Dark Matter Experiment

Jocelyn Monroe, Royal Holloway University of London

4th Workshop on Flavour Symmetries and Consequences in Accelerators and Cosmology University of Sussex June 17, 2014

Outline

Experimental Considerations

Status and Prospects of Direct Detection Searches

Future Directions

Dark Matter Direct Detection

```
Signal: \chi N \rightarrow \chi N
```


detector requirements: particle ID for N, e-, alpha, n (multiple) final states

RHUL Jocelyn Monroe

WIMP Scattering

kinematics: *v*/*c* ~ 8*E*-4!

recoil angle strongly correlated with incoming WIMP direction

Spin Independent: *χ* scatters coherently off of the entire nucleus A: *σ*~A² *D. Z. Freedman, PRD 9, 1389 (1974)*

<u>Spin Dependent:</u> mainly unpaired nucleons contribute to scattering amplitude: $\sigma \sim J(J+1)$

detector requirements: measure recoil energy, and ideally angle as well RHUL Jocelyn Monroe June 17, 2014

detector requirements: ~1-10s of keV energy threshold, very low backgrounds RHUL Jocelyn Monroe June 17, 2014

Detection Medium

RHUL Jocelyn Monroe

Around the World

SNOLAB: Picasso/COUPP/PICO SuperCDMS/ GEODM

Soudan: CDMS COGENT

> *WIPP:* DMTPC EXO

> > S. Pole: -DM-ICE

Kamioka: NEWAGE *JinPing:* CDEX *Y2L:* KIMS

> *Boulby:* DRIFT

Gran Sasso: DAMA/LIBRA CRESST

Modane (LSM): EDELWEISS/ EURECA MiMAC

CanFranc: ANAIS

Backgrounds

Gamma ray interactions: rate ~ N_e x (gamma flux), typically 10 million events/day/kg mis-identified electrons mimic nuclear recoil signals

Neutrons:

(alpha,n), U, Th fission, cosmogenic spallation

nuclear recoil final state

Contamination: ²³⁸U and ²³²Th decays, recoiling progeny and mis-identified alphas mimic nuclear recoils

Ν

Irreducible Backgrounds

impossible to shield a detector from coherent neutrino scattering! $\Phi(\text{solar B}^8) = 5.86 \times 10^6 \text{ cm}^{-2} \text{ s}^{-1}$

nuclear recoil final state 1 event/ton-year = 10⁻⁴⁶-10⁻⁴⁸ cm² limit with current recoil energy thresholds in zero-background paradigm

> unless you measure the direction!

Outline

Experimental Considerations

Status and Prospects of Direct Detection Searches

Future Directions

The Low-Background Frontier: Status of SI Searches

so far: ~3 years / order of magnitude

RHUL Jocelyn Monroe

Two-Phase LXe TPCs Xenon 10, 100, 1T, nT (LNGS) LUX (SURF)

"S2": primary scintillation "S1": amplified, drifted ionization signal both read out with PMTs

RHUL Jocelyn Monroe

Bolometers: EDELWEISS (LSM) and CDMS (Soudan)

Transition Edge Sensors, operated at ~40 mK on Ge and Si crystals

Phonon side: 4 quadrants of phonon sensors for energy & position (timing)

CDMS re-design a la EDELWEISS to reduce surface backgrounds x10⁴

June 17, 2014

Charge side: 2 concentric electrodes (inner & outer) energy (& veto)

RHUL Jocelyn Monroe

EDELWEISS FID - 133Ba calibration (411663 y)

The Low-Background Frontier: Prospects

so far: ~3 years / order of magnitude

RHUL Jocelyn Monroe

Argon Experiments

DarkSide (LNGS), DEAP (SNOLAB)

<u>advantages</u>: x250 difference between singlet and triplet lifetimes: 10¹⁰ electron rejection, kills solar pp nu-e- scattering background

able 3: Scintillation parameters for	liquid ne	on, argon,	and xenor
Parameter	Ne	Ar	Xe
Yield (×10 ⁴ photons/MeV)	1.5	4.0	4.2
prompt time constant τ_1 (ns)	2.2	6	2.2
late time constant τ_3	$15\mu{ m s}$	$1.59 \ \mu s$	21 ns
I_1/I_3 for electrons	0.12	0.3	0.3
I_1/I_3 for nuclear recoils	0.56	3	1.6
λ (peak) (nm)	77	128	174
Rayleigh scattering length (cm)	60	90	30

favorable form-factor: higher energy threshold ok, enhanced sensitivity to heavy DM

practicalities:

relatively low cost O(1\$/kg), very large detectors possible

excellent light yield / \$\$

straightforward to purify

<u>drawbacks</u>:

smaller interaction cross section (A²)

Ar-39, trade-off between background rejection and threshold

low-background Ar sources reduce Ar-39 by a factor of >50 *Xu et al, arXiv:1204.6011*

Bubble Chambers

COUPP-60

- Filled with 37 kg of CF₃I on April 26, 2013
- First bubble May 1, 2013 (radon decay)
- Installation completed May 31, 2013
- Started first physics run in late June
- Increase target mass to 75 kg in fall/winter
- Ultimate goal of 3 year run (50000 kg-days exposure)

PICO-lite

- Joint effort between COUPP & PICASSO
- C₃F₈ chamber (2L) in existing COUPP-4 infrastructure at SNOLAB
- 3 keV threshold
- Excellent low-mass WIMP and SD coupling sensitivity
- CDMS-Si result gives 1 event/day in COUPP-4lite
- Deploy September 2013

Superheated CF₃I bubble chambers, in SNOLAB.

-readout with cameras and piezos
-threshold detectors: measure integral counts for particles with dE/dx > threshold to nucleate bubble
-σammas below threshold to nucleate
RHUL Jocelyn Monroe

PICO-250

- 250L bubble chamber design effort
- Well developed Conceptual Design
- Straightforward scale-up from COUPP-4 and COUPP-60
- Begin construction in 2014-2015

Single Phase a la Neutrinos

no electric fields = straightforward scalability1) no pile-up from ms-scale electron drift in E2) no recombination in E (high photons/keVee)but no charge background discrimination either!

high light yield and self-shielding of target

background discrimination from prompt scintillation timing...

cf. Two Phase Detector: *and* charge (proportional scintillation)

DEAP3600

single-phase LAr detector at SNOLAB, prototype for kT-scale detector...

3.6 tonnes of which 1 tonne fiducialized by event position reconstruction arXiv:1211.0909

Ar-39 background rejection at 1:1E10 from scintillation time constants: 6±1 ns, 1600±100 ns

commissioning starts Summer 2014

The Low-Background Frontier: Signals

How do we know when we have discovered dark matter?

RHUL Jocelyn Monroe

Annual Modulation Tests

Ge: COGENT(~consistent with DAMA/LIBRA) CDMS (not consistent) MALBEK (not consistent) arXiv:1401.3295, arXiv:1203.1309 J. Wilkerson, UCLADM'14

Csl: KIMS (not consistent) J.Phys.Conf.Ser. 384 (2012) 012020

Nal: many efforts underway, all <25 kg active mass, scale up depends on crystal radiopurity

Northern Hemisphere	Gran Sasso DAMA/Libra 250kg running	Gran Sasso Princeton-Nal R&D	Canfranc ANAIS ~100kg starting in 2014?	PICO-LON KIMS etc
Southern Hemisphere	South Pole DM-Ice 17 kg running R&D for 250 kg	ANDES Lab (proposed) expected start 2018		ice rock

Experimental Considerations

Status and Prospects of Direct Detection Searches

Future Directions

The Dark Matter Wind apparently "blows" from Cygnus

directional detection: search for a dark matter source

definitive test of the astrophysical origin of a candidate dark matter signal RHUL Jocelyn Monroe June 17, 2014

in forward-backward

event rate.

Optimization

how many events to detect the dark matter wind?

Detector Properties: detector resolution energy threshold background reconstruction (2D vs. 3D) vector reconstruction

	No background, 3-d vector read-out, $E_T = 20 \text{ keV}$	
	$E_{\rm T} = 50~{\rm keV}$	5
	$E_{\rm T} = 100 \text{keV}$	3
	S/N = 10	8
	S/N = 1	17
	S/N = 0.1	99
1	3-d axial read-out	81
1	2-d vector read-out in optimal plane, reduced angles	12
	2-d axial read-out in optimal plane, reduced angles	190

simulation with 100 signal, 100 background ¹⁰ Sumber of events Billard et al. 2010 A. M. Green, B. Morgan, Astropart.Phys.27:142-149,2007

J. Billard, F. Mayet, D. Santos, arXiv:1009.5568

do not need "zero background" for directional detectors

Beyond the Neutrino Bound

Grothaus, Fairbairn, JM, Fisher in preparation

PDFs in (energy, angle, time) of event for coherent solar nu background vs. background+signal show significant differences:

Directionality R&D Around the World DRIFT: in Boulby (UK),

first directional experiment

NEWAGE: in Kamioka (Japan), *first* directional dark matter limit!

DMTPC: in WIPP (US), optical and charge readout,

demonstrated 40° resolution

MiMAC-He3: ILL, in Modane (France) micromegas readout, A-dependence

CYGNUS: coordinated effort of all

Directional Detection: Progress

O(1m³) detector to be competitive with current non-directional SD searches *directionality is starting to catch up....*

Directional Detection Future

Eventually: large detector, 10⁻⁴⁶ cm² sensitivity, how big is it?

detector size for 10⁻⁴⁴ cm² SI sensitivity

Summary & Outlook

RHUL Jocelyn Monroe

Direct detection experiments will test SI WIMP parameter space down to 10⁻⁴⁶ cm² in next few years, and ~to neutrino bound in next decade

Directional detectors needed to go beyond...

Extra Slides

CoGENT and MALBEK

J. Wilkerson, UCLA DM '14

0.44 kg Ge detector, point contact

- 0.5 keV energy threshold
- COGENT: excess fit by 8 GeV WIMP
- MALBEK: similar detector, assayed detector components, found Pb-210 background from clamps, reran without them, best fit: no DM

• CoGENT 2013 allowed region excluded, CoGENT 2014 region allowed

RHUL Jocelyn Monroe

CRESST-II

CRESST likelihood contours from arXiv:1109.0702 (and other results)

in tension with

CRESST commissioning data, extended analysis by *Brown*, et al. *PRD* 85 (2012) 021301(*R*) (also: arXiv:1109.2589) Scintillation and Phonon detectors on CaWO₄ absorbers, TES readout, operating in Gran Sasso

- 730 kg-day science run sees excess of events
- difficult to explain with backgrounds so far

arXiv:1109.0702

Run started with new clamps, more detectors, improved shielding in July 2013.

RHUL Jocelyn Monroe

KIMS Plans

- KIMS-CsI: Upgrade of CsI(Tl) crystal detector
 - Lower threshold ~ 1.5keV,
 < 1dru, counts/(keV kg day).
- **KIMS-NaI:** new NaI(Tl) detector
 - Duplicate DAMA experiment with ultra-low background NaI(Tl) crystals.
 - 200kg run in 2015-2016

- KIMS-LT

- Use scintillating bolometer such as natCanatMoO4 crystals ~ 200 kg year.
- High sensitivity to low mass WIMP.
- Operations in 2019-2022

WIMP Mass (GeV/c²)

CDMS-II, Low Mass

Profile Likelihood analysis

- The maximum likelihood occurs at a WIMP mass of 8.6 GeV/c² and WIMP-nucleon cross section of 1.9x10⁻⁴¹cm²
- Probability of observing 3 or more events from background fluctuations is equal to 5.4%
- Goodness of fit of the WIMP
 +Background model is 68.6%
- A profile likelihood ratio test statistic favors the WIMP
 +Background hypothesis over the background only at 99.81% C.L.

We do not believe this result rises to the level of a discovery, but does call for further investigation.

Julien Billard (MIT) - TAUP2013

Now: some SuperCDMS detectors are Si, and working on phonon-only analysis.

RHUL Jocelyn Monroe

June 17, 2014

11

Directionality and Low Mass Dark Matter

(D. Loomba, Cygnus'13)

1) Number of events to reject isotropy as a function of track 'ellipticity:'

2) Require $E_{\text{threshold}}$ for R>=0.6mm, find gas pressure to maximize rate

Bottom line: directional detection of low-mass dark matter possible with low gas pressures and low energy thresholds (need large volume, high S:N) RHUL Jocelyn Monroe

Directionality without Tracking

Ratio of recombination to ionization yield in gas target is sensitive to track direction relative to TPC drift field.

- <u>Columnar Recombination</u> (CR) occurs when:
 - A drift electric field *E* exists;
 - Tracks are highly ionizing;
 - Tracks display an approximately linear character;
 - The angle α between *E* and track is small:
 - Recombination ≈ dot-product of vectors E and "track"

Photons from R vs. I separated in arrival time at TPC readout plane. Measure event energy vs. time of day (direction to cygnus), in HPXe TPC. No tracking needed for directional dark matter detection!

Impact of Dark Disk

Discovery : beyond the standard halo

J. Billard et al., PLB 2013

N-body simulations favor a co-rotating Dark Disk (10%-50% of local DM density)

→for a nul lag velocity, Dark Disk Wimps have an isotropic velocity distribution

→only extreme Dark Disk parameters may affect the directional signal

→not a threat for directional detection

What to do with Directional Data?

1. Exclusion

• Maximum Patch Method, S. Henderson, JM and P. Fisher, PRD 2008

• Directional Likelihood Method, J. Billard, F. Mayet and D. Santos, PRD 2010

bottom line: 2 variables (angle + energy) can be better or worse than 1 (energy)

2. Hypothesis Test: is a candidate signal compatible with background?

• C. J. Copi & L. M. Krauss, PLB 1999; C. J. Copi & L. M. Krauss, PRD 2001; B. Morgan & A. M. Green, PRD 2005; B. Morgan, A. M. Green and N. J. C. Spooner, PRD 2005; A. M. Green & B. Morgan, PRD 2008; O. Host & S. H. Hansen, JCAP 2007; J. D. Vergados & A. Faessler, PRD 2007; M. S. Alenazi & P. Gondolo, PRD 2008 **bottom line: require few 10s of events to reject isotropy**

3. Discovery: search for a signal from the direction of Cygnus

• Median Recoil Direction Test: A. M. Green & B. Morgan, PRD 2010

• Blind Likelihood Test: J. Billard et al., PLB 2010

bottom line: high significance discovery with relatively small exposure (~10 kg-yr)

4. Study Dark Matter Properties: halo, mass, cross section

• Lee and Peter, arXiv:1202.5035; Borzognia, Gelmini, Gondolo, arXiv:1111.6361; Billard, Mayet and Santos, PRD 2011; Copi et al., PRD 2007; Green and Morgan, Astropart. Phys. 2007; ...

• Dark Matter Model Discrimination: D. Finkbeiner, T. Lin, N. Weiner, PRD80 (2009)

- Community White Paper: S. Ahlen et al., Int.J.Mod.Phys.A25:1-51,2010
- And beat the neutrino background limit! M. Fairbairn et al. IOP2014, in preparation

bottom line: need large numbers of events O(1000+) to measure halo parameters

RHUL Jocelyn Monroe