Non-resonant $B \rightarrow K \pi l l$

based on works with Diganta Das, GH, Martin Jung, Alex Shires, DO-TH 14/10, arXiv 1406.XXXX [hep-ph]

Gudrun Hiller, Dortmund

Flavor physics program: Test the SM, explore its borders and the physics beyond!

FCNCs are ideally suited to do so.

3 fb⁻¹ at LHCb: about 3000 events for $B \to K^* \mu \mu$.

Allows precision physics, and angular analysis via $B \to K^*(\to K\pi)\mu\mu$ and $B_s \to \varphi(\to KK)\mu\mu$ alike.

Unprecendented event rates give new opportunities and new background e.g. other sources of $B \rightarrow K \pi \mu \mu$.

 $B \to K \pi \mu \mu$

Other sources of $B \to K \pi \mu \mu$:

- S-wave resonances: Becirevic et al, Egede et al, Descotes-Genon et al, this work

- P,D ... resonances this work

	J^P	mass [MeV]	width [MeV]	branching ratio to $ar{K}\pi$
κ	0^{+}	658	557	~ 100 % Descotes-Genon et al
$K^{*0}(892)$	1-	895.8	47.4	~ 100 %
$K^{*}(1410)$	1^{-}	1414	232	$\sim 7~\%$
$K_0^*(1430)$	0^+	1425	270	~ 100 %
$K_2^{*0}(1430)$	2^{+}	1432	109	~ 50 %
$K^{*}(1680)$	1-	1717	322	~ 39 %
$K_3^*(1780)$	3-	1776	159	~ 19 %

- non-resonant: infinite tower of ℓ -waves this work

– known as contribution to inclusive $B \rightarrow Xsll$ decays towards end point Buchalla, Isidori '98

 – can be treated within OPE at low recoil due to hard momentum exchange Buchalla, Isidori '98

- At $1/m_b$ a la Grinstein, Pirjol '04 employ Isgur-Wise relations this work, transversity amp's factorize at LO in $1/m_b$, corrections suppressed

$$H_{0,\parallel}^{L/R} = C_{-}^{L/R}(q^2) F_{0,\parallel}(q^2, p^2, \cos \vartheta_K)$$
(1)
$$H_{\perp}^{L/R} = C_{+}^{L/R}(q^2) F_{\perp}(q^2, p^2, \cos \vartheta_K)$$
(2)

 $C_{\pm}^{L/R}(q^2)$: short-distance, universal, as in $B \to K^{(*)}ll$ Bobeth,GH,van Dyk $F_i = F_i(q^2, p^2, \cos \vartheta_K)$ form factors

Non-resonant $B \rightarrow K\pi ll$ **short-distance structure**

Short-distance coefficients:

$$C_{\pm}^{L}(q^{2}) = C_{9}^{\text{eff}}(q^{2}) \pm C_{9}' - (C_{10} \pm C_{10}') + \kappa \frac{2m_{b}m_{B}}{q^{2}} (C_{7}^{\text{eff}} \pm C_{7}'), \qquad (3)$$

$$C_{\pm}^{R}(q^{2}) = C_{9}^{\text{eff}}(q^{2}) \pm C_{9}' + C_{10} \pm C_{10}' + \kappa \frac{2m_{b}m_{B}}{q^{2}} (C_{7}^{\text{eff}} \pm C_{7}'), \qquad (4)$$

Combinations which can be probed in non-resonant decays:

$$\rho_1^{\pm} = \frac{1}{2} (|C_{\pm}^R|^2 + |C_{\pm}^L|^2), \quad \delta\rho = \frac{1}{4} (|C_{-}^R|^2 - |C_{-}^L|^2), \quad \rho_2^{\pm} = \frac{1}{4} (C_{+}^R C_{-}^{R*} \mp C_{-}^L C_{+}^{L*}), \quad (5)$$

NEW to non-resonant decays (beyond $B \to K^{(*)}ll$): $\delta \rho, \rho_2^-$ this work

$$\delta\rho = \operatorname{Re}\left[\left(C_9^{\operatorname{eff}} - C_9' + \kappa \frac{2m_b m_B}{q^2} (C_7^{\operatorname{eff}} - C_7')\right) \left(C_{10} - C_{10}'\right)^*\right],\tag{6}$$

$$\operatorname{Re}\rho_{2}^{-} = \frac{1}{2} \left[\left| C_{10} \right|^{2} - \left| C_{10}^{\prime} \right|^{2} + \left| C_{9}^{\operatorname{eff}} + \kappa \frac{2m_{b}m_{B}}{q^{2}} C_{7}^{\operatorname{eff}} \right|^{2} - \left| C_{9}^{\prime} + \kappa \frac{2m_{b}m_{B}}{q^{2}} C_{7}^{\prime} \right|^{2} \right],$$

$$(7)$$

$$\mathrm{Im}\rho_{2}^{-} = \mathrm{Im}\left[C_{10}^{\prime}\left(C_{9}^{\mathrm{eff}} + \kappa \frac{2m_{b}m_{B}}{q^{2}}C_{7}^{\mathrm{eff}}\right)^{*} - C_{10}\left(C_{9}^{\prime} + \kappa \frac{2m_{b}m_{B}}{q^{2}}C_{7}^{\prime}\right)^{*}\right].$$
(8)

Non-resonant $B \rightarrow K \pi l l$ form factors

$$F_{0} = \frac{\mathcal{N}_{nr}}{2} \left[\lambda^{1/2} w_{+}(q^{2}, p^{2}, \cos \vartheta_{K}) + \frac{1}{p^{2}} \{ (m_{K}^{2} - m_{\pi}^{2}) \lambda^{1/2} - (m_{B}^{2} - q^{2} - p^{2}) \lambda_{p}^{1/2} \cos \vartheta_{K} \} w_{-}(q^{2}, p^{2}, \cos \vartheta_{K}) \right],$$

$$F_{\parallel} = \mathcal{N}_{nr} \sqrt{\lambda_{p} \frac{q^{2}}{p^{2}}} w_{-}(q^{2}, p^{2}, \cos \vartheta_{K}), \qquad F_{\perp} = \frac{\mathcal{N}_{nr}}{2} \sqrt{\lambda \lambda_{p} \frac{q^{2}}{p^{2}}} h(q^{2}, p^{2}, \cos \vartheta_{K}).$$
(9)

Need w_{\pm} , h; Dipole form factors w'_{\pm} , h' have been eliminated by EOM at $O(1/m_b)$.

$$\langle \bar{K}^{i}(p_{K})\pi^{j}(p_{\pi})|\bar{s}\gamma_{\mu}(1-\gamma_{5})b|\bar{B}(p_{B})\rangle = ic_{ij}\left[w_{+}p_{\mu} + w_{-}P_{\mu} + rq_{\mu} + ih\epsilon_{\mu\alpha\beta\gamma}p_{B}^{\alpha}p^{\beta}P^{\gamma}\right],$$
(10)

$$\bar{K}^{i}(p_{K})\pi^{j}(p_{\pi})|\bar{s}iq^{\nu}\sigma_{\mu\nu}(1+\gamma_{5})b|\bar{B}(p_{B})\rangle = -ic_{ij}m_{B}\left[w'_{+}p_{\mu} + w'_{-}P_{\mu} + r'q_{\mu} + ih'\varepsilon_{\mu\alpha\beta\gamma}p_{B}^{\alpha}p^{\beta}P^{\gamma}\right], \quad (11)$$

 w_{\pm}, h available from HH χ PT Lee, Liu, Wise, Burdman, Donoghue and later works, valid for soft K, π momenta in B cms. Form factors could be included by other means; desireable for control outside of $p^2 \leq 1 \text{ GeV}^2$. Ready for phenomenology! $B \to K \pi ll$ phase space at low recoil $\mathcal{O}(m_b^2) \sim q^2 \gtrsim 14 - 15 \,\text{GeV}^2$

in low recoil region \leftrightarrow small $p^2 \sim \mathcal{O}(1 \, \text{GeV}^2)$

The transversity amplitudes can be wave-expanded. In the OPE, this is equivalent for form factors:

$$F_{0} = \sum_{\ell=0} a_{0}^{\ell}(q^{2}, p^{2}) P_{\ell}^{m=0}(\cos\vartheta_{K}), \qquad F_{\parallel,\perp} = \sum_{\ell=1} a_{\parallel,\perp}^{\ell}(q^{2}, p^{2}) \frac{P_{\ell}^{m=1}(\cos\vartheta_{K})}{\sin\vartheta_{K}}$$

Useful for phenomenology including resonances and to understand endpoint relations. this work

Transversity amplitudes of weak decays $B \rightarrow K_J ll$ at endpoint are subjected to kinematic constraints (absence of direction) GH, Zwicky'13

$$H_0^{L/R} = 0 + \mathcal{O}\left(\sqrt{\lambda}\right), \qquad (J=0)$$

$$H_{\perp}^{L/R} = 0 + \mathcal{O}\left(\sqrt{\lambda}\right), \qquad H_{\parallel}^{L/R} = -\sqrt{2}H_0^{L/R} + \mathcal{O}(\lambda), \qquad (J=1) \qquad (12)$$

$$H_{0,\parallel,\perp}^{L/R} = 0 + \mathcal{O}\left(\lambda^{(J-1)/2}\right). \qquad (J \ge 2)$$

Endpoint of non-resonant decays at $\lambda_*(m_B^2, q^2, p^2) = 0$ is dominated by J = 1 amplitudes $F_{\perp,\parallel}$ (only ones non-vanishing in SM+SM' basis), which are related. Explicitly

$$\hat{a}_0^1 = \hat{a}_{\parallel}^1 = -\sqrt{\frac{q^2}{p^2}\lambda_p} w_{\perp} \bigg|_{\lambda = \lambda_p}$$

Non-resonant decays feature endpoint structure as J = 1 modes, however, in general at different q^2 .

Example: $F_L = 1/3$ etc. or isotropicity in lepton and kaon-angle distributions, but not the one in the angle between the two decay planes. this work

 $d\Gamma^5$ phase space can be deduced from K_{l4} .

$$d^{5}\Gamma = \frac{1}{2\pi} \left[\sum_{i} c_{i}(\vartheta_{\ell}, \varphi) I_{i}(q^{2}, p^{2}, \cos \vartheta_{K}) \right] dq^{2} dp^{2} d\cos \vartheta_{K} d\cos \vartheta_{\ell} d\varphi , \qquad (13)$$

$$I_{1} = \frac{1}{8} \left[|\mathcal{F}_{0}|^{2} \rho_{1}^{-} + \frac{3}{2} \sin^{2} \vartheta_{K} \{ |\mathcal{F}_{\parallel}|^{2} \rho_{1}^{-} + |\mathcal{F}_{\perp}|^{2} \rho_{1}^{+} \} \right] ,$$

$$I_{2} = -\frac{1}{8} \left[|\mathcal{F}_{0}|^{2} \rho_{1}^{-} - \frac{1}{2} \sin^{2} \vartheta_{K} \{ |\mathcal{F}_{\parallel}|^{2} \rho_{1}^{-} + |\mathcal{F}_{\perp}|^{2} \rho_{1}^{+} \} \right] ,$$

$$I_{3} = \frac{1}{8} \left[|\mathcal{F}_{\perp}|^{2} \rho_{1}^{+} - |\mathcal{F}_{\parallel}|^{2} \rho_{1}^{-} \right] \sin^{2} \vartheta_{K} ,$$

$$\dots \qquad (14)$$

$$I_{6} = - \left[Re(\mathcal{F}_{\parallel}\mathcal{F}_{\perp}^{*}) Re \rho_{2}^{+} + Im(\mathcal{F}_{\parallel}\mathcal{F}_{\perp}^{*}) Im \rho_{2}^{-} \right] \sin^{2} \vartheta_{K} ,$$

$$I_{7} = \delta \rho Im(\mathcal{F}_{0}\mathcal{F}_{\parallel}^{*}) \sin \vartheta_{K} ,$$

$$I_{8} = \frac{1}{2} \left[Re(\mathcal{F}_{0}\mathcal{F}_{\perp}^{*}) Im \rho_{2}^{+} - Im(\mathcal{F}_{0}\mathcal{F}_{\perp}^{*}) Re \rho_{2}^{-} \right] \sin^{2} \vartheta_{K} ,$$

$$I_{9} = \frac{1}{2} \left[Re(\mathcal{F}_{\perp}\mathcal{F}_{\parallel}^{*}) Im \rho_{2}^{+} + Im(\mathcal{F}_{\perp}\mathcal{F}_{\parallel}^{*}) Re \rho_{2}^{-} \right] \sin^{2} \vartheta_{K} ,$$

Framework allows to incorporate resonances via angular expansion!

 $B \rightarrow K^* \mu \mu$ cuts: solid: K^* -signal cuts; dashed $p_{min}^2 < p^2 < 1.44$: "total S+P" window

SM branching ratios w/o cuts

Brs few $\times 10^{-8}$; with signal cuts few percent BDG to $B \to K^* \mu \mu$ blue solid: $B \to K^* \mu \mu$ signal cut

F_L non-resonant

blue solid: $B \rightarrow K^* \mu \mu$ signal cut; green horizontal line: 1/3

Endpoint $B \to K^* \mu \mu$: $q^2 = 19.2 \text{ GeV}^2$, non-resonant endpoint: $q^2 = (m_B - p_{min}^2)^2$ (cut-dependent). – Universal structure of OPE allows via angular analysis to obtain short-distance and form factor-free observables as in $B \rightarrow K^{(*)}ll$. – Framework allows to include non-resonant and resonant decays simultaneously

$$\mathcal{F}_{0} \equiv \mathcal{F}_{0}(q^{2}, p^{2}, \cos\vartheta_{K}) = F_{0}(q^{2}, p^{2}, \cos\vartheta_{K}) + \sum_{R} P_{J_{R}}^{0}(\cos\vartheta_{K}) \cdot F_{0J_{R}}(q^{2}, p^{2}), \qquad (15)$$

$$\mathcal{F}_{i} \equiv \mathcal{F}_{i}(q^{2}, p^{2}, \cos\vartheta_{K}) = F_{i}(q^{2}, p^{2}, \cos\vartheta_{K}) + \sum_{R} \frac{P_{J_{R}}^{1}(\cos\vartheta_{K})}{\sin\vartheta_{K}} \cdot F_{iJ_{R}}(q^{2}, p^{2}), \quad i = \parallel, \perp .$$

- We can probe interference effects (relative strong phases), e;g. in ratios

$$\frac{J_{7c}}{J_6} = \frac{\operatorname{Im}(F_{0P}F_{\parallel P}^*)}{\operatorname{Re}(F_{\parallel P}F_{\perp P}^*)},$$
(16)

$$\frac{J_{8c}}{J_3} = 2 \frac{\operatorname{Im}(F_{0P}F_{\perp P}^*)}{|F_{\perp P}|^2 - |F_{\parallel P}|^2},$$
(17)

$$\frac{J_9}{J_3} = 2 \frac{\operatorname{Im}(F_{\perp P} F_{\parallel P}^*)}{|F_{\perp P}|^2 - |F_{\parallel P}|^2} \,. \tag{18}$$

which can be at 0.1 level for maximal phase between non-resonant and K^* .

– With non-zero phases there are contributions to $B \rightarrow K^*ll$ null tests, e.g. J_7

$$\tilde{J}_{7c}^{\rm SM}(q^2) = \int dp^2 J_{7c}^{\rm SM} = -\rho_2^{\rm SM} \int dp^2 Im(F_{0P}F_{\parallel P}^*)$$
(19)

which can be at the 5 percent level compared to the $B \rightarrow K^* ll$ rate.

blue solid: $B \rightarrow K^* \mu \mu$ signal cut rirght plot: S-wave from Becirevic Tayduganov line shape

$$BW_S(p^2) = \mathcal{N}_S\left[\frac{-g_\kappa}{(m_\kappa - i\Gamma_\kappa/2)^2 - p^2} + \frac{1}{(m_{K_0^*} - i\Gamma_{K_0^*}/2)^2 - p^2}\right]$$

with $|g_{\kappa}|$ within 0 and 0.2 and $argg_{\kappa}$ within $\pi/2$ (largerst effect) and π .

Conclusions

–Non-resonant decays provide a background to important signal modes $B \to K^*(\to K\pi)\mu\mu$ and $B_s \to \varphi(\to KK)\mu\mu$. We present distributions for low recoil.

– SM branching ratios are at few 10^{-8} ; contributions can be much suppressed by cuts around the K^* and notably, the narrow φ .

– It would be useful to have $B \rightarrow K\pi$ form factors available by other means (lattice QCD).

We find that the dominant background is non-resonant.
 Nonresonant distributions helpful in modelling background.

– Further applications on extracting strong phase, pollution to the angular coefficients in the $B \rightarrow K^*ll$ analysis.

– More opportunitiies awaiting $B \rightarrow K \pi \mu \mu$ –STAY TUNED

$$\frac{d^{5}\Gamma(S+P+D)}{dq^{2}dp^{2}d\cos\vartheta_{K}d\cos\vartheta_{\ell}d\varphi} = \frac{1}{2\pi} \left[\sum_{i=1,2} c_{i} \left(J_{icc}\cos^{2}\vartheta_{K} + J_{iss}\sin^{2}\vartheta_{K} + J_{ic}\cos\vartheta_{K} + J_{ic}\cos\vartheta_{K} + J_{issc}\sin^{2}\vartheta_{K}\cos^{2}\vartheta_{K} \right) + \sum_{i=3,6,9} c_{i} \left(J_{icc}\cos^{2}\vartheta_{K} + J_{i} + J_{ic}\cos\vartheta_{K} \right)\sin^{2}\vartheta_{K} + \sum_{i=4,5,7,8} c_{i} \left(J_{icc}\cos^{2}\vartheta_{K} + J_{iss}\sin^{2}\vartheta_{K} + J_{ic}\cos\vartheta_{K} + J_{issc}\sin^{2}\vartheta_{K}\cos\vartheta_{K} \right)\sin\vartheta_{K} \right]. \quad (20)$$

For pure *P*- wave, only the coefficients $J_{iss,icc}$, i = 1, 2 and J_i , i = 3, 6, 9 and J_{ic} for i = 4, 5, 7, 8 remain.

E.G.
$$J_{7c} = -\delta\rho Im(3F_{0D}F^*_{\parallel D} + 3F_{0S}F^*_{\parallel D} + F_{0P}F^*_{\parallel P})$$