Univ.