$B \rightarrow K^{*} \ell^{+} \ell^{-}$：Theory，QCD and new physics

J．Martin Camalich

University of California，San Diego Johannes Gütenberg Universität－Mainz

June 19， 2014

Jäger and JMC JHEP 1305 （2013） 043 and work in progress

OUTLINE

(9) Introduction

2 The low q^{2} anomaly and interpretations
(3) Connecting the theory with the experiment

4 Statistical method and error analysis
5 "Superclean" observables and C_{7}^{\prime}
(6) Conclusions
$\bar{B} \rightarrow \bar{K}^{*} \ell^{+} \ell^{-}$

- 4-body decay

Expt.	~\# events
CDF	100 PRLL06(2011)161801
BaBar	150 PRD86(2012)032012
Belle	200 PRL103(2009)171801
CMS	400 PLB727(2013)77
ATLAS	500 arXiv:1310.4213
LHCb	$1000\left(1 \mathrm{fb}^{-1}\right)$ JHEP 1308 (2013) 131

$$
\begin{aligned}
& \frac{d^{(4)} \Gamma}{d q^{2} d\left(\cos \theta_{l}\right) d\left(\cos \theta_{k}\right) d \phi}=\frac{9}{32 \pi}\left(I_{1}^{S} \sin ^{2} \theta_{k}+l_{1}^{C} \cos ^{2} \theta_{k}\right. \\
+\quad & \left(I_{2}^{S} \sin ^{2} \theta_{k}+I_{2}^{C} \cos ^{2} \theta_{k}\right) \cos 2 \theta_{l}+I_{3} \sin ^{2} \theta_{k} \sin ^{2} \theta_{l} \cos 2 \phi \\
+\quad & I_{4} \sin 2 \theta_{k} \sin 2 \theta_{l} \cos \phi+I_{5} \sin 2 \theta_{k} \sin \theta_{l} \cos \phi+l_{6} \sin ^{2} \theta_{k} \cos \theta_{l} \\
+\quad & \left.I_{7} \sin 2 \theta_{k} \sin \theta_{l} \sin \phi+I_{8} \sin 2 \theta_{k} \sin 2 \theta_{l} \sin \phi+l_{9} \sin ^{2} \theta_{k} \sin ^{2} \theta_{l} \sin 2 \phi\right)
\end{aligned}
$$

Up to $l_{i}\left(q^{2}\right) \mathbf{1 2} q^{2}$-dependent observables

The weak Hamiltonian for $b \rightarrow s$ transitions

- In the SM we have

$$
\begin{aligned}
& \mathcal{H}_{w}=\frac{G_{F}}{\sqrt{2}} \sum_{p=u, c} \lambda_{p}\left[C_{1} \mathcal{O}_{1}^{p}+C_{2} \mathcal{O}_{2}^{p}+\sum_{i=3,10} C_{i} \mathcal{O}_{i}\right], \\
& \mathcal{O}_{7}=\frac{e}{4 \pi^{2}} \hat{m}_{b} \bar{s} \sigma_{\mu \nu} P_{R} F^{\mu \nu} b, \\
& \mathcal{O}_{1}^{c}=(\bar{c} b)_{V-A}(\bar{s} c)_{V-A}, \quad \mathcal{O}_{2}^{c}=\left(\bar{c}_{i} b_{j}\right)_{V-A}\left(\bar{s}_{j} c_{i}\right)_{V-A}, \\
& \mathcal{O}_{9}=\frac{\alpha_{\mathrm{em}}}{2 \pi}(\bar{s} b)_{V-A}(\bar{l} /)_{V}, \quad \mathcal{O}_{10}=\frac{\alpha_{\mathrm{em}}}{2 \pi}(\bar{s} b)_{V-A}(\bar{l} /)_{A}
\end{aligned}
$$

Buchalla el al.Rev.Mod.Phys.68(1996)1125

- Info from DOFs at $\Lambda \sim \mathcal{O}\left(m_{W}\right)$ stored in the Wilson coeffs. $C_{i}(\mu)$'s

Table : Wilson coefficients of the SM at $\mu=4.8 \mathrm{GeV}$.

C_{1}	C_{2}	$C_{7}^{\text {eff }}$	C_{9}	C_{10}
-0.144	1.060	-0.305	4.24	-4.312

The weak Hamiltonian for $b \rightarrow s$ transitions

- In the SM we have

$$
\begin{gathered}
\mathcal{H}_{W}=\frac{G_{F}}{\sqrt{2}} \sum_{p=u, c} \lambda_{p}\left[C_{1} \mathcal{O}_{1}^{p}+C_{2} \mathcal{O}_{2}^{p}+\sum_{i=3,10} C_{i} \mathcal{O}_{i}\right], \\
\mathcal{O}_{7}=\frac{e}{4 \pi^{2}} \hat{m}_{b} \bar{s} \sigma_{\mu \nu} P_{R} F^{\mu \nu} b, \\
\mathcal{O}_{1}^{c}=(\bar{c} b)_{V-A}(\bar{s} c)_{V-A}, \\
\mathcal{O}_{9}=\frac{\alpha_{\mathrm{em}}}{2 \pi}(\bar{s} b)_{V-A}(\bar{I} /)_{V}, \\
\mathcal{O}_{2}^{c}=\left(\bar{c}_{i} b_{j}\right)_{V-A}\left(\bar{s}_{j} c_{i}\right)_{V-A}, \\
2 \pi \\
\left.\mathcal{S}_{10}=\frac{\alpha_{\mathrm{em}}}{2 \pi}\right)_{V-A}(\bar{I})_{A}
\end{gathered}
$$

Buchalla el al.Rev.Mod.Phys.68(1996)1125

- Info from DOFs at $\Lambda \sim \mathcal{O}\left(m_{W}\right)$ stored in the Wilson coeffs. $C_{i}(\mu)$'s
- Physics BSM manifest at the operator level through. . .
- Different values of the Wilson coefficients $C_{i}^{\text {expt. }}=C_{i}^{\text {SM }}+\delta C_{i}$
- New operators absent or very suppressed in the SM

Chirally-flipped operators

$$
\mathcal{O}_{7}^{\prime}=\frac{e}{4 \pi^{2}} \hat{m}_{b} \overline{\mathbf{s}} \sigma_{\mu \nu} P_{L} F^{\mu \nu} b
$$

A "clean" set of observables

- One can use ratios of $l_{i}^{\prime} s$ to reduce theoretical uncertainties

Kruger et al. PRD71(2005)094009

- The P-basis is composed by the combinations

Descotes-Genon et al.JHEP1301(2013)048

$$
\begin{aligned}
P_{1}=\frac{I_{3}}{2 I_{2 s}}, \quad P_{2}=\frac{I_{6}}{8 I_{2 s}}, \quad & P_{3}=-\frac{l_{9}}{4 I_{2 s}}, \\
P_{4}^{\prime}=\frac{I_{4}}{\sqrt{-I_{2 s} I_{2 c}}}, & P_{5}^{\prime}=\frac{I_{5}}{2 \sqrt{-I_{2 s} I_{2 c}}},
\end{aligned} P_{6}^{\prime}=-\frac{l_{7}}{2 \sqrt{-I_{2 s} I_{2 c}}} .
$$

plus

$$
\begin{aligned}
& \Gamma^{\prime}=\frac{d \Gamma+d \bar{\Gamma}}{d q^{2}}=\frac{1}{4}\left(\left(3 l_{1 c}-I_{2 c}\right)+2\left(3 l_{1 s}-I_{2 s}\right)\right) \\
& F_{L}=\frac{3 l_{1 c}-I_{2 c}}{4 \Gamma^{\prime}},
\end{aligned}
$$

- They are defined such that "leading hadronic uncertainties" factor out

The P_{5}^{\prime} anomaly at low $q^{2}\left(1 \mathrm{fb}^{-1}\right)$

PRL 111, 191801 (2013)
PHYSICAL REVIEW LETTERS
week ending
8 NOVEMBER 2013

Measurement of Form-Factor-Independent Observables in the Decay $\boldsymbol{B}^{\mathbf{0}} \rightarrow \boldsymbol{K}^{* \boldsymbol{0}} \boldsymbol{\mu}^{+} \boldsymbol{\mu}^{-}$
R. Aaij et al.*
(LHCb Collaboration)
(Received 9 August 2013; published 4 November 2013)

SM predictions from Egede et al. JHEP11 (2008)032
There are $\mathbf{2}$ more fb^{-1} on tape!!

The P_{5}^{\prime} anomaly: New Physics?

- It was noted that there is another tension in P_{2} at low q^{2}
- The discrepancies can be solved by a sizable NPs contribution to C_{9}

Descotes-Genon et al. PRD88,074002,hep-ph 1311.3876

The P_{5}^{\prime} anomaly: New Physics?

- It was noted that there is another tension in P_{2} at low q^{2}
- The discrepancies can be solved by a sizable NPs contribution to C_{9}

Descotes-Genon et al. PRD88,074002,hep-ph 1311.3876

- An independent analysis

Altmannshofer et al. Eur.Phys.J. C73 (2013) 2646
(1) Confirmed the important role of C_{9} to explain the anomaly
(2) High q^{2} analysis played an important role in revealing other sources of NPs

The P_{5}^{\prime} anomaly: New Physics?

CERN COURIER

Nov 20, 2013

LHCb and theorists chart a course for discovery

Jäger and JMC, JHEP 1305 (2013) 043

- Larger SM uncertainties in the predictions

GOAL: Explain the anomalies largely by uncertain hadronic effects?

- Large-recoil region (low q^{2})
- Heavy to collinear light quark \Rightarrow QCDf or SCET (power-corrections)
- Dominant effect of the photon pole
- Charmonium region
- Dominated by long-distance (hadronic) effects
- Starting at the perturbative $c \bar{c}$ threshold $q^{2} \simeq 6-7 \mathrm{GeV}^{2}$
- Low-recoil region (high q^{2})
- Heavy quark EFT + Operator Product Expansion (OPE) (duality violation)
- Dominated by semileptonic operators

Connecting the theory to experiment: The helicity amplitudes

- Helicity amplitudes $\lambda= \pm 1,0$

$$
\begin{aligned}
& H_{V}(\lambda)=-i N\left\{C_{9} \tilde{V}_{L \lambda}-\frac{m_{B}^{2}}{q^{2}}\left[\frac{2 \hat{m}_{b}}{m_{B}} C_{7 \gamma} \tilde{T}_{L \lambda}-16 \pi^{2} h_{\lambda}\right]\right\}, \\
& H_{A}(\lambda)=-i N C_{10} \tilde{V}_{L \lambda}, \quad \quad H_{P}=i N \frac{2 m_{1} \hat{m}_{b}}{q^{2}} C_{10}\left(\tilde{S}_{L}+\frac{m_{s}}{m_{b}} \tilde{S}_{R}\right)
\end{aligned}
$$

C_{9} is exposed to various hadronic backgrounds

- Hadronic form factors

$$
\begin{aligned}
-i m_{B} \tilde{L}_{L(R) \lambda}\left(q^{2}\right) & =\langle M(\lambda)| \overline{s_{\epsilon} \epsilon^{*}(\lambda) P_{L(R)} b|\bar{B}\rangle,} \\
m_{B}^{2} \tilde{L}_{L(R) \lambda}\left(q^{2}\right) & =\epsilon^{* \mu}(\lambda) q^{\nu}\langle M(\lambda)| \bar{s} \sigma_{\mu \nu} P_{R(L)} b|\bar{B}\rangle, \\
i m_{B} \tilde{S}_{L(R)}\left(q^{2}\right) & =\langle M(\lambda=0)| \bar{s} P_{R(L)} b|\bar{B}\rangle .
\end{aligned}
$$

- Form factors in the helicity basis

Connecting the theory to experiment: The helicity amplitudes

- Helicity amplitudes $\lambda= \pm 1,0$

$$
\begin{aligned}
& H_{V}(\lambda)=-i N\left\{C_{9} \tilde{V}_{L \lambda}-\frac{m_{B}^{2}}{q^{2}}\left[\frac{2 \hat{m}_{b}}{m_{B}} C_{7 \gamma} \tilde{L}_{L \lambda}-16 \pi^{2} h_{\lambda}\right]\right\}, \\
& H_{A}(\lambda)=-i N C_{10} \tilde{V}_{L \lambda}, \quad H_{P}=i N \frac{2 m_{l} \hat{m}_{b}}{q^{2}} C_{10}\left(\tilde{S}_{L}+\frac{m_{s}}{m_{b}} \tilde{S}_{R}\right)
\end{aligned}
$$

C_{9} is exposed to various hadronic backgrounds

- Non-local contribution

$h_{\lambda} \propto \int d^{4} y e^{i q \cdot y}\left\langle\bar{K}^{*}\right| j^{\text {em,had, }, \mu}(y) \mathcal{H}^{\text {had }}(0)|\bar{B}\rangle \epsilon_{\mu}^{*}$
Especially sensitive to $c \bar{c}$ contributions!

Form Factors at large recoil

- Heavy-quark and large-recoil (K^{*}) limit only 2 independent "soft form factors"

$$
T_{+}=V_{+}=0, \quad T_{-}=V_{-}=\frac{2 E}{m_{B}} \xi_{\perp}, \quad T_{0}=V_{0}=S=\frac{E}{m_{K^{*}}} \xi_{\|}
$$

Dugan et al. PLB255(1991)583, Charles et al. PRD60(1999)014001

- The observable P_{5}^{\prime}

$$
P_{5}^{\prime}=\frac{I_{5}}{2 \sqrt{-I_{2 s} I_{2 c}}}=\frac{\left(\operatorname{Re}\left[\left(H_{V}^{-}-H_{V}^{+}\right) H_{A}^{0 *}+\left(H_{A}^{-}-H_{A}^{+}\right) H_{V}^{0 *}\right]\right.}{\sqrt{\left(\left|H_{V}^{0}\right|^{2}+\left|H_{A}^{0}\right|^{2}\right)\left(\left|H_{V}^{+}\right|^{2}+\left|H_{V}^{-}\right|^{2}+\left|H_{A}^{+}\right|^{2}+\left|H_{A}^{-}\right|^{2}\right)}}
$$

- Rationale behind P^{\prime} basis: Ignore in first app. α_{s} corrections and h_{λ}

Form Factors at large recoil

- Heavy-quark and large-recoil (K^{*}) limit only 2 independent "soft form factors"

$$
T_{+}=V_{+}=0, \quad T_{-}=V_{-}=\frac{2 E}{m_{B}} \xi_{\perp}, \quad T_{0}=V_{0}=S=\frac{E}{m_{K^{*}}} \xi_{\|}
$$

Dugan et al. PLB255(1991)583, Charles et al. PRD60(1999)014001

- The observable P_{5}^{\prime}

$$
P_{5}^{\prime}=\frac{I_{5}}{2 \sqrt{-l_{2 s} I_{2 c}}}=\frac{\left(\operatorname{Re}\left[\left(H_{V}^{-}-H_{V}^{+}\right) H_{A}^{0 *}+\left(H_{A}^{-}-H_{A}^{+}\right) H_{V}^{0 *}\right]\right.}{\sqrt{\left(\left|H_{V}^{0}\right|^{2}+\left|H_{A}^{0}\right|^{2}\right)\left(\left|H_{V}^{+}\right|^{2}+\left|H_{V}^{-}\right|^{2}+\left|H_{A}^{+}\right|^{2}+\left|H_{A}^{-}\right|^{2}\right)}}
$$

- Rationale behind P^{\prime} basis: Ignore in first app. α_{s} corrections and h_{λ}

$$
\begin{gathered}
H_{V}^{0} \propto \xi_{\|}, \quad H_{V}^{-} \propto \xi_{\perp}, \quad H_{V}^{+} \sim 0 \\
P_{5}^{\prime} \simeq \frac{2 E^{2}}{m_{B} m_{K^{*}}} F\left(q^{2}, C_{7, \gamma}, C_{9}, C_{10}\right)
\end{gathered}
$$

$F\left(q^{2}, C_{7, \gamma}, C_{9}, C_{10}\right)$ hadronic independent at $\mathcal{O}\left(\alpha_{s}^{0},\left(\frac{\Lambda}{E}\right)^{0}\right)$

α_{s} corrections can be computed to any order in QCDf or SCET
Beneke et al. NPB592(2001)3, NPB685(2004)249, Bauer et al. PRD63(2001)114020

Agnostic approach to power corrections ($\frac{\Lambda}{E}$)

- We fix $\xi_{\|}(0)$ using theoretical predictions

$$
\xi_{\perp}(0)=T_{1}(0)=0.30(1), \quad \xi_{\|}(0)=\frac{2 m_{K^{*}}}{m_{B}} A_{0}(0)=0.09(2)
$$

- Parametrize

$$
F^{\text {p.c. }, \pm}= \pm a_{F} \pm b_{F} \frac{q^{2}}{m_{B}^{2}}
$$

- Light-cone SRs (Ball\&Zwicky'05, Khodjamirian et al.'10)
- QCD SRs (Colangelo et al.'96)
- Dyson-Schwinger (Ivanov et al.'07)

Agnostic approach to power corrections ($\frac{\Lambda}{E}$)

- We fix $\xi_{\|}(0)$ using theoretical predictions

$$
\xi_{\perp}(0)=T_{1}(0)=0.30(1), \quad \xi_{\|}(0)=\frac{2 m_{K^{*}}}{m_{B}} A_{0}(0)=0.09(2)
$$

- Parametrize

$$
F^{\mathrm{p.c.}, \pm}= \pm a_{F} \pm b_{F} \frac{q^{2}}{m_{B}^{2}}
$$

	V_{-}	V_{+}	T_{-}	T_{+}	V_{0}	T_{0}
$\|a\|_{\max }$	0.027	0.008	0	0	0	0.050
$\|b\|_{\max }$	0.136	0.042	0.125	0.043	0.434	0.206

Consistent with power counting

Power corrections typically at $5 \%-20 \%$ level

Agnostic approach to power corrections ($\frac{\Lambda}{E}$)

- We fix $\xi_{\|}(0)$ using theoretical predictions

$$
\xi_{\perp}(0)=T_{1}(0)=0.30(1), \quad \xi_{\|}(0)=\frac{2 m_{K^{*}}}{m_{B}} A_{0}(0)=0.09(2)
$$

- Parametrize

$$
F^{\mathrm{p.c.}, \pm}= \pm a_{F} \pm b_{F} \frac{q^{2}}{m_{B}^{2}}
$$

	V_{-}	V_{+}	T_{-}	T_{+}	V_{0}	T_{0}
$\|a\|_{\max }$	0.027	0.008	0	0	0	0.050
$\|b\|_{\max }$	0.136	0.042	0.125	0.043	0.434	0.206

Power corrections suppressed by q^{2} / m_{b}^{2}
Exact relations: $V_{0}(0)=0, T_{+}(0)=0$

Calculation of h_{λ} at low q^{2}

- QCDf: Can be computed at leading-power Λ / E perturbatively in α_{s}
- Power corrections from charm-loop weighted by large WCs

- Estimate of the effects obtained using non-local LCSRs One can only trust up to 4-6 GeV ${ }^{2}$!!

Khodjamirian et al.JHEP1009(2010)089

- Power corrections from light quarks CKM suppressed but "resonate"

$$
a_{\mu}^{\text {had, }, 1-\mathrm{q}} \approx \int d^{4} x e^{-i q \cdot x} \sum_{P, P^{\prime}}\langle 0| j_{\mu}^{\mathrm{em}, 1-\mathrm{q}}(x)\left|P^{\prime}\right\rangle\left\langle P^{\prime}(x) \mid P(0)\right\rangle\left\langle K^{*} P\right| H_{W}^{\text {had }}(0)|B\rangle
$$

Non-factorizable contributions to h_{+}are $\Lambda / m_{\mathbf{B}}$ (Jăger and JMC' 12)

Obtention of error bands and comparison

- A standard method for modelling power corrections

Egede et al. JHEP 1010 (2010) 056
Introduce a scale factor ζ_{i} per amplitude, e.g.

$$
H_{V}(\lambda) \mapsto \zeta_{i, \lambda}\left\{C_{9} \tilde{V}_{L \lambda}-\frac{m_{B}^{2}}{q^{2}}\left[\frac{2 \hat{m}_{b}}{m_{B}} C_{7 \gamma} \tilde{T}_{L \lambda}-16 \pi^{2} h_{\lambda}\right]\right\}
$$

- Run a Montecarlo over ζ_{i} and other uncertainties and quote 67% interval (th. 1- σ)
- Add $\sigma_{\text {th }}$ and $\sigma_{\text {expt }}$ in quadratures and perform conventional χ^{2} analysis

Two possible issues

(1) ζ_{i} can miss interference between power corrections in FFs or h_{λ}
(2) Is the treatment of theoretical error as experimental adequate?

Obtention of error bands and comparison

We use the Rfit method

Method employed by CKMfitter for treating hadronic uncertainties

Höcker et al. EPJC21(2001)225

$$
\begin{aligned}
& \chi^{2}\left(\vec{y}_{\mathrm{ew}}, \vec{y}_{\mathrm{QCD}}\right)=\left(\frac{x_{\mathrm{exp}, i}-x_{\mathrm{th}, i}\left(\vec{y}_{\mathrm{ew}}, \vec{y}_{\mathrm{QCD}}\right)}{\sigma_{\mathrm{exp}}}\right)^{2}, \quad \text { if } \quad y_{Q C D, i} \in\left[\bar{y}_{i}-\sigma_{i}, \bar{y}_{i}+\sigma_{i}\right] \quad \forall i \\
& \chi^{2}\left(\vec{y}_{\mathrm{ew}}, \vec{y}_{\mathrm{QCD}}\right)=\infty, \quad \text { otherwise }
\end{aligned}
$$

- Minimize χ^{2} scanning \vec{y}_{CD} by Montecarlo using flat PDFs
- Our error intervals: maximum spread of results resulting from Montecarlos

Red band Descotes-Genon et al. JHEP05(2013)137
Blue band this analysis

- Reminder: I don't believe my treatment of charm over $6 \mathrm{GeV}^{2}$!

The significance of the low $-q^{2}$ anomaly in our analysis

- We fit all the P_{i}^{\prime} observables in the bin $[1,6] \mathrm{GeV}^{2}$

- Marginalized χ^{2} and 1- σ intervals
- Red "marginalized" $\chi^{2}\left(\delta C_{9}\right)$
- Blue Idem. but $a_{V_{-}}=-0.056$ (-20\% p.c.)

The significance of the low- q^{2} anomaly in our analysis

- We fit all the P_{i}^{\prime} observables in the bin $[1,6] \mathrm{GeV}^{2}$

- Marginalized χ^{2} and 1- σ intervals
- Red "marginalized" $\chi^{2}\left(\delta C_{9}\right)$
- Blue Idem. but $a_{v_{-}}=-0.056$ (-20\% p.c.)
- The anomaly could be largely accommodated in the SM through p.c.'s

$$
H_{V}^{-} \sim\left\{C_{9}\left(V_{-}^{\mathrm{QCDf}}+a_{V_{-}}\right)-\frac{m_{B}^{2}}{q^{2}}\left[\frac{2 \hat{m}_{b}}{m_{B}} C_{7 \gamma} T_{-}^{\mathrm{QCD}}-16 \pi^{2} h_{-}\right]\right\}
$$

- Charm contribution in h_{λ} could also play a role

The significance of the low $-q^{2}$ anomaly in our analysis

- We fit all the P_{i}^{\prime} observables in the bin $[1,6] \mathrm{GeV}^{2}$

- Marginalized χ^{2} and 1- σ intervals
- Red "marginalized" $\chi^{2}\left(\delta C_{9}\right)$
- Blue Idem. but $a_{v_{-}}=-0.056$ (-20\% p.c.)
- Similar conclusions were drawn from a bayesian analysis

Beaujean et al. arXiv:1310.2478,JHEP1208(2012)030

- Global analysis of all $b \rightarrow s \ell \ell$ data
- Sizable power corrections (scale-factor method)

Suppression of H^{+}and new physics opportunities

- In the HQ/HE one finds that $H_{+}=\Lambda / m_{b}$ (for the \bar{B} decay)
- $V-A$ creates helicity left-handed (massless) s-quarks
- Perturbative QCD corrections can't change helicity

Burdman et al. PRD63(2001)113008, Bauer et al.PRD63(2001)114020, Jäger et al JHEP 1305 (2013) 043, Hambrock et al. PRD89(2014)074014
(1) This is realized in the form factors

$$
\begin{aligned}
T_{+}\left(q^{2}\right) & =\mathcal{O}\left(q^{2}\right) \times \mathcal{O}\left(\Lambda / m_{b}\right), \\
V_{+}\left(q^{2}\right) & =\mathcal{O}\left(\Lambda / m_{b}\right) .
\end{aligned}
$$

(2) But also on the potentially sizable long-distance $c \bar{c}$
(0) And also the long-distance light quark contributions $H_{V}^{+} \sim \mathcal{O}\left(\Lambda^{2} / m_{b}^{2}\right)$

Suppression of H^{+}and new physics opportunities

- In the $\mathrm{HQ} / \mathrm{HE}$ one finds that $H_{+}=\Lambda / m_{b}$ (for the \bar{B} decay)
- $V-A$ creates helicity left-handed (massless) s-quarks
- Perturbative QCD corrections can't change helicity

Burdman et al. PRD63(2001)113008, Bauer et al.PRD63(2001)114020, Jäger et al JHEP 1305 (2013) 043, Hambrock et al. PRD89(2014)074014
(1) This is realized in the form factors

$$
\begin{aligned}
T_{+}\left(q^{2}\right) & =\mathcal{O}\left(q^{2}\right) \times \mathcal{O}\left(\Lambda / m_{b}\right), \\
V_{+}\left(q^{2}\right) & =\mathcal{O}\left(\Lambda / m_{b}\right) .
\end{aligned}
$$

(2) But also on the potentially sizable long-distance $c \bar{c}$

- We found that in LCSRs $h_{+\mid c \bar{c}, \mathrm{LD}} \sim \mathcal{O}\left(\Lambda / m_{b}\right) h_{-\mid c \bar{c}, \mathrm{LD}}$

Suppression of H^{+}and new physics opportunities

- In the $\mathrm{HQ} / \mathrm{HE}$ one finds that $H_{+}=\Lambda / m_{b}$ (for the \bar{B} decay)
- $V-A$ creates helicity left-handed (massless) s-quarks
- Perturbative QCD corrections can't change helicity

Burdman et al. PRD63(2001)113008, Bauer et al.PRD63(2001)114020, Jäger et al JHEP 1305 (2013) 043, Hambrock et al. PRD89(2014)074014
(1) This is realized in the form factors

$$
\begin{aligned}
T_{+}\left(q^{2}\right) & =\mathcal{O}\left(q^{2}\right) \times \mathcal{O}\left(\Lambda / m_{b}\right), \\
V_{+}\left(q^{2}\right) & =\mathcal{O}\left(\Lambda / m_{b}\right) .
\end{aligned}
$$

(2) But also on the potentially sizable long-distance $c \bar{c}$

- We found that in LCSRs $h_{+\mid c \bar{c}, \mathrm{LD}} \sim \mathcal{O}\left(\Lambda / m_{b}\right) h_{-\mid c \bar{c}, \mathrm{LD}}$
(3) And also the long-distance light quark contributions $H_{v}^{+} \sim \mathcal{O}\left(\Lambda^{2} / m_{b}^{2}\right)$

Jäger et al JHEP 1305 (2013) 043

"Superclean" observables and C_{7}^{\prime}

- The observables I_{3} and l_{9} are proportional to

$$
I_{3} \propto \operatorname{Re}\left(H_{+}^{\vee} H_{-}^{\vee}\right) \propto \operatorname{Re}\left(C_{7} C_{7}^{\prime *}\right), \quad I_{9} \propto \operatorname{Im}\left(H_{+}^{\vee} H_{-}^{\vee}\right) \propto \operatorname{Im}\left(C_{7} C_{7}^{\prime *}\right),
$$

so they vanish unless $C_{7}^{\prime} \neq 0$!!

- To study the sensitivity take the "clean" versions P_{1} and $P_{3}^{C P}$ respectively
- BSM 1: Take $C_{7}^{\prime}=0.1 C_{7}^{\text {SM }}$ (left panel)
- BSM 2: Take $C_{7}^{\prime}=0.01 \times i \times C_{7}^{\text {SM }}$ (right panel)

Observables are very sensitive to BSMs contributions surfacing in C_{7}^{\prime} for $q^{2}<3 \mathrm{GeV}^{2}$

What about the high q^{2} region

- Especially suited for determining C_{9}
- Theoretical approach based on an HQET+OPE

Grinstein et al. PRD70(2004)114005, Bobeth et al. JHEP1007(2010)098, Beylich et al EPJC71(2011)1635

- FFs can be calculated in LQCD!!

- However: Duality violations to the OPE could be large!!

Kaonic mode

R. Zwicky's talk tomorrow

Conclusions

(1) The $B \rightarrow K^{*} \ell \ell$ decay is a very rich probe of $b \rightarrow s$ FCNCs
(2) There is a $\sim 4-\sigma$ tension between $1 \mathrm{fb}^{-1}$ data and some SM predictions

- New physics mechanisms invoquing C_{9} can solve the anomaly
(3) We adopt the Rfit philosophy for the treatment of hadronic uncertainties
- Our predictions reasonably agree with the SM
- Alternative explanation within the SM in terms of power corrections
(9) How do we make progress?
- More data (2 fb^{-1} on tape) and more finely binned!
- Better knowledge on power corrections LCSRs or within EFT?
(0) There are the Super-clean observables to access C_{7}^{\prime}

