Towards predictive flavour models in SUSY SU(5) GUTs with doublet-triplet splitting

Vinzenz Maurer

18th June 2014 FLASY 2014

Based on Antusch, de Medeiros Varzielas, V.M., Sluka & Spinrath arXiv:1405.6962

Vinzenz Maurer

Towards predictive SUSY SU(5) flavour GUTs with DTS

particles

- particles
- 2 SM multiplets
- 3 MSSM multiplets

 H_u g H_d t_R W; c_R u_R b_R B SR L_3 e_R μ_R τ_R

- particles
- 2 SM multiplets
- 3 MSSM multiplets
- GUT multiplets

GUT Symmetry Breaking

Make new states heavy enough to suppress proton decay

- X, $Y \Rightarrow$ GUT scale $\gtrsim 10^{16}$ GeV
- $T, \overline{T} \rightarrow Doublet$ -Triplet splitting problem

Solution(s) in 4D SU(5): (Double) Missing Partner Mechanism

[Masiero, Nanopoulos, Tamvakis, Yanagida '82; Grinstein '82; Hisano, Moroi, Tobe, Yanagida '95]

Correct Relations for Flavour Observables

- Yukawa couplings and mixing angles
- Georgi-Jarlskog relations $y_{\mu}/y_s = 3 = y_d/y_e$ disfavoured

Solved with effective Yukawa couplings from higher dim. operators

$$\Rightarrow$$
 $y_{\mu} = 6 y_s$, $y_e = \frac{1}{2} y_d$ and $y_{\tau} = \frac{3}{2} y_b$

[Antusch, Spinrath '09]

Ń

Strategy

Observation in GUT \supset SM embedding

$$5 \to (1,2)_{-\frac{1}{2}} + (3,1)_{\frac{1}{3}}$$

$$50 \to (1,1)_2 + (3,1)_{\frac{1}{3}} + (\bar{3},2)_{\frac{7}{6}} + (6,1)_{-\frac{4}{3}} + (\bar{6},3)_{\frac{1}{3}} + (8,2)_{-\frac{1}{2}}$$

[Masiero, Nanopoulos, Tamvakis, Yanagida '82; Grinstein '82]

$$egin{aligned} \mathcal{W}_{\mathsf{MPM}} &= ar{H}_5 \mathcal{H}_{75} \mathcal{Z}_{50} + ar{\mathcal{Z}}_{50} \mathcal{H}_{75} \mathcal{H}_5 \ &+ \langle S
angle \mathcal{Z}_{50} ar{\mathcal{Z}}_{50} \ &\Rightarrow \ &m_D &= ig(0) \ &m_T &= ig(egin{aligned} 0 & V \ V & \langle S
angle ig) \end{aligned}$$

• Non-trivial charge of S, otherwise $W \supset H_5 H_{75}^2 \overline{H}_5 / M_{\text{Pl}}$

Towards predictive SUSY SU(5) flavour GUTs with DTS

Observation in GUT \supset SM embedding

$$5 \to (1,2)_{-\frac{1}{2}} + (3,1)_{\frac{1}{3}}$$

$$50 \to (1,1)_2 + (3,1)_{\frac{1}{3}} + (\bar{3},2)_{\frac{7}{6}} + (6,1)_{-\frac{4}{3}} + (\bar{6},3)_{\frac{1}{3}} + (8,2)_{-\frac{1}{2}}$$

[Masiero, Nanopoulos, Tamvakis, Yanagida '82; Grinstein '82]

$$egin{aligned} \mathcal{W}_{\mathsf{MPM}} &= ar{H}_5 \mathcal{H}_{75} \mathcal{Z}_{50} + ar{\mathcal{Z}}_{50} \mathcal{H}_{75} \mathcal{H}_5 \ &+ \langle S
angle \mathcal{Z}_{50} ar{\mathcal{Z}}_{50} \ &\Rightarrow \ &m_D &= ig(0) \ &m_T &= ig(egin{aligned} 0 & V \ V & \langle S
angle ig) \end{aligned}$$

otherwise $W \supset H_5 H_{75}^2 \overline{H}_5 / M_{Pl}$

Towards predictive SUSY SU(5) flavour GUTs with DTS

The Missing Partner Mechanism

 $W_{Yukawa} = \mathcal{T}_i \mathcal{F}_j \overline{H}_5 + \mathcal{T}_i \mathcal{T}_j H_5$ Integrate out all colour triplets $(T_5, \overline{T}_5, T_{50}, \overline{T}_{50}) \Rightarrow$

$$W_{\text{eff}} \supset \frac{1}{M_{T}^{\text{eff}}} \underbrace{(\overline{Q_{i}Q_{j}} + \overline{U_{i}}\overline{E_{j}})}_{T_{i}} \underbrace{(\overline{Q_{m}L_{n}} + \overline{U_{m}}\overline{D}_{n})}_{T_{m}}$$

with

$$M_T^{ ext{eff}} = (m_T^{-1})_{11}^{-1} = rac{V^2}{\langle S
angle}$$

Some numbers: $M_T^{\rm eff}\gtrsim 10^{17}~{
m GeV},~V\approx 10^{16}~{
m GeV}\Rightarrow \langle S
angle\lesssim 10^{15}~{
m GeV}$

The Missing Partner Mechanism

 $W_{\text{Yukawa}} = \mathcal{T}_i \mathcal{F}_j \overline{H}_5 + \mathcal{T}_i \mathcal{T}_j \overline{H}_5$ Integrate out all colour triplets $(T_5, \overline{T}_5, T_{50}, \overline{T}_{50}) \Rightarrow$

$$W_{\text{eff}} \supset \frac{1}{M_{T}^{\text{eff}}} \underbrace{(\overline{Q_{i}Q_{j}} + \overline{U}_{i}\overline{E}_{j})}^{\mathcal{T}_{i}\mathcal{T}_{j}} \underbrace{(\overline{Q_{m}L_{n}} + \overline{U}_{m}\overline{D}_{n})}^{\mathcal{T}_{m}\mathcal{F}_{n}}$$

with

$$M_T^{ ext{eff}} = (m_T^{-1})_{11}^{-1} = rac{V^2}{\langle S
angle}$$

Some numbers: $M_T^{\rm eff}\gtrsim 10^{17}~{
m GeV},~V\approx 10^{16}~{
m GeV}\Rightarrow \langle S
angle\lesssim 10^{15}~{
m GeV}$

The Missing Partner Mechanism

 $W_{Yukawa} = \mathcal{T}_i \mathcal{F}_j \overline{H}_5 + \mathcal{T}_i \mathcal{T}_j H_5$ Integrate out all colour triplets $(T_5, \overline{T}_5, T_{50}, \overline{T}_{50}) \Rightarrow$

$$W_{\text{eff}} \supset \frac{1}{M_{T}^{\text{eff}}} \underbrace{(\overline{Q_{i}Q_{j}} + \overline{U_{i}}\overline{E_{j}})}_{T_{i}} \underbrace{(\overline{Q_{m}L_{n}} + \overline{U_{m}}\overline{D}_{n})}_{T_{m}}$$

with

$$M_T^{\mathrm{eff}} = (m_T^{-1})_{11}^{-1} = rac{V^2}{\langle S
angle}$$

Some numbers: $M_T^{\rm eff}\gtrsim 10^{17}~{
m GeV},~V\approx 10^{16}~{
m GeV}\Rightarrow \langle S
angle\lesssim 10^{15}~{
m GeV}$

Left-overs from 50 and $\overline{50}$ in RGEs at 10^{15} GeV

Theory becomes non-perturbative much below $M_{\rm Pl}$

Vinzenz Maurer

Towards predictive SUSY SU(5) flavour GUTs with DTS

The Double Missing Partner Mechanism

Double the **5**'s and **50**'s with
$$H'_5$$
, \bar{H}'_5 , Z'_{50} , \bar{Z}'_{50} !

[Hisano, Moroi, Tobe, Yanagida '95]

 $\langle C \rangle$

$$\begin{split} \mathcal{W}_{\text{DMPM}} &= \bar{H}_{5} H_{75} Z_{50} + \bar{Z}_{50} H_{75} H_{5}' \\ &+ \bar{H}_{5}' H_{75} Z_{50}' + \bar{Z}_{50}' H_{75} H_{5} \\ &+ \langle S \rangle Z_{50} \bar{Z}_{50} + \langle S \rangle Z_{50}' \bar{Z}_{50}' \\ &+ \langle S_{\mu'} \rangle H_{5}' \bar{H}_{5}' \\ &\Rightarrow \\ \mathcal{M}_{D} &= \begin{pmatrix} 0 & 0 \\ 0 & \langle S_{\mu'} \rangle \end{pmatrix} \\ m_{T} &= \begin{pmatrix} 0 & 0 & 0 \\ 0 & \langle S_{\mu'} \rangle \\ 0 & \langle S \rangle & 0 \\ 0 & V & 0 & \langle S \rangle \end{pmatrix} \\ \mathcal{M}_{T} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & \langle S_{\mu'} \rangle & V & 0 \\ V & 0 & \langle S \rangle & 0 \\ 0 & V & 0 & \langle S \rangle \end{pmatrix} \\ \mathcal{M}_{T5} = \begin{pmatrix} 0 & 0 & V \\ 0 & \langle S_{\mu'} \rangle & V & 0 \\ V & 0 & \langle S \rangle & 0 \\ 0 & V & 0 & \langle S \rangle \end{pmatrix} \\ \mathcal{M}_{T5} = \mathcal{M}_{T5} = \mathcal{M}_{T5} \\ \mathcal{M}_{T5} \\ \mathcal{M}_{T5} = \mathcal{M}_{T5} \\ \mathcal{M}_{T5} \\ \mathcal{M}_{T5} = \mathcal{M}_{T5$$

Analogous to MPM

$$M_T^{ ext{eff}} = (m_T^{-1})_{11}^{-1} = rac{V^4}{\langle S
angle^2 \langle S_{\mu'}
angle}$$

Some numbers:

$$M_T^{
m eff} \sim 10^{17}~{
m GeV},~V pprox 10^{16}~{
m GeV},~\langle S_{\mu'}
angle pprox 10^{11}~{
m GeV}$$
 $\Rightarrow \langle S
angle pprox 10^{18}~{
m GeV}$

50 and $\overline{50}$ in RGEs at 10^{18} GeV

Theory perturbative up to (almost) $M_{\rm Pl}$

Vinzenz Maurer

Analogous to MPM

$$M_T^{\text{eff}} = (m_T^{-1})_{11}^{-1} = rac{V^4}{\langle S
angle^2 \langle S_{\mu'}
angle} pprox rac{M_T^2}{\mu'}$$

Some numbers:

$$M_T^{
m eff} \sim 10^{17}~{
m GeV},~V pprox 10^{16}~{
m GeV},~\langle S_{\mu'}
angle pprox 10^{11}~{
m GeV}$$

 $\Rightarrow \langle S
angle pprox 10^{18}~{
m GeV}$

50 and $\overline{50}$ in RGEs at 10^{18} GeV

Theory perturbative up to (almost) $M_{\rm Pl}$

Vinzenz Maurer

Towards predictive SUSY SU(5) flavour GUTs with DTS

Yukawa Coupling Ratios

- Higher dim. effective operators for Yukawa couplings with ⟨H₂₄⟩
 ⇒ GUT breaking effects proportional to hypercharge
- Only predictive if index contraction is fixed:

 $W \supset (AB)_{\mathbf{R}}(CD)_{\mathbf{\bar{R}}}$

using messenger fields in SU(5) irrep R

• Used ratios:

АB	CD	R	$(Y_e)_{ji}/(Y_d)_{ij}$	
$H_{24}\mathcal{F}$	$T \bar{H}_{45}$	45	$-\frac{1}{2}$	
$H_{24} \mathcal{F}$	$T \bar{H}_5$	5	$-\frac{3}{2}$	
$H_{24} T$	$\mathcal{F}\bar{H}_5$	10	6	

une'14 6/14

[[]Antusch, Spinrath '09]

Double Missing Partner with a 24

Replace $H_{75} \rightarrow H_{24}^2/\Lambda$

Additional messenger sector: X_{45} , \bar{X}_{45} , Y_{45} , \bar{Y}_{45} , X'_{45} , \bar{X}'_{45} , Y'_{45} , \bar{Y}'_{45}

[Zhang, Zheng '12]

FLASY2014 18th June '14 7 / 14

Grand Unification and its Breaking

The Need for two 24's

Minimal SU(5):

- Single 24 contains one SU(2) triplet and one SU(3) octet that obtain equal masses
- Gauge coupling unification needs $M_T \sim 10^{15}$ GeV \bigcirc

[Murayama, Pierce '02]

• Non-renormalizable terms for $24 \Rightarrow$ split triplet and octet \Rightarrow higher M_T possible

[Bajc, Perez, Senjanovic '02]

\rightarrow generate higher dim. operator with second 24

The Need for two 24's

Not taking the limit where one 24 is heavy and the other isn't:

- Additional SU(2) triplet and SU(3) octet (and leptoquark superfield) gives more freedom in GUT threshold corrections
- More possible choices for superpotentials that do not reduce to non-renormalizable single **24** versions

Intended Yukawa coupling ratios require **24** with non-trivial charge under some "shaping symmetry"

- Single **24** renormalizable superpotential that breaks SU(5) has no shaping symmetry
- Adding another **24** allows for shaping symmetry and VEV

Introduce H'_{24} in addition to H_{24}

[Antusch, de Medeiros Varzielas, VM, Sluka, Spinrath arXiv:1405.6962]

GUT Breaking Superpotentials with two 24's

Requirements:

renormalizable, VEVs for both 24's, no massless states in vacuum

(a)
$$W = M_{24} \operatorname{tr} H_{24}^2 + M_{24}' \operatorname{tr} H_{24}'^2 + \kappa' \operatorname{tr} H_{24} H_{24}'^2 + \lambda \operatorname{tr} H_{24}^3$$
,
 \mathbb{Z}_2 with $Q(H_{24}) = 0$ and $Q(H_{24}') = 1$.

(b)
$$W = \tilde{M}_{24} \operatorname{tr} H_{24} H'_{24} + \lambda \operatorname{tr} H^3_{24} + \lambda' \operatorname{tr} H'^3_{24},$$

 $\mathbb{Z}_3 \text{ with } Q(H_{24}) = 2 \text{ and } Q(H'_{24}) = 1.$

(c)
$$W = \tilde{M}_{24} \operatorname{tr} H_{24} H'_{24} + \lambda \operatorname{tr} H^3_{24} + \kappa' \operatorname{tr} H_{24} H'^2_{24},$$

 $\mathbb{Z}_4^R \text{ with } Q(H_{24}) = 2 \text{ and } Q(H'_{24}) = 0 \text{ (and } Q(\theta) = 1).$

(d) The trivial case with no additional shaping symmetry.

Grand Unification: Two Loop Analysis

(a) $W = M_{24} \operatorname{tr} H_{24}^2 + M_{24}' \operatorname{tr} H_{24}'^2 + \kappa' \operatorname{tr} H_{24} H_{24}'^2 + \lambda \operatorname{tr} H_{24}^3$

 $M_{SUSY} = 1 \text{ TeV}, M = \sqrt{|M_{24}|^2 + |M'_{24}|^2} = 10^{15} \text{ GeV}$ and equal phases for V_1 , V_2 and M_{24} , M'_{24} White stripes: $M_{T^{(24)}}$ or $M_{O^{(24)}} < 10^{13} \text{ GeV}$

Grand Unification: Two Loop Analysis

(b)
$$W = \tilde{M}_{24} \operatorname{tr} H_{24} H'_{24} + \lambda \operatorname{tr} H^3_{24} + \lambda' \operatorname{tr} H'^3_{24}$$

(c) $W = \tilde{M}_{24} \operatorname{tr} H_{24} H'_{24} + \lambda \operatorname{tr} H^3_{24} + \kappa' \operatorname{tr} H_{24} H'^2_{24}$

$$\begin{split} M_{T}^{\text{eff, 2-loop}} &= \left(\frac{M_{\text{SUSY}}}{1\,\text{TeV}}\right)^{0.74} \cdot \begin{cases} 5.4 \cdot 10^{16} \text{ GeV} \left(\frac{M}{10^{15}\,\text{GeV}}\right)^{-0.15} & \text{(b)} \\ 7.1 \cdot 10^{15} \text{ GeV} \left(\frac{M}{10^{15}\,\text{GeV}}\right)^{-0.19} & \text{(c)} \end{cases} \\ M_{\text{GUT}}^{2\text{-loop}} &= |\sin 2\beta_{V}|^{-0.48} \left(\frac{M_{\text{SUSY}}}{1\,\text{TeV}}\right)^{-0.41} \cdot \begin{cases} 2.95 \cdot 10^{16} \text{ GeV} \left(\frac{M}{10^{15}\,\text{GeV}}\right)^{-0.62} & \text{(b)} \\ 4.89 \cdot 10^{16} \text{ GeV} \left(\frac{M}{10^{15}\,\text{GeV}}\right)^{-0.64} & \text{(c)} \end{cases} \\ \text{with } \tan \beta_{V} &\equiv \frac{V_{1}}{V_{2}}. \end{split}$$

Some numbers: $M_T^{\text{eff}} \gtrsim 10^{17} \text{ GeV}$

$$\Rightarrow$$
 $M_{
m SUSY}$ \gtrsim 2.3 TeV (b), 35 TeV (c)

Flavour GUT Models with DMPM

Model: Diagonal Y_d and Y_e Yukawa Matrices

• Yukawa matrix structure:

$$Y_{d} = \begin{pmatrix} y_{d} & 0 & 0 \\ 0 & y_{s} & 0 \\ 0 & 0 & y_{b} \end{pmatrix}, Y_{e} = \begin{pmatrix} -\frac{1}{2}y_{d} & 0 & 0 \\ 0 & 6y_{s} & 0 \\ 0 & 0 & -\frac{3}{2}y_{b} \end{pmatrix}$$

$$Y_{u} = \begin{pmatrix} \epsilon_{1}^{2} \epsilon_{2}^{2} & \epsilon_{1}^{2} \epsilon_{2} & \epsilon_{1} \epsilon_{2} \\ \epsilon_{1}^{2} \epsilon_{2} & \epsilon_{1}^{2} & \epsilon_{1} \\ \epsilon_{1} \epsilon_{2} & \epsilon_{1} & y_{33} \end{pmatrix}$$

- Hierarchy via $\epsilon_i = \frac{\theta_i}{\Lambda}$ with some messenger scale Λ
- For explicit W_u , W_d , see arXiv:1405.6962

Model: Diagonal Y_d and Y_e Yukawa Matrices

- Messenger masses via $\langle S \rangle$, $\langle S' \rangle \Rightarrow$ no corrections to ratios
- Superpotential (a) $\rightarrow \mathbb{Z}_2$ charged H'_{24} , more free M_T^{eff}

Model: Diagonal Y_d and Y_e Yukawa Matrices

Effective/Planck-scale suppressed operators generate μ and μ' with:

$$\mu = \frac{\langle \theta_3 \rangle \langle \theta_4 \rangle^4}{M_{\rm Pl}^4}, \ \mu' = \frac{\langle \theta_3 \rangle^4}{M_{\rm Pl}^4},$$

Number example:

$$\begin{array}{l} \langle H_{24} \rangle \sim 2 \cdot 10^{16} \ \mathrm{GeV} \\ \langle S \rangle \sim 10^{18} \ \mathrm{GeV} \\ y_b \sim \frac{\langle H_{24}' \rangle}{\langle S' \rangle} \approx 0.18 \\ y_s \sim \frac{\langle H_{24}' \rangle \langle \theta_3 \rangle}{\langle S' \rangle^2} \approx 3 \cdot 10^{-3} \\ y_d \sim \frac{\langle H_{24} \rangle \langle H_{24}' \rangle \langle \theta_4 \rangle}{\langle S' \rangle^2 \langle S \rangle} \approx 1.6 \cdot 10^{-4} \end{array}$$

$$M_T^{\text{eff}} \approx 2 \cdot 10^{18} \text{ GeV}$$

 $\mu \approx \mathcal{O}(100) \text{ GeV}$
 $\mu' \approx \mathcal{O}(10) \text{ TeV}$
 $M_T \approx 2 \cdot 10^{11} \text{ GeV}$

[Numbers from Antusch, VM '13 for tan $\beta = 30$]

Towards predictive SUSY SU(5) flavour GUTs with DTS FLASY2014 18th June '14 11 / 14

Model: Cabibbo Angle θ_C from Y_d (and Y_e)

Yukawa matrix structure:

$$Y_{d} = \begin{pmatrix} 0 & y_{d,12} & 0 \\ y_{d,21} & y_{s} & 0 \\ 0 & 0 & y_{b} \end{pmatrix}, Y_{e} = \begin{pmatrix} 0 & 6y_{d,21} & 0 \\ -\frac{1}{2}y_{d,12} & 6y_{s} & 0 \\ 0 & 0 & -\frac{3}{2}y_{b} \end{pmatrix}$$

$$Y_u = \begin{pmatrix} y_{11} & y_{12} & 0 \\ y_{12} & y_{22} & y_{23} \\ 0 & y_{23} & y_{33} \end{pmatrix}$$

• \mathcal{T}_2 couples to \mathcal{F}_1 and $\mathcal{F}_2 \Rightarrow$ superpotential (b) to forbid $(Y_d)_{11}$

[Motivated by Antusch, King, Malinsky, Spinrath '09; Antusch, Gross, VM, Sluka '13]

Model: Cabibbo Angle θ_C from Y_d (and Y_e)

Number example:

$$\begin{split} M_T^{\text{eff}} &\approx 2 \cdot 10^{18} \text{ GeV}, \\ \mu &\approx \mathcal{O}(300) \text{ GeV}, \end{split} \qquad \qquad M_T &\approx 2 \cdot 10^{11} \text{ GeV} \\ \mu' &\approx \mathcal{O}(10) \text{ TeV} \end{split}$$

Proton Decay

Proton Decay via Dimension Five Operators

Colour triplets in H_5 , \overline{H}_5 couple to matter:

$$\begin{split} W_T &= \epsilon_{\alpha\beta} \left(-\frac{1}{2} (Y_{qq})_{ij} \epsilon_{abc} T^a Q_i^{\alpha b} Q_j^{\beta c} + (Y_{ql})_{ij} \bar{T}^a Q_i^{\alpha a} L_j^{\beta} \right) \\ &+ (Y_{ue})_{ij} T^a \bar{U}_i^a \bar{E}_j - (Y_{ud})_{ij} \epsilon_{abc} \bar{T}^a \bar{U}_i^b \bar{D}_j^c + M_T T^a \bar{T}^a \,. \end{split}$$

Messenger sector also generates specific ratios between

$$Y_{ql}, Y_{ud} \leftrightarrow Y_d \text{ and } Y_{qq}, Y_{ue} \leftrightarrow Y_u$$

 Y_{ql} , Y_{ud} , Y_{qq} , Y_{ue} predicted from fit of Y_d , Y_e , Y_u

Proton Decay via Dimension Five Operators

Model with diagonal Y_d and Y_e :

$$egin{aligned} Y_{ql} &= ext{diag}\left(y_d, y_s, -rac{3}{2}y_b
ight) & Y_{ud} &= ext{diag}\left(rac{2}{3}y_d, -4y_s, y_b
ight) \ Y_{qq} &= Y_u & Y_{ue} &= Y_u \end{aligned}$$

Model with Cabibbo angle from Y_d , Y_e :

$$Y_{ql} = \begin{pmatrix} 0 & y_{d,12} & 0 \\ y_{d,21} & y_s & 0 \\ 0 & 0 & -\frac{3}{2}y_b \end{pmatrix} \quad Y_{ud} = \begin{pmatrix} 0 & \frac{2}{3}y_{d,12} & 0 \\ -4y_{d,21} & -4y_s & 0 \\ 0 & 0 & y_b \end{pmatrix}$$
$$Y_{qq} = Y_u \qquad \qquad Y_{ue} = Y_u$$

Extensive table of ratios to triplet Yukawa couplings \rightarrow arXiv:1405.6962

Proton Decay via Dimension Five Operators

$$W_{\not\!\beta} = \frac{1}{M_T^{\text{eff}}} \left[\frac{1}{2} Y_{qq}^{ij} Y_{ql}^{mn} Q_i Q_j Q_m L_n + Y_{ue}^{ij} Y_{ud}^{mn} \bar{U}_i \bar{E}_j \bar{U}_m \bar{D}_n \right]$$

• $M_T^{\rm eff} \gtrsim 10^{17} {
m GeV}$ due to two **24**'s

- Full control over all 3+4 Yukawa matrices
- Diagonal Y_{ql} and $Y_{ud} \rightarrow$ suppressed flavour transitions

RGE running/matching and dressing with superpartner fields:

$$A_{LLLL} \sim \tan \beta$$
 and $A_{RRRR} \sim (\tan \beta)^2$

 $\rightarrow \quad \left| \frac{y_{\tau}}{y_b} = -\frac{3}{2} \text{ needs } \tan \beta \approx 25 \right| \text{ vs. } \left| y_{\tau} = y_b = y_t \text{ needs } \tan \beta \approx 50 \right|$

Summary and Conclusions

- DMPM can be successfully combined with predictive Yukawa coupling ratios using novel CG factors
- Adding another 24 allows for high enough M^{eff}_T to avoid problems with proton decay
- Adjoint field charged under shaping symmetry allows predictive Yukawa coupling ratios
- No danger from *M*_{Pl} suppressed operators due to charge assignment and messenger UV completion

Thank you for your attention!