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! Expt. ~i# events
' ; CDF 100 PRL106(2011)161801
BaBar 150 pross(2012)032012
Belle 200 PRL103(2009)171801
CMS 400 pLe727(2013)77
ATLAS 500 arxiv:1310.4213
LHCb 1000 (1 fb_1) JHEP 1308 (2013) 131
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The weak Hamiltonian for b — s transitions
@ In the SM we have

G
HWZTIQ: Z /\p C10f+CQOg+ Z CiO; s
p=u,c i=3,10
e . - "
07:4771_2mbSUHVPRF b,
Of = (Cb)v_a(3c)v-a, 03 = (Cib)v-a(5iCi)v-a,
O = S (3b)y-a(ll)v O1 = 52 (8b)v-a(ll)a

Buchalla el al.Rev.Mod.Phys.68(1996)1125

@ Info from DOFs at A ~ O(my ) stored in the Wilson coeffs. C;(1)’s

Table : Wilson coefficients of the SM at . = 4.8 GeV.

Ci Co (o Co Cio
-0.144 1.060 -0.305 4.24 -4312
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The weak Hamiltonian for b — s transitions

@ In the SM we have

G
HW: 7’2: Z )\p C1of+CZO§+ Z Ciof 9
p=u,c i=3,10
e . - v
07: TﬂmbSUMVPRF b7
(’)f = (E‘b)v_A(EC)V_A, Og = (éibj)V—A(éfCi)V—A’
Oy = C;:_n (éb)v_A(W)v, Ot = %(éb)V—A(W)A

Buchalla e/ al.Rev.Mod.Phys.68(1996)1125
@ Info from DOFs at A ~ O(my ) stored in the Wilson coeffs. Ci(1)’s
@ Physics BSM manifest at the operator level through. . .

» Different values of the Wilson coefficients C;*"™ = C?M + 6C;
» New operators absent or very suppressed in the SM

Chirally-flipped operators
Of = 325 ity S0, PLF*" b J
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A “clean” set of observables

@ One can use ratios of /s to reduce theoretical uncertainties

Kruger et al. PRD71(2005)094009

@ The P-basis is composed by the combinations

Descotes-Genon et al.JHEP1301(2013)048

_hk bk _ bk
P1 - 2/25’ P2 B 8123, P3 - 4"237
P/ _ /4 P/ _ /5 P/ _ I7
4 Vhshe’ * " 2/ hshe’ S 2V hshe
plus

, dr+df 1

M= %qz = 5 ((Bhe — ko) +2(3hs — b))

FL _ 3/10 - 1207

4T

@ They are defined such that “leading hadronic uncertainties” factor out
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The P§ anomaly at low g2 (1 fo~1)

PRL 111, 191801 (2013)

PHYSICAL REVIEW LETTERS

week ending
8 NOVEMBER 2013

Measurement of Form-Factor-Independent Observables in the Decay B® — K*'u*u~

R. Aaij et al.*

(LHCb Collaboration)

(Received 9 August 2013; published 4 November 2013)
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There are 2 more fb™—

! on tape!! )
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The P anomaly: New Physics?

@ It was noted that there is another tension in P, at low g2

@ The discrepancies can be solved by a sizable NPs contribution to Cg

Descotes-Genon et al. PRD88,074002,hep-ph 1311.3876
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The P anomaly: New Physics?

@ It was noted that there is another tension in P, at low ¢?
@ The discrepancies can be solved by a sizable NPs contribution to Cg

Descotes-Genon et al. PRD88,074002,hep-ph 1311.3876
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@ An independent analysis

Altmannshofer et al. Eur.Phys.J. C73 (2013) 2646

@ Confirmed the important role of Cq to explain the anomaly
@ High g2 analysis played an important role in revealing other sources of NPs
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The P anomaly: New Physics?

CERN COURIER

Nov 20, 2013

LHCb and theorists chart a course for discovery
1

SM arXiv:1303.5794

I sM arXiv:1212.2263
—4— LHCb 1fb7!

0_. — e — — — —

Jéger and JMC, JHEP 1305 (2013) 043

10 15 20
q*(GeV?/c") @ Larger SM uncertainties in the predictions

GOAL: Explain the anomalies largely by uncertain hadronic effects? )
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Br[1077]

4% [GeV?]

@ Large-recoil region (low ¢?)
> Heavy to collinear light quark = QCDf or SCET (power-corrections)
» Dominant effect of the photon pole

@ Charmonium region

» Dominated by long-distance (hadronic) effects
» Starting at the perturbative ¢ threshold g2 ~ 6 — 7 GeV?

@ Low-recoil region (high ¢?)
» Heavy quark EFT + Operator Product Expansion (OPE) (duality violation)
» Dominated by semileptonic operators
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Connecting the theory to experiment: The helicity amplitudes

@ Helicity amplitudes A = +1,0

; 1/ ”75 2ﬁ7b = 2
HV()‘) - _’N{CQ VL)\ - ? [TBC”TM — 167 hk} },
_ ; Y . 2miimy ~ ms ~
Ha(A) = —iNCioVyx, Hp =iN 7 Cio (SL + e SH)

Cs is exposed to various hadronic backgrounds

@ Hadronic form factors

—img Vi (q?) = (M(\)|S¢°(\)Pyrb|B),
mMaTuma(9®) = €*(N)g"(M(\)|30u. PawyblB),
imeSim(q°) = (M(X=0)|3Pgub|B).

@ Form factors in the helicity basis

Bharucha it et al. JHEP 1009 (2010) 090, Jaeger and JMC JHEP1305(2013)043
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Connecting the theory to experiment: The helicity amplitudes

@ Helicity amplitudes A = +1,0

. & m% 2!?1,, = >
Hy(A) = —IN{CQ Vin — ? [TB Cry T\ — 167 h/\] }’
_ i \/ _ 2 m/ﬁ’lb ~ Mms =
Ha(A) = —IiNCio Vi, Hp = iN 7 Cio (SL + e SR)

Cy is exposed to various hadronic backgrounds

@ Non-local contribution

o [ @ty (RO () ) By,

Especially sensitive to cc contributions!
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Form Factors at large recoil

@ Heavy-quark and large-recoil (K™) limit only 2 independent “soft form factors”
2E E
T+:V+—O, T_—V_—m785L7 TO—VO—S—Tng‘
Dugan et al. PLB255(1991)583, Charles et al. PRD60(1999)014001
@ The observable P
po b (Re[(Hy — Hy)Ha" + (Hy — H)HY']
2V=eske \ [(IHYJ2 + [HQI2)(HY 2 + [Hy 12 + [ H 2 + Hy [2)
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Form Factors at large recoil

@ Heavy-quark and large-recoil (K™) limit only 2 independent “soft form factors”
2E E
T+—V+—0, T_—V_—FsgL, TO—VO—S—Tng‘
Dugan et al. PLB255(1991)583, Charles et al. PRD60(1999)014001
@ The observable P
po b (Re[(Hy — Hy)Ha" + (Hy — H)HY']
2V=eske \ [(IHYJ2 + [HQI2)(HY 2 + [Hy 12 + [ H 2 + Hy [2)

@ Rationale behind P’ basis: Ignore in first app. «s corrections and hy
HY &, Hy &1, Hy ~0

, 2F2
F5 ~
me My«

F(g, C7,4, Cs, Cio)

F(?, C7,y, Cs, C10) hadronic independent at O(a2, (£)°)

as corrections can be computed to any order in QCDf or SCET

Beneke et al. NPB592(2001)3, NPB685(2004)249, Bauer et al. PRD63(2001)114020

J. Martin Camalich (UCSD) B — K*¢te— June 19, 2014 10/19




Agnostic approach to power corrections (%)

@ We fix £ (0) using theoretical predictions

€.1(0) = T1(0) = 0.30(1),

@ Parametrize

0.5
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@ Light-cone SRs (Ball&Zwicky’05, Khodjamirian et al.’10)
@ QCD SRs (Colangelo et al.’96)
@ Dyson-Schwinger (Ivanov et al.’07)

J. Martin Camalich (UCSD) B — K*¢te—

As(0) = 0.09(2)
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J. Martin Camalich (UCSD) B — K*¢te—

Agnostic approach to power corrections (%)
@ We fix £(0) using theoretical predictions

£.(0) = T4(0) = 0.30(1), €1(0) = zzg Ao(0) = 0.09(2)

@ Parametrize

Fret — vap 1 b
ar Fmg

V- V. T T, Vo To
|almx | 0.027 0.008 0 0 0  0.050
blmx | 0.136 0.042 0.125 0.043 0.434 0.206

Consistent with power counting
Power corrections typically at 5% — 20% level J
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J. Martin Camalich (UCSD) B — K*¢te—

Agnostic approach to power corrections (%)

@ We fix £(0) using theoretical predictions

£.(0) = T+(0) = 0.30(1), £(0) =

@ Parametrize

2mK*

As(0) = 0.09(2)

Fret — vap 1 b L
ar Fmg

Vo A T T, Vo To
|alms | 0.027 0.008 0 0 0  0.050
|blmex | 0136 0.042 0.125 0.043 0.434 0.206

Power corrections suppressed by g/m?
Exact relations: 4(0) =0, 7,(0) =0 J

June 19, 2014
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Calculation of hy at low ¢
@ QCDf: Can be computed at leading-power A/E perturbatively in as
@ Power corrections from charm-loop weighted by large WCs

b

/ f\\g
9 00
%

@ Estimate of the effects obtained using non-local LCSRs
One can only trust up to 4-6 GeV?!!

Khodjamirian et al.JHEP1009(2010)089

@ Power corrections from light quarks CKM suppressed but “resonate”

At s [ axe S (O 00 1P) (P () P(0)) (K P Hi(0)]B)

PP’

Non-factorizable contributions to h, are A/mg wagerand smc'i2) )
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Obtention of error bands and comparison

@ A standard method for modelling power corrections
Egede et al. JHEP 1010 (2010) 056

Introduce a scale factor ¢; per amplitude, e.g.

o mr2m -
Hu(A) = G { Colln = 7 [T;C” Tun — 1672, }

@ Run a Montecarlo over ¢; and other uncertainties and quote 67% interval (th. 1-o)

@ Add oy, and o in quadratures and perform conventional x? analysis

Two possible issues
@ ¢ can miss interference between power corrections in FFs or hy

@ Is the treatment of theoretical error as experimental adequate?

J. Martin Camalich (UCSD) B — K*¢te— June 19, 2014 13/19



Obtention of error bands and comparison

J We use the Rfit method

Method employed by CKMfitter for treating
hadronic uncertainties

Hocker et al. EPJC21(2001)225

Xexp,i — th,i(yewa YQCD)

Oexp

2
XZ (Vew, Yacp) = ( ) . if  Yyacpi€Vi—oiVi+a] Vi

X2 (Vews Jacp) = 00, otherwise
@ Minimize x? scanning ¥ocp by Montecarlo using flat PDFs
@ Our error intervals: maximum spread of results resulting from Montecarlos
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Red band Descotes-Genon et al. JHEP05(2013)137
Blue band this analysis

@ Reminder: | don't believe my treatment of charm over 6 GeV?!
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The significance of the low-g? anomaly in our analysis

@ We fit all the P/ observables in the bin [1,6] GeV?

4

@ Marginalized x2 and 1-¢ intervals

-0.10-0.05 0.00 0.05 0.10
av. » Red “marginalized” x?(5Cy)
> Blue Idem. but a, = —0.056 (-20% p.c.)
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The significance of the low-g? anomaly in our analysis

@ We fit all the P/ observables in the bin [1,6] GeV?

4

@ Marginalized x2 and 1-¢ intervals

-0.10-0.05 0.00 0.05 0.10
av > Red “marginalized” x?(3Cy)
> Blue Idem. but a, = —0.056 (-20% p.c.)

@ The anomaly could be /largely accommodated in the SM through p.c.s

m3 2 M
Hy ~ {cg(v8CDf tvay )18 [—b Cry TEP — 1e7r2h_]}
@ L mg
@ Charm contribution in h, could also play a role
Lyon et al. arXiv:1406.0566, R. Zwicky talk tomorrow
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The significance of the low-g? anomaly in our analysis

@ We fit all the P/ observables in the bin [1,6] GeV?

0
-4 -3 -2 -1 0 1 2

569
@ Marginalized x2 and 1-¢ intervals
-0.10-0.05 0.00 0.05 0.10
ay. » Red “marginalized” x2(5Cy)

> Blue Idem. but ay_ = —0.056 (-20% p.c.)

@ Similar conclusions were drawn from a bayesian analysis
Beaujean et al. arXiv:1310.2478,JHEP1208(2012)030

» Global analysis of all b — s¢¢ data
» Sizable power corrections (scale-factor method)
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Suppression of H* and new physics opportunities

@ In the HQ/HE one finds that H;, = A/mj (for the B decay)

» V — Acreates helicity left-handed (massless) s-quarks
» Perturbative QCD corrections can’t change helicity

Burdman et al. PRD63(2001)113008, Bauer et a.PRD63(2001)114020, Jager et al JHEP 1305 (2013) 043, Hambrock et al. PRD89(2014)074014
@ This is realized in the form factors

T+(q2)
V+(q2)

O(g%) x O(A/my),

J. Martin Camalich (UCSD) B — K*¢te— June 19, 2014 16/19



Suppression of H* and new physics opportunities

@ In the HQ/HE one finds that H;, = A/mj (for the B decay)

» V — Acreates helicity left-handed (massless) s-quarks
» Perturbative QCD corrections can’t change helicity

Burdman et al. PRD63(2001)113008, Bauer et a.PRD63(2001)114020, Jager et al JHEP 1305 (2013) 043, Hambrock et al. PRD89(2014)074014
@ This is realized in the form factors
2 2
T () O(q7) x O(A/mp),

Vi(@®) = O\ m).

© But also on the potentially sizable long-distance cc
> We found that in LCSRs h. |z .p ~ O(A/mp)h_cz b
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Suppression of H* and new physics opportunities

@ In the HQ/HE one finds that H;, = A/mj (for the B decay)

» V — Acreates helicity left-handed (massless) s-quarks
» Perturbative QCD corrections can’t change helicity

Burdman et al. PRD63(2001)113008, Bauer et a.PRD63(2001)114020, Jager et al JHEP 1305 (2013) 043, Hambrock et al. PRD89(2014)074014
@ This is realized in the form factors
2
T (q)

V+(q2)

© But also on the potentially sizable long-distance cc
> We found that in LCSRs h. |z .p ~ O(A/mp)h_cz b

O(g°) x O(N/mp),

@ And also the long-distance light quark contributions H,, ~ O(A?/m3)

Jager et al JHEP 1305 (2013) 043
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“Superclean” observables and C;

04 0.02

0.3

020 by, . B B

Py ol ng b
e e ——— 0 —_——

== = ——

-0Ar T T -0.01

02 1 2 4 5 6 0 1 2 3 4 5 6

7 7
@ The observables /5 and Iy are proportional to
l x Re (HYH) o Re (C; CF) lo o Im (HYHY) oc1m (C7 G,

so they vanish unless C; # 0!!
@ To study the sensitivity take the “clean” versions P; and PS respectively

» BSM 1: Take C, = 0.1C5M (left panel)
» BSM 2: Take C} = 0.01 x i x C$M (right panel)

Observables are very sensitive to BSMs contributions surfacing in C, for g? < 3 GeV? J
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What about the high g2 region

@ Especially suited for determining Cq
@ Theoretical approach based on an HQET+OPE

Grinstein et al. PRD70(2004)114005, Bobeth et al. JHEP1007(2010)098, Beylich et al EPJC71(2011)1635

@ However: Duality violations to
the OPE could be large!!

@ FFs can be calculated in LQCD!!

5 T T
T T T T T
4t E g LHCb e data
> 150 total -
3 q § - ONresonant
- N interference
r b 100 - == resonances B
o > : background
1+ B % '
= 50 4
or 1 3
S
—1F 4 -
) P I s i
Y L L L L L L 3800 4000 4200 4400 4600
-3 -2 -1 0 1 2 3 o MeVic]
o (0
Kaonic mode

Horgan et al. PRL112(2014)212003

R. Zwicky’s talk tomorrow J
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Conclusions

@ The B — K*¢¢ decay is a very rich probe of b — s FCNCs

@ There is a ~4-0 tension between 1 fb~' data and some SM predictions
> New physics mechanisms invoquing Cgy can solve the anomaly

© We adopt the Rfit philosophy for the treatment of hadronic uncertainties

> Our predictions reasonably agree with the SM
» Alternative explanation within the SM in terms of power corrections

© How do we make progress?

» More data (2 fb—' on tape) and more finely binned!
» Better knowledge on power corrections LCSRs or within EFT?

@ There are the Super-clean observables to access C;

J. Martin Camalich (UCSD) B — K*¢te— June 19, 2014 19/19



	Introduction
	The low q2 anomaly and interpretations
	Connecting the theory with the experiment
	Statistical method and error analysis
	``Superclean'' observables and C7
	Conclusions

