Lepton mixing from generalized CP and Delta(96) family symmetry

Gui-Jun Ding

Department of Modern Physics, University of Science and Technology of China

Based on arXiv:1403.5846[hep-ph], Phys. Rev. D89 (2014) 093020

In collaboration with Stephen F. King

FLASY2014, June 19th, 2014, Brighton

- (2) $\Delta(96)$ and generalized CP
- 3 Predictions for lepton flavor mixing in $\Delta(96)$ and generalized CP

Neutrino mixing: what we know and don't know

(Taken from NuFIT, JHEP 1212:123,2012.)

	Free Fluxes + RSBL		Huber Fluxes, no RSBL	
	bfp ±1σ	3σ range	bfp ±1σ	3σ range
$\sin^2 \theta_{12}$	$0.302^{+0.013}_{-0.012}$	$0.267 \rightarrow 0.344$	$0.311^{+0.013}_{-0.013}$	$0.273 \rightarrow 0.354$
$\theta_{12}/^{\circ}$	33.36 ^{+0.81} -0.78	$31.09 \rightarrow 35.89$	$33.87^{+0.82}_{-0.80}$	$31.52 \rightarrow 36.49$
$\frac{\sin^2\theta_{23}}{\theta_{23}/^\circ}$	$\begin{array}{c} 0.413\substack{+0.037\\-0.025}\oplus 0.594\substack{+0.021\\-0.022}\\ 40.0\substack{+2.1\\-1.5}\oplus 50.4\substack{+1.3\\-1.3}\end{array}$	$\begin{array}{c} 0.342 \rightarrow 0.667 \\ 35.8 \rightarrow 54.8 \end{array}$	$\begin{array}{c} 0.416^{+0.036}_{-0.029} \oplus 0.600^{+0.019}_{-0.026} \\ 40.1^{+2.1}_{-1.6} \oplus 50.7^{+1.2}_{-1.5} \end{array}$	$\begin{array}{c} 0.341 \rightarrow 0.670 \\ 35.7 \rightarrow 55.0 \end{array}$
sin ² Ata	0.0227+0.0023	$0.0156 \rightarrow 0.0299$	$0.0255^{+0.0024}$	$0.0181 \rightarrow 0.0327$
$\theta_{13}/^{\circ}$	$8.66^{+0.44}_{-0.46}$	$7.19 \rightarrow 9.96$	$9.20^{+0.41}_{-0.45}$	$7.73 \rightarrow 10.42$
$\delta_{CP}/^{\circ}$	300^{+66}_{-138}	0 ightarrow 360	298^{+59}_{-145}	$0 \rightarrow 360$
$\frac{\Delta m^2_{21}}{10^{-5}~{\rm eV}^2}$	$7.50^{+0.18}_{-0.19}$	$7.00 \rightarrow 8.09$	$7.51\substack{+0.21 \\ -0.15}$	$7.04 \rightarrow 8.12$
$\frac{\Delta m^2_{31}}{10^{-3}~{\rm eV}^2}~{\rm (N)}$	$+2.473\substack{+0.070\\-0.067}$	$+2.276 \rightarrow +2.695$	$+2.489\substack{+0.055\\-0.051}$	$+2.294 \rightarrow +2.715$
$\frac{\Delta m^2_{32}}{10^{-3}~{\rm eV}^2}~{\rm (I)}$	$-2.427^{+0.042}_{-0.065}$	$-2.649 \rightarrow -2.242$	$-2.468\substack{+0.073\\-0.065}$	-2.678 ightarrow -2.252

Neutrino mixing: what we know and don't know

(Taken from NuFIT, JHEP 1212:123,2012.)

	Free Fluxes + RSBL		Huber Fluxes, no RSBL	
	bfp ±1σ	3σ range	bfp ±1σ	3σ range
$\sin^2\theta_{12}$	$0.302\substack{+0.013\\-0.012}$	$0.267 \rightarrow 0.344$	$0.311\substack{+0.013\\-0.013}$	$0.273 \rightarrow 0.354$
$\theta_{12}/^{\circ}$	$33.36^{+0.81}_{-0.78}$	$31.09 \rightarrow 35.89$	$33.87^{+0.82}_{-0.80}$	$31.52 \rightarrow 36.49$
$\sin^2 \theta_{23}$	$0.413^{+0.037}_{-0.025} \oplus 0.594^{+0.021}_{-0.022}$	$0.342 \rightarrow 0.667$	$0.416^{+0.036}_{-0.029} \oplus 0.600^{+0.019}_{-0.026}$	0.341 ightarrow 0.670
$\theta_{23}/*$	$40.0^{+1.5}_{-1.5} \oplus 50.4^{+1.3}_{-1.3}$	$35.8 \rightarrow 54.8$	$40.1 - 1.6 \oplus 50.7 - 1.5$	$35.7 \rightarrow 55.0$
$\sin^2\theta_{13}$	$0.0227^{+0.0023}_{-0.0024}$	$0.0156 \rightarrow 0.0299$	$0.0255^{+0.0024}_{-0.0024}$	$0.0181 \rightarrow 0.0327$
$\theta_{13}/^{\circ}$	8.66+0.44	7.19 ightarrow 9.96	$9.20^{+0.41}_{-0.45}$	$7.73 \rightarrow 10.42$
$\delta_{CP}/^{\circ}$	300^{+66}_{-138}	0 ightarrow 360	298^{+59}_{-145}	0 ightarrow 360
$\frac{\Delta m^2_{21}}{10^{-5}~{\rm eV}^2}$	$7.50^{+0.18}_{-0.19}$	$7.00 \rightarrow 8.09$	$7.51_{-0.15}^{+0.21}$	$7.04 \rightarrow 8.12$
$\frac{\Delta m^2_{31}}{10^{-3}~{\rm eV}^2}~{\rm (N)}$	$+2.473\substack{+0.070\\-0.067}$	$+2.276 \rightarrow +2.695$	$+2.489\substack{+0.055\\-0.051}$	$+2.294 \rightarrow +2.715$
$\frac{\Delta m^2_{32}}{10^{-3}~{\rm eV}^2}~{\rm (I)}$	$-2.427\substack{+0.042\\-0.065}$	-2.649 ightarrow -2.242	$-2.468\substack{+0.073\\-0.065}$	-2.678 ightarrow -2.252

Unknown quantities: (1) octant of θ_{23} (2) Majorana CP phases: α_{21} and α_{31} (3) absolute neutrino masses and their order.

The philosophy of Family symmetry and Generalized CP symmetry

• Lepton mixing arises from the mismatch between the remnant symmetries in the neutrino and the charged lepton sectors.

The philosophy of Family symmetry and Generalized CP symmetry

- Lepton mixing arises from the mismatch between the remnant symmetries in the neutrino and the charged lepton sectors.
- Dirac CP would be generally conserved and Majorana CP phases are not constrained if only family symmetry is imposed.

Under the flavour symmetry G_f

$$\varphi(x) \xrightarrow{G_f} \rho(g)\varphi(x), \qquad g \in G_f$$

Under the flavour symmetry G_f

$$\varphi(x) \xrightarrow{G_f} \rho(g)\varphi(x), \qquad g \in G_f$$

Under the generalized CP symmetry H_{CP}

$$\varphi(x) \xrightarrow{CP} X \varphi^*(x'), \qquad X \in H_{CP},$$

with $x' = (t, -\mathbf{x})$, *X* is a unitary matrix.

Under the flavour symmetry G_f

$$\varphi(x) \xrightarrow{G_f} \rho(g)\varphi(x), \qquad g \in G_f$$

Under the generalized CP symmetry H_{CP}

$$\phi(x) \xrightarrow{CP} X \phi^*(x'), \qquad X \in H_{CP}$$

with $x' = (t, -\mathbf{x})$, *X* is a unitary matrix.

Gui-Jun Ding (USTC)

Under the flavour symmetry G_f

$$\varphi(x) \xrightarrow{G_f} \rho(g)\varphi(x), \qquad g \in G_f$$

Under the generalized CP symmetry H_{CP}

$$\phi(x) \xrightarrow{CP} X \phi^*(x'), \qquad X \in H_{CP},$$

with $x' = (t, -\mathbf{x})$, *X* is a unitary matrix.

Consistency equation:

$$X\rho^*(g)X^{-1}=\rho(g'), \quad g,g'\in G_f.$$

Lepton mixing from remnant symmetries

Neutrino mass term: $\mathbf{v}_i^T C^{-1} (m_{\mathbf{v}})_{ij} \mathbf{v}_j$ Charged lepton mass term: $\bar{l}_{R,i} (m_l)_{ij} l_{L,j} + h.c.$

Lepton mixing from remnant symmetries

Neutrino mass term: $\mathbf{v}_i^T C^{-1} (m_{\mathbf{v}})_{ij} \mathbf{v}_j$ Charged lepton mass term: $\bar{l}_{R,i} (m_l)_{ij} l_{L,j} + h.c.$

• Invariant under remnant flavor symmetry

$$\begin{aligned} & \rho_{\mathbf{3}}^{T}(g_{\mathbf{v}_{i}})m_{\mathbf{v}}\rho_{\mathbf{3}}(g_{\mathbf{v}_{i}}) = m_{\mathbf{v}}, \quad g_{\mathbf{v}_{i}} \in G_{\mathbf{v}}, \\ & \rho_{\mathbf{3}}^{\dagger}(g_{l_{i}})m_{l}^{\dagger}m_{l}\rho_{\mathbf{3}}(g_{l_{i}}) = m_{l}^{\dagger}m_{l}, \quad g_{l_{i}} \in G_{l} \end{aligned}$$

Lepton mixing from remnant symmetries

Neutrino mass term: $\mathbf{v}_i^T C^{-1} (m_{\mathbf{v}})_{ij} \mathbf{v}_j$ Charged lepton mass term: $\bar{l}_{R,i} (m_l)_{ij} l_{L,j} + h.c.$

• Invariant under remnant flavor symmetry

$$\begin{aligned} & \mathbf{\rho}_{\mathbf{3}}^{T}(g_{\mathbf{v}_{i}})m_{\mathbf{v}}\mathbf{\rho}_{\mathbf{3}}(g_{\mathbf{v}_{i}}) = m_{\mathbf{v}}, \quad g_{\mathbf{v}_{i}} \in G_{\mathbf{v}}, \\ & \mathbf{\rho}_{\mathbf{3}}^{\dagger}(g_{l_{i}})m_{l}^{\dagger}m_{l}\mathbf{\rho}_{\mathbf{3}}(g_{l_{i}}) = m_{l}^{\dagger}m_{l}, \quad g_{l_{i}} \in G_{l} \end{aligned}$$

• Invariant under remnant CP symmetry

$$\begin{aligned} X_{\nu 3}^{T} m_{\nu} X_{\nu 3} &= m_{\nu}^{*}, & X_{\nu 3} \in H_{CP}^{\nu}, \\ X_{l 3}^{\dagger} m_{l}^{\dagger} m_{l} X_{l 3} &= (m_{l}^{\dagger} m_{l})^{*}, & X_{l 3} \in H_{CP}^{l}. \end{aligned}$$

Lepton mixing from remnant symmetries

Neutrino mass term: $\mathbf{v}_i^T C^{-1} (m_{\mathbf{v}})_{ij} \mathbf{v}_j$ Charged lepton mass term: $\bar{l}_{R,i} (m_l)_{ij} l_{L,j} + h.c.$

• Invariant under remnant flavor symmetry

$$\begin{aligned} & \mathbf{\rho}_{\mathbf{3}}^{T}(g_{\mathbf{v}_{i}})m_{\mathbf{v}}\mathbf{\rho}_{\mathbf{3}}(g_{\mathbf{v}_{i}}) = m_{\mathbf{v}}, \quad g_{\mathbf{v}_{i}} \in G_{\mathbf{v}}, \\ & \mathbf{\rho}_{\mathbf{3}}^{\dagger}(g_{l_{i}})m_{l}^{\dagger}m_{l}\mathbf{\rho}_{\mathbf{3}}(g_{l_{i}}) = m_{l}^{\dagger}m_{l}, \quad g_{l_{i}} \in G_{l} \end{aligned}$$

• Invariant under remnant CP symmetry

$$\begin{aligned} X_{\nu 3}^{T} m_{\nu} X_{\nu 3} &= m_{\nu}^{*}, & X_{\nu 3} \in H_{CP}^{\nu}, \\ X_{l 3}^{\dagger} m_{l}^{\dagger} m_{l} X_{l 3} &= (m_{l}^{\dagger} m_{l})^{*}, & X_{l 3} \in H_{CP}^{l}. \end{aligned}$$

• For
$$G'_{\mathsf{v}} = hG_{\mathsf{v}}h^{-1}, \ G'_{l} = hG_{l}h^{-1}$$

 $H_{CP}^{\mathsf{v}'} = \rho(h)H_{CP}^{\mathsf{v}}\rho^{T}(h), \ H_{CP}^{\mathsf{v}} = \rho(h)H_{CP}^{\mathsf{v}}\rho^{T}(h),$
 $m'_{\mathsf{v}} = \rho_{\mathsf{3}}^{*}(h)m_{\mathsf{v}}\rho_{\mathsf{3}}^{\dagger}(h), \ m'_{l}h''_{l} = \rho_{\mathsf{3}}(h)m_{l}h''_{l}m_{l}\rho_{\mathsf{3}}^{\dagger}(h)$

The same predictions for U_{PMNS} !

Group theory of $\Delta(96)$

Δ(96) is a non-abelian finite subgroup of SU(3) of order 96, it is isomorphic to (Z₄ × Z₄) ⋊ S₃:

$$S^{2} = T^{3} = U^{2} = (ST)^{3} = 1, SU = US$$

 $(TU)^{8} = 1, (TUT^{2}U)^{3} = 1, (UTSUT^{2}UT)^{2} = 1.$

Group theory of $\overline{\Delta(96)}$

Δ(96) is a non-abelian finite subgroup of SU(3) of order 96, it is isomorphic to (Z₄ × Z₄) ⋊ S₃:

$$S^2 = T^3 = U^2 = (ST)^3 = 1$$
, $SU = US$
 $(TU)^8 = 1$, $(TUT^2U)^3 = 1$, $(UTSUT^2UT)^2 = 1$.

Working basis → "CP" basis

Generators in triplet representation **3**: $\omega = e^{2\pi i/3}$

$$S = \frac{1}{3} \begin{pmatrix} -1 & 2 & 2 \\ 2 & -1 & 2 \\ 2 & 2 & -1 \end{pmatrix}, \quad T = \begin{pmatrix} \omega & 0 & 0 \\ 0 & \omega^2 & 0 \\ 0 & 0 & 1 \end{pmatrix},$$
$$U = \frac{1}{3} \begin{pmatrix} -1 - \sqrt{3} & -1 & -1 + \sqrt{3} \\ -1 & -1 + \sqrt{3} & -1 - \sqrt{3} \\ -1 + \sqrt{3} & -1 - \sqrt{3} & -1 \end{pmatrix}.$$

• Automorphism group of $\Delta(96)$

• Automorphism group of $\Delta(96)$

 $\begin{aligned} \mathbf{Z}(\Delta(96)) &\cong \mathbf{Z}_1, \quad \operatorname{Aut}(\Delta(96)) &\cong \Delta(96) \rtimes \mathbf{Z}_2, \\ \operatorname{Inn}(\Delta(96)) &\cong \Delta(96), \quad \operatorname{Out}(\Delta(96)) &\cong \mathbf{Z}_2 = \{id, \mathfrak{u}\}. \end{aligned}$

• Automorphism group of $\Delta(96)$

$$Z(\Delta(96)) \cong Z_1, \quad \operatorname{Aut}(\Delta(96)) \cong \Delta(96) \rtimes Z_2,$$

$$\operatorname{Inn}(\Delta(96)) \cong \Delta(96), \quad \operatorname{Out}(\Delta(96)) \cong Z_2 = \{id, \mathfrak{u}\}$$

$$S \stackrel{\mathfrak{u}}{\longrightarrow} S, \quad T \stackrel{\mathfrak{u}}{\longrightarrow} T^2, \quad U \stackrel{\mathfrak{u}}{\longrightarrow} U.$$

•

• Automorphism group of $\Delta(96)$

$$Z(\Delta(96)) \cong Z_1, \quad \operatorname{Aut}(\Delta(96)) \cong \Delta(96) \rtimes Z_2,$$

$$\operatorname{Inn}(\Delta(96)) \cong \Delta(96), \quad \operatorname{Out}(\Delta(96)) \cong Z_2 = \{id, \mathfrak{u}\}.$$

$$S \xrightarrow{\mathfrak{u}} S, \quad T \xrightarrow{\mathfrak{u}} T^2, \quad U \xrightarrow{\mathfrak{u}} U.$$

• Generalised CP consistent with $\Delta(96) \Leftarrow$ consistency equation

$$\left. \begin{array}{l} X(\mathfrak{u})\rho^*(S)X^{-1}(\mathfrak{u}) = \rho(\mathfrak{u}(S)) = \rho(S), \\ X(\mathfrak{u})\rho^*(T)X^{-1}(\mathfrak{u}) = \rho(\mathfrak{u}(T)) = \rho(T^2), \\ X(\mathfrak{u})\rho^*(U)X^{-1}(\mathfrak{u}) = \rho(\mathfrak{u}(U)) = \rho(U). \end{array} \right\}$$

• Automorphism group of $\Delta(96)$

$$Z(\Delta(96)) \cong Z_1, \quad \operatorname{Aut}(\Delta(96)) \cong \Delta(96) \rtimes Z_2,$$

$$\operatorname{Inn}(\Delta(96)) \cong \Delta(96), \quad \operatorname{Out}(\Delta(96)) \cong Z_2 = \{id, \mathfrak{u}\}.$$

$$S \stackrel{\mathfrak{u}}{\longrightarrow} S, \quad T \stackrel{\mathfrak{u}}{\longrightarrow} T^2, \quad U \stackrel{\mathfrak{u}}{\longrightarrow} U.$$

• Generalised CP consistent with $\Delta(96) \Leftarrow$ consistency equation

$$X(\mathfrak{u})\rho^*(S)X^{-1}(\mathfrak{u}) = \rho(\mathfrak{u}(S)) = \rho(S),$$

$$X(\mathfrak{u})\rho^*(T)X^{-1}(\mathfrak{u}) = \rho(\mathfrak{u}(T)) = \rho(T^2),$$

$$X(\mathfrak{u})\rho^*(U)X^{-1}(\mathfrak{u}) = \rho(\mathfrak{u}(U)) = \rho(U).$$

• Automorphism group of $\Delta(96)$

$$Z(\Delta(96)) \cong Z_1, \quad \operatorname{Aut}(\Delta(96)) \cong \Delta(96) \rtimes Z_2,$$

$$\operatorname{Inn}(\Delta(96)) \cong \Delta(96), \quad \operatorname{Out}(\Delta(96)) \cong Z_2 = \{id, \mathfrak{u}\}$$

$$S \stackrel{\mathfrak{u}}{\longrightarrow} S, \quad T \stackrel{\mathfrak{u}}{\longrightarrow} T^2, \quad U \stackrel{\mathfrak{u}}{\longrightarrow} U.$$

• Generalised CP consistent with $\Delta(96) \Leftarrow$ consistency equation

$$X(\mathfrak{u})\rho^*(S)X^{-1}(\mathfrak{u}) = \rho(\mathfrak{u}(S)) = \rho(S), X(\mathfrak{u})\rho^*(T)X^{-1}(\mathfrak{u}) = \rho(\mathfrak{u}(T)) = \rho(T^2), X(\mathfrak{u})\rho^*(U)X^{-1}(\mathfrak{u}) = \rho(\mathfrak{u}(U)) = \rho(U).$$

Including inner automorphism, the generalized CP transformation is

$$X = \rho(h), \quad h \in \Delta(96),$$

which is of the same form as flavor symmetry transformation.

• The left-handed leptons are assigned to be a faithful triplet 3;

- The left-handed leptons are assigned to be a faithful triplet 3;
- The remnant flavor symmetry G_l in the charged lepton sector is chosen to be abelian subgroup of Δ(96);

- The left-handed leptons are assigned to be a faithful triplet 3;
- The remnant flavor symmetry G_l in the charged lepton sector is chosen to be abelian subgroup of Δ(96);
- Light neutrinos are assumed to be Majorana particles:

- The left-handed leptons are assigned to be a faithful triplet 3;
- The remnant flavor symmetry G_l in the charged lepton sector is chosen to be abelian subgroup of Δ(96);
- Light neutrinos are assumed to be Majorana particles:
 - *G*_v = *K*₄ ≅ *Z*₂ × *Z*₂ ⇔ F. Feruglio et al, Nucl. Phys. B 858, 437 (2012); Gui-Jun Ding, Nucl.Phys. B862 (2012).

- The left-handed leptons are assigned to be a faithful triplet 3;
- The remnant flavor symmetry G_l in the charged lepton sector is chosen to be abelian subgroup of Δ(96);
- Light neutrinos are assumed to be Majorana particles:
 - G_v = K₄ ≅ Z₂ × Z₂ → F. Feruglio et al, Nucl. Phys. B 858, 437 (2012); Gui-Jun Ding, Nucl.Phys. B862 (2012).
 - $G_v = Z_2 \hookrightarrow$ Only one column of PMNS matrix can be fixed!

- The left-handed leptons are assigned to be a faithful triplet 3;
- The remnant flavor symmetry G_l in the charged lepton sector is chosen to be abelian subgroup of Δ(96);
- Light neutrinos are assumed to be Majorana particles:
 - $G_v = K_4 \cong Z_2 \times Z_2 \hookrightarrow$ F. Feruglio et al, Nucl. Phys. B 858, 437 (2012); Gui-Jun Ding, Nucl.Phys. B862 (2012).
 - $G_v = Z_2 \hookrightarrow$ Only one column of PMNS matrix can be fixed!

- The left-handed leptons are assigned to be a faithful triplet 3;
- The remnant flavor symmetry G_l in the charged lepton sector is chosen to be abelian subgroup of Δ(96);
- Light neutrinos are assumed to be Majorana particles:
 - G_v = K₄ ≅ Z₂ × Z₂ → F. Feruglio et al, Nucl. Phys. B 858, 437 (2012); Gui-Jun Ding, Nucl.Phys. B862 (2012).
 - $G_v = Z_2 \hookrightarrow$ Only one column of PMNS matrix can be fixed!

(1) U_{PMNS} is determined up to permutations of rows and columns. (2) Mixing angles and CP phases are predicted in terms of one parameter θ .

 \star 26 mixing textures are admittable! All mixing parameters depend on only one parameter θ .

 \star 26 mixing textures are admittable! All mixing parameters depend on only one parameter θ .

Scenario 1.1: $G_l = Z_3^T$, $G_v = Z_2^S$, $H_{CP}^v = \{1, \rho(S)\}$

$$U_{PMNS} = \frac{1}{\sqrt{3}} \begin{pmatrix} -\sqrt{2}\cos\left(\frac{\pi}{12} - \theta\right) & 1 & \sqrt{2}\sin\left(\frac{\pi}{12} - \theta\right) \\ \sqrt{2}\cos\left(\frac{\pi}{4} + \theta\right) & 1 & \sqrt{2}\sin\left(\frac{\pi}{4} + \theta\right) \\ \sqrt{2}\sin\left(\frac{\pi}{12} + \theta\right) & 1 & -\sqrt{2}\cos\left(\frac{\pi}{12} + \theta\right) \end{pmatrix} P_{\nu},$$

 \star 26 mixing textures are admittable! All mixing parameters depend on only one parameter θ .

Scenario 1.1: $G_l = Z_3^T$, $G_v = Z_2^S$, $H_{CP}^v = \{1, \rho(S)\}$

$$U_{PMNS} = \frac{1}{\sqrt{3}} \begin{pmatrix} -\sqrt{2}\cos\left(\frac{\pi}{12} - \theta\right) & 1 & \sqrt{2}\sin\left(\frac{\pi}{12} - \theta\right) \\ \sqrt{2}\cos\left(\frac{\pi}{4} + \theta\right) & 1 & \sqrt{2}\sin\left(\frac{\pi}{4} + \theta\right) \\ \sqrt{2}\sin\left(\frac{\pi}{12} + \theta\right) & 1 & -\sqrt{2}\cos\left(\frac{\pi}{12} + \theta\right) \end{pmatrix} P_{\nu},$$

Mixing parameters:

$$\sin^{2} \theta_{13} = \frac{1}{3} \left[1 - \cos\left(\frac{\pi}{6} - 2\theta\right) \right], \quad \sin^{2} \theta_{12} = \frac{1}{2 + \cos\left(\frac{\pi}{6} - 2\theta\right)},$$
$$\sin^{2} \theta_{23} = \frac{1 + \sin 2\theta}{2 + \cos\left(\frac{\pi}{6} - 2\theta\right)}, \quad \tan \delta_{CP} = \tan \alpha_{21} = \tan \alpha_{31} = 0.$$

 \star 26 mixing textures are admittable! All mixing parameters depend on only one parameter θ .

Scenario 1.1: $G_l = Z_3^T$, $G_v = Z_2^S$, $H_{CP}^v = \{1, \rho(S)\}$

$$U_{PMNS} = \frac{1}{\sqrt{3}} \begin{pmatrix} -\sqrt{2}\cos\left(\frac{\pi}{12} - \theta\right) & 1 & \sqrt{2}\sin\left(\frac{\pi}{12} - \theta\right) \\ \sqrt{2}\cos\left(\frac{\pi}{4} + \theta\right) & 1 & \sqrt{2}\sin\left(\frac{\pi}{4} + \theta\right) \\ \sqrt{2}\sin\left(\frac{\pi}{12} + \theta\right) & 1 & -\sqrt{2}\cos\left(\frac{\pi}{12} + \theta\right) \end{pmatrix} P_{\nu},$$

Mixing parameters:

$$\sin^2 \theta_{13} = \frac{1}{3} \left[1 - \cos\left(\frac{\pi}{6} - 2\theta\right) \right], \quad \sin^2 \theta_{12} = \frac{1}{2 + \cos\left(\frac{\pi}{6} - 2\theta\right)},$$
$$\sin^2 \theta_{23} = \frac{1 + \sin 2\theta}{2 + \cos\left(\frac{\pi}{6} - 2\theta\right)}, \quad \tan \delta_{CP} = \tan \alpha_{21} = \tan \alpha_{31} = 0.$$
$$\boxed{\text{CP is conserved!}}$$

 \star 26 mixing textures are admittable! All mixing parameters depend on only one parameter θ .

Scenario 1.1: $G_l = Z_3^T$, $G_v = Z_2^S$, $H_{CP}^v = \{1, \rho(S)\}$

$$U_{PMNS} = \frac{1}{\sqrt{3}} \begin{pmatrix} -\sqrt{2}\cos\left(\frac{\pi}{12} - \theta\right) & 1 & \sqrt{2}\sin\left(\frac{\pi}{12} - \theta\right) \\ \sqrt{2}\cos\left(\frac{\pi}{4} + \theta\right) & 1 & \sqrt{2}\sin\left(\frac{\pi}{4} + \theta\right) \\ \sqrt{2}\sin\left(\frac{\pi}{12} + \theta\right) & 1 & -\sqrt{2}\cos\left(\frac{\pi}{12} + \theta\right) \end{pmatrix} P_{\nu},$$

Mixing parameters:

$$\sin^2 \theta_{13} = \frac{1}{3} \left[1 - \cos\left(\frac{\pi}{6} - 2\theta\right) \right], \quad \sin^2 \theta_{12} = \frac{1}{2 + \cos\left(\frac{\pi}{6} - 2\theta\right)},$$
$$\sin^2 \theta_{23} = \frac{1 + \sin 2\theta}{2 + \cos\left(\frac{\pi}{6} - 2\theta\right)}, \quad \tan \delta_{CP} = \tan \alpha_{21} = \tan \alpha_{31} = 0.$$
$$\boxed{\text{CP is conserved!}}$$

Best fitting:

$$\begin{split} \theta_{\text{bf}} &\simeq 0.0798, \quad \sin^2\theta_{13}(\theta_{\text{bf}}) \simeq 0.0218, \quad \sin^2\theta_{12}(\theta_{\text{bf}}) \simeq 0.341, \\ \sin^2\theta_{23}(\theta_{\text{bf}}) &\simeq 0.395 \text{ or } 0.605, \quad \chi^2_{\text{min}} \simeq 9.548(9.303) \text{ for } \theta_{23} < (>)\pi/4 \,. \end{split}$$

Scenario 1.2: $G_l = Z_3^T$, $G_v = Z_2^S$, $H_{CP}^v = \left\{ \rho(UTSUT^2UT), \rho(UTUT^2UST) \right\}$

$$U_{PMNS} = \frac{1}{\sqrt{6}} \begin{pmatrix} 2i\cos\theta & \sqrt{2} & -2i\sin\theta \\ -\sqrt{3}\sin\theta - i\cos\theta & \sqrt{2} & -\sqrt{3}\cos\theta + i\sin\theta \\ \sqrt{3}\sin\theta - i\cos\theta & \sqrt{2} & \sqrt{3}\cos\theta + i\sin\theta \end{pmatrix}.$$

Scenario 1.2: $G_l = Z_3^T$, $G_v = Z_2^S$, $H_{CP}^v = \left\{ \rho(UTSUT^2UT), \rho(UTUT^2UST) \right\}$

$$U_{PMNS} = \frac{1}{\sqrt{6}} \begin{pmatrix} 2i\cos\theta & \sqrt{2} & -2i\sin\theta \\ -\sqrt{3}\sin\theta - i\cos\theta & \sqrt{2} & -\sqrt{3}\cos\theta + i\sin\theta \\ \sqrt{3}\sin\theta - i\cos\theta & \sqrt{2} & \sqrt{3}\cos\theta + i\sin\theta \end{pmatrix}.$$

Mixing parameters:

$$\sin^2 \theta_{13} = \frac{1}{3} (1 - \cos 2\theta), \quad \sin^2 \theta_{12} = \frac{1}{2 + \cos 2\theta}, \quad \sin^2 \theta_{23} = \frac{1}{2}, |J_{CP}| = \frac{1}{6\sqrt{3}} |\sin 2\theta|, \quad \cot \delta_{CP} = \tan \alpha_{21} = \tan \alpha_{31} = 0.$$

Scenario 1.2: $G_l = Z_3^T$, $G_v = Z_2^S$, $H_{CP}^v = \{\rho(UTSUT^2UT), \rho(UTUT^2UST)\}$

$$U_{PMNS} = \frac{1}{\sqrt{6}} \begin{pmatrix} 2i\cos\theta & \sqrt{2} & -2i\sin\theta \\ -\sqrt{3}\sin\theta - i\cos\theta & \sqrt{2} & -\sqrt{3}\cos\theta + i\sin\theta \\ \sqrt{3}\sin\theta - i\cos\theta & \sqrt{2} & \sqrt{3}\cos\theta + i\sin\theta \end{pmatrix}.$$

Mixing parameters:

$$\sin^2 \theta_{13} = \frac{1}{3} (1 - \cos 2\theta), \quad \sin^2 \theta_{12} = \frac{1}{2 + \cos 2\theta}, \quad \sin^2 \theta_{23} = \frac{1}{2}, \\ |J_{CP}| = \frac{1}{6\sqrt{3}} |\sin 2\theta|, \quad \cot \delta_{CP} = \tan \alpha_{21} = \tan \alpha_{31} = 0.$$

Maximal Dirac CP violation and maximal atmospheric mixing!

Scenario 1.3: $G_l = Z_3^T$, $G_v = Z_2^S$, $H_{CP}^v = \left\{ \rho(T^2 U T^2), \rho(S T^2 U T^2) \right\}$

$$U_{PMNS} = \frac{1}{\sqrt{3}} \begin{pmatrix} e^{-\frac{i\pi}{8}}\cos\left(\frac{\pi}{24} - \theta\right) - e^{\frac{3i\pi}{8}}\cos\left(\frac{\pi}{24} + \theta\right) & 1 & -e^{-\frac{i\pi}{8}}\sin\left(\frac{\pi}{24} - \theta\right) - e^{\frac{3i\pi}{8}}\sin\left(\frac{\pi}{24} + \theta\right) \\ -e^{-\frac{i\pi}{8}}\sin\left(\frac{5\pi}{24} - \theta\right) + e^{\frac{3i\pi}{8}}\sin\left(\frac{5\pi}{24} + \theta\right) & 1 & -e^{-\frac{i\pi}{8}}\cos\left(\frac{5\pi}{24} - \theta\right) - e^{\frac{3i\pi}{8}}\cos\left(\frac{5\pi}{24} + \theta\right) \\ -e^{-\frac{i\pi}{8}}\sin\left(\frac{\pi}{8} + \theta\right) + e^{\frac{3i\pi}{8}}\sin\left(\frac{\pi}{8} - \theta\right) & 1 & e^{-\frac{i\pi}{8}}\cos\left(\frac{\pi}{8} + \theta\right) + e^{\frac{3i\pi}{8}}\cos\left(\frac{\pi}{8} - \theta\right) \end{pmatrix}$$

Scenario 1.3: $G_l = Z_3^T$, $G_v = Z_2^S$, $H_{CP}^v = \left\{ \rho(T^2 U T^2), \rho(S T^2 U T^2) \right\}$

$$U_{PMNS} = \frac{1}{\sqrt{3}} \begin{pmatrix} e^{-\frac{i\pi}{8}} \cos\left(\frac{\pi}{24} - \theta\right) - e^{\frac{3i\pi}{8}} \cos\left(\frac{\pi}{24} + \theta\right) & 1 & -e^{-\frac{i\pi}{8}} \sin\left(\frac{\pi}{24} - \theta\right) - e^{\frac{3i\pi}{8}} \sin\left(\frac{\pi}{24} + \theta\right) \\ -e^{-\frac{i\pi}{8}} \sin\left(\frac{5\pi}{24} - \theta\right) + e^{\frac{3i\pi}{8}} \sin\left(\frac{5\pi}{24} + \theta\right) & 1 & -e^{-\frac{i\pi}{8}} \cos\left(\frac{5\pi}{24} - \theta\right) - e^{\frac{3i\pi}{8}} \cos\left(\frac{5\pi}{24} + \theta\right) \\ -e^{-\frac{i\pi}{8}} \sin\left(\frac{\pi}{8} + \theta\right) + e^{\frac{3i\pi}{8}} \sin\left(\frac{\pi}{8} - \theta\right) & 1 & e^{-\frac{i\pi}{8}} \cos\left(\frac{\pi}{8} + \theta\right) + e^{\frac{3i\pi}{8}} \cos\left(\frac{\pi}{8} - \theta\right) \end{pmatrix}$$

Lepton mixing angles and CP phases :

$$\begin{aligned} \sin^2 \theta_{13} &= \frac{1}{3} - \frac{\sqrt{6} + \sqrt{2}}{12} \cos 2\theta, \quad \sin^2 \theta_{12} &= \frac{4}{8 + \left(\sqrt{6} + \sqrt{2}\right) \cos 2\theta}, \\ \sin^2 \theta_{23} &= \frac{4 + \left(\sqrt{6} - \sqrt{2}\right) \cos 2\theta}{8 + \left(\sqrt{6} + \sqrt{2}\right) \cos 2\theta}, \quad |J_{CP}| &= \frac{1}{6\sqrt{3}} |\sin 2\theta|, \end{aligned}$$

$$\begin{split} \sin^2 \theta_{13} &= \frac{1}{3} - \frac{\sqrt{6} + \sqrt{2}}{12} \cos 2\theta, \quad \sin^2 \theta_{12} = \frac{4}{8 + \left(\sqrt{6} + \sqrt{2}\right) \cos 2\theta}, \\ \sin^2 \theta_{23} &= \frac{4 + \left(\sqrt{6} - \sqrt{2}\right) \cos 2\theta}{8 + \left(\sqrt{6} + \sqrt{2}\right) \cos 2\theta}, \quad |J_{CP}| = \frac{1}{6\sqrt{3}} |\sin 2\theta|, \\ |\tan \delta_{CP}| &= \left| \frac{4\sqrt{2} + \left(1 + \sqrt{3}\right) \cos 2\theta}{1 - \sqrt{3} - \sqrt{2} \cos 2\theta} \tan 2\theta \right|, \\ |\tan \alpha_{21}| &= \left| \frac{\sqrt{6} + \sqrt{2} + 4 \cos 2\theta + \left(\sqrt{6} - \sqrt{2}\right) \sin 2\theta}{\sqrt{6} + \sqrt{2} + 4 \cos 2\theta - \left(\sqrt{6} - \sqrt{2}\right) \sin 2\theta} \right|, \\ |\tan \alpha'_{31}| &= \left| \frac{4 \sin 2\theta}{2 - 3\sqrt{3} + \left(2 + \sqrt{3}\right) \cos 4\theta} \right|. \end{split}$$

$$\begin{split} \sin^{2}\theta_{13} &= \frac{1}{3} - \frac{\sqrt{6} + \sqrt{2}}{12} \cos 2\theta, \quad \sin^{2}\theta_{12} = \frac{4}{8 + (\sqrt{6} + \sqrt{2}) \cos 2\theta}, \\ \sin^{2}\theta_{23} &= \frac{4 + (\sqrt{6} - \sqrt{2}) \cos 2\theta}{8 + (\sqrt{6} + \sqrt{2}) \cos 2\theta}, \quad |J_{CP}| = \frac{1}{6\sqrt{3}} |\sin 2\theta|, \\ |\tan \delta_{CP}| &= \left| \frac{4\sqrt{2} + (1 + \sqrt{3}) \cos 2\theta}{1 - \sqrt{3} - \sqrt{2} \cos 2\theta} \tan 2\theta \right|, \\ |\tan \alpha_{21}| &= \left| \frac{\sqrt{6} + \sqrt{2} + 4 \cos 2\theta + (\sqrt{6} - \sqrt{2}) \sin 2\theta}{\sqrt{6} + \sqrt{2} + 4 \cos 2\theta - (\sqrt{6} - \sqrt{2}) \sin 2\theta} \right|, \\ \\ Both \text{ mixing angles and CP phases depend on } \theta. \\ |\tan \alpha'_{31}| &= \left| \frac{4 \sin 2\theta}{2 - 3\sqrt{3} + (2 + \sqrt{3}) \cos 4\theta} \right|. \end{split}$$

$$\begin{split} \sin^{2}\theta_{13} &= \frac{1}{3} - \frac{\sqrt{6} + \sqrt{2}}{12} \cos 2\theta, \quad \sin^{2}\theta_{12} &= \frac{4}{8 + \left(\sqrt{6} + \sqrt{2}\right) \cos 2\theta}, \\ \sin^{2}\theta_{23} &= \frac{4 + \left(\sqrt{6} - \sqrt{2}\right) \cos 2\theta}{8 + \left(\sqrt{6} + \sqrt{2}\right) \cos 2\theta}, \quad |J_{CP}| &= \frac{1}{6\sqrt{3}} |\sin 2\theta|, \\ |\tan \delta_{CP}| &= \left| \frac{4\sqrt{2} + \left(1 + \sqrt{3}\right) \cos 2\theta}{1 - \sqrt{3} - \sqrt{2} \cos 2\theta} \tan 2\theta \right|, \\ |\tan \alpha_{21}| &= \left| \frac{\sqrt{6} + \sqrt{2} + 4 \cos 2\theta + \left(\sqrt{6} - \sqrt{2}\right) \sin 2\theta}{\sqrt{6} + \sqrt{2} + 4 \cos 2\theta - \left(\sqrt{6} - \sqrt{2}\right) \sin 2\theta} \right|, \\ |\tan \alpha_{31}'| &= \left| \frac{4 \sin 2\theta}{2 - 3\sqrt{3} + \left(2 + \sqrt{3}\right) \cos 4\theta} \right|. \end{split}$$

Both mixing angles and CP phases depend on θ.
 This pattern can also be derived from Δ(48) → G.-J. Ding and Y.-L. Zhou, arXiv:1404.0592,JHEP 1406 (2014) 023.

$$\begin{split} \sin^{2}\theta_{13} &= \frac{1}{3} - \frac{\sqrt{6} + \sqrt{2}}{12} \cos 2\theta, \quad \sin^{2}\theta_{12} = \frac{4}{8 + (\sqrt{6} + \sqrt{2}) \cos 2\theta}, \\ \sin^{2}\theta_{23} &= \frac{4 + (\sqrt{6} - \sqrt{2}) \cos 2\theta}{8 + (\sqrt{6} + \sqrt{2}) \cos 2\theta}, \quad |J_{CP}| = \frac{1}{6\sqrt{3}} |\sin 2\theta|, \\ |\tan \delta_{CP}| &= \left| \frac{4\sqrt{2} + (1 + \sqrt{3}) \cos 2\theta}{1 - \sqrt{3} - \sqrt{2} \cos 2\theta} \tan 2\theta \right|, \\ |\tan \alpha_{21}| &= \left| \frac{\sqrt{6} + \sqrt{2} + 4 \cos 2\theta + (\sqrt{6} - \sqrt{2}) \sin 2\theta}{\sqrt{6} + \sqrt{2} + 4 \cos 2\theta - (\sqrt{6} - \sqrt{2}) \sin 2\theta} \right|, \\ |\tan \alpha'_{31}| &= \left| \frac{4 \sin 2\theta}{2 - 3\sqrt{3} + (2 + \sqrt{3}) \cos 4\theta} \right|. \end{split}$$

Best fitting:

S

$$\begin{split} \theta_{bf} &= \pm 0.130, \quad \chi^2_{min} = 9.124(9.838), \\ \sin^2\theta_{13}(\theta_{bf}) &= 0.0222, \quad \sin^2\theta_{12}(\theta_{bf}) = 0.341, \quad \sin^2\theta_{23}(\theta_{bf}) = 0.426(0.574), \\ &|\sin\delta_{CP}(\theta_{bf})| = 0.725, \quad |\sin\alpha_{21}(\theta_{bf})| = 0.682 \text{ or } 0.731, \quad |\sin\alpha_{31}'(\theta_{bf})| = 0.999. \end{split}$$

angles and CP

can also be

Correlations between different observables

Correlations between different observables

Scenario 2: $G_l = Z_3^T$, $G_v = Z_2^U$, $H_{CP}^v = \left\{ \rho(T^2 UTUT^2), \rho(UT^2 UTUT^2) \right\}$ $U_{PMNS} = \frac{1}{2\sqrt{3}} \begin{pmatrix} -1 - \sqrt{3} & (\sqrt{3} - 1)\sin\theta + 2e^{-\frac{i\pi}{4}}\cos\theta & (\sqrt{3} - 1)\cos\theta - 2e^{-\frac{i\pi}{4}}\sin\theta \\ 2 & 2\sin\theta + 2e^{-\frac{i\pi}{4}}\cos\theta & 2\cos\theta - 2e^{-\frac{i\pi}{4}}\sin\theta \\ \sqrt{3} - 1 & -(1 + \sqrt{3})\sin\theta + 2e^{-\frac{i\pi}{4}}\cos\theta & -(1 + \sqrt{3})\cos\theta - 2e^{-\frac{i\pi}{4}}\sin\theta \end{pmatrix}$.

Scenario 2:
$$G_l = Z_3^T$$
, $G_v = Z_2^U$, $H_{CP}^v = \left\{ \rho(T^2 UTUT^2), \rho(UT^2 UTUT^2) \right\}$
 $U_{PMNS} = \frac{1}{2\sqrt{3}} \begin{pmatrix} -1 - \sqrt{3} & (\sqrt{3} - 1)\sin\theta + 2e^{-\frac{i\pi}{4}}\cos\theta & (\sqrt{3} - 1)\cos\theta - 2e^{-\frac{i\pi}{4}}\sin\theta \\ 2 & 2\sin\theta + 2e^{-\frac{i\pi}{4}}\cos\theta & 2\cos\theta - 2e^{-\frac{i\pi}{4}}\sin\theta \\ \sqrt{3} - 1 & -(1 + \sqrt{3})\sin\theta + 2e^{-\frac{i\pi}{4}}\cos\theta & -(1 + \sqrt{3})\cos\theta - 2e^{-\frac{i\pi}{4}}\sin\theta \end{pmatrix}$

Mixing parameters:

$$\begin{split} \sin^2 \theta_{13} &= \frac{1}{12} \left[4 - \sqrt{3} - \sqrt{3} \cos 2\theta - \left(\sqrt{6} - \sqrt{2}\right) \sin 2\theta \right], \quad \sin^2 \theta_{12} = 1 - \frac{2 + \sqrt{3}}{6 \cos^2 \theta_{13}}, \\ \sin^2 \theta_{23} &= \frac{4 - 2\sqrt{2} \sin 2\theta}{8 + \sqrt{3} + \sqrt{3} \cos 2\theta + \left(\sqrt{6} - \sqrt{2}\right) \sin 2\theta}, \qquad |J_{CP}| = \frac{1}{12\sqrt{6}} |\sin 2\theta|, \end{split}$$

$$\begin{array}{l} \text{Scenario 2: } G_l = Z_3^T, \ G_{\nu} = Z_2^U, \ H_{CP}^{\nu} = \left\{ \rho(T^2 UT UT^2), \rho(UT^2 UT UT^2) \right\} \\ U_{PMNS} = \frac{1}{2\sqrt{3}} \begin{pmatrix} -1 - \sqrt{3} & \left(\sqrt{3} - 1\right)\sin\theta + 2e^{-\frac{i\pi}{4}}\cos\theta & \left(\sqrt{3} - 1\right)\cos\theta - 2e^{-\frac{i\pi}{4}}\sin\theta \\ 2 & 2\sin\theta + 2e^{-\frac{i\pi}{4}}\cos\theta & 2\cos\theta - 2e^{-\frac{i\pi}{4}}\sin\theta \\ \sqrt{3} - 1 & -\left(1 + \sqrt{3}\right)\sin\theta + 2e^{-\frac{i\pi}{4}}\cos\theta & -\left(1 + \sqrt{3}\right)\cos\theta - 2e^{-\frac{i\pi}{4}}\sin\theta \end{pmatrix} \end{aligned}$$

Mixing parameters:

$$\begin{split} \sin^2\theta_{13} &= \frac{1}{12} \left[4 - \sqrt{3} - \sqrt{3}\cos 2\theta - \left(\sqrt{6} - \sqrt{2}\right)\sin 2\theta \right], \quad \sin^2\theta_{12} = 1 - \frac{2 + \sqrt{3}}{6\cos^2\theta_{13}}, \\ \sin^2\theta_{23} &= \frac{4 - 2\sqrt{2}\sin 2\theta}{8 + \sqrt{3} + \sqrt{3}\cos 2\theta + \left(\sqrt{6} - \sqrt{2}\right)\sin 2\theta}, \qquad |J_{CP}| = \frac{1}{12\sqrt{6}} |\sin 2\theta|, \\ |\tan \delta_{CP}| &= \left| \frac{\left(6 - 2\sqrt{3}\right)(1 - \cos 4\theta) + \left(6\sqrt{2} + 16\sqrt{6}\right)\sin 2\theta + 3\sqrt{2}\sin 4\theta}{24 + 18\sqrt{3} + \left(24 - 8\sqrt{3}\right)\cos 2\theta - 6\sqrt{2}\sin 2\theta + 6\sqrt{3}\cos 4\theta - \left(15\sqrt{2} + 4\sqrt{6}\right)\sin 4\theta} \right|, \\ |\tan \alpha_{21}| &= \left| \frac{2\left(2 + \sqrt{3}\right)(1 + \cos 2\theta) + \left(\sqrt{6} + \sqrt{2}\right)\sin 2\theta}{1 - \cos 2\theta + \left(\sqrt{6} + \sqrt{2}\right)\sin 2\theta} \right|, \\ |\tan \alpha_{31}'| &= \left| \frac{2\left(2 + \sqrt{3}\right)(1 - \cos 2\theta) - \left(\sqrt{6} + \sqrt{2}\right)\sin 2\theta}{1 + \cos 2\theta - \left(\sqrt{6} + \sqrt{2}\right)\sin 2\theta} \right|. \end{split}$$

Scenario 2: $G_l = Z_3^T$, $G_v = Z_2^U$, $H_{CP}^v = \left\{ \rho(T^2 UTUT^2), \rho(UT^2 UTUT^2) \right\}$ $U_{PMNS} = \frac{1}{2\sqrt{3}} \begin{pmatrix} -1 - \sqrt{3} & (\sqrt{3} - 1)\sin\theta + 2e^{-\frac{i\pi}{4}}\cos\theta & (\sqrt{3} - 1)\cos\theta - 2e^{-\frac{i\pi}{4}}\sin\theta \\ 2 & 2\sin\theta + 2e^{-\frac{i\pi}{4}}\cos\theta & 2\cos\theta - 2e^{-\frac{i\pi}{4}}\sin\theta \\ \sqrt{3} - 1 & -(1 + \sqrt{3})\sin\theta + 2e^{-\frac{i\pi}{4}}\cos\theta & -(1 + \sqrt{3})\cos\theta - 2e^{-\frac{i\pi}{4}}\sin\theta \end{pmatrix}$.

Mixing parameters:

$$\begin{split} \sin^{2}\theta_{13} &= \frac{1}{12} \left[4 - \sqrt{3} - \sqrt{3}\cos 2\theta - \left(\sqrt{6} - \sqrt{2}\right)\sin 2\theta \right], \quad \sin^{2}\theta_{12} = 1 - \frac{2 + \sqrt{3}}{6\cos^{2}\theta_{13}}, \\ \sin^{2}\theta_{23} &= \frac{4 - 2\sqrt{2}\sin 2\theta}{8 + \sqrt{3} + \sqrt{3}\cos 2\theta + \left(\sqrt{6} - \sqrt{2}\right)\sin 2\theta}, \qquad |J_{CP}| = \frac{1}{12\sqrt{6}}|\sin 2\theta|, \\ |\tan \delta_{CP}| &= \left| \frac{\left(6 - 2\sqrt{3}\right)(1 - \cos 4\theta) + \left(6\sqrt{2} + 16\sqrt{6}\right)\sin 2\theta + 3\sqrt{2}\sin 4\theta}{24 + 18\sqrt{3} + \left(24 - 8\sqrt{3}\right)\cos 2\theta - 6\sqrt{2}\sin 2\theta + 6\sqrt{3}\cos 4\theta - \left(15\sqrt{2} + 4\sqrt{6}\right)\sin 4\theta} \right|, \\ |\tan \alpha_{21}| &= \left| \frac{2\left(2 + \sqrt{3}\right)(1 + \cos 2\theta) + \left(\sqrt{6} + \sqrt{2}\right)\sin 2\theta}{1 - \cos 2\theta + \left(\sqrt{6} + \sqrt{2}\right)\sin 2\theta} \right|, \\ |\tan \alpha_{31}'| &= \left| \frac{2\left(2 + \sqrt{3}\right)(1 - \cos 2\theta) - \left(\sqrt{6} + \sqrt{2}\right)\sin 2\theta}{1 + \cos 2\theta - \left(\sqrt{6} + \sqrt{2}\right)\sin 2\theta} \right|. \end{split}$$

Predictions for lepton flavor mixing in $\Delta(96)$ and generalized CP

 θ_{23} and δ_{CP} are maximal, and excellent agreement with experimental data can be achieved. \hookrightarrow C.-C.Li and G.-J.Ding, Nucl. Phys. B881, 206 (2014).

Scenario 3.2: $G_l = Z_3^T$, $G_v = Z_2^{UTUT^2UST}$, $H_{CP}^v = \left\{ \rho(T^2UTUT^2), \rho(UT^2ST) \right\}$

$$U_{PMNS} = \frac{1}{\sqrt{6}} \begin{pmatrix} 2 & \sqrt{2} e^{-\frac{i\pi}{4}} \cos\theta & \sqrt{2} e^{-\frac{i\pi}{4}} \sin\theta \\ -1 & \sqrt{3} \sin\theta + \sqrt{2} e^{-\frac{i\pi}{4}} \cos\theta & -\sqrt{3} \cos\theta + \sqrt{2} e^{-\frac{i\pi}{4}} \sin\theta \\ -1 & -\sqrt{3} \sin\theta + \sqrt{2} e^{-\frac{i\pi}{4}} \cos\theta & \sqrt{3} \cos\theta + \sqrt{2} e^{-\frac{i\pi}{4}} \sin\theta \end{pmatrix}$$

 $\begin{aligned} & \blacksquare \text{ Scenario 3.2: } G_l = Z_3^T, \ G_v = Z_2^{UTUT^2UST}, \ H_{CP}^v = \left\{ \rho(T^2UTUT^2), \rho(UT^2ST) \right\} \\ & U_{PMNS} = \frac{1}{\sqrt{6}} \begin{pmatrix} 2 & \sqrt{2} \ e^{-\frac{i\pi}{4}} \cos\theta & \sqrt{2} \ e^{-\frac{i\pi}{4}} \sin\theta \\ -1 & \sqrt{3} \ \sin\theta + \sqrt{2} \ e^{-\frac{i\pi}{4}} \cos\theta & -\sqrt{3} \ \cos\theta + \sqrt{2} \ e^{-\frac{i\pi}{4}} \sin\theta \\ -1 & -\sqrt{3} \ \sin\theta + \sqrt{2} \ e^{-\frac{i\pi}{4}} \cos\theta & \sqrt{3} \ \cos\theta + \sqrt{2} \ e^{-\frac{i\pi}{4}} \sin\theta \end{pmatrix}. \end{aligned}$

The lepton mixing parameters are

$$\sin^2 \theta_{13} = \frac{1}{6} (1 - \cos 2\theta), \quad \sin^2 \theta_{12} = \frac{1 + \cos 2\theta}{5 + \cos 2\theta}, \quad \sin^2 \theta_{23} = \frac{1}{2} - \frac{\sqrt{3} \sin 2\theta}{5 + \cos 2\theta},$$
$$|J_{CP}| = \frac{1}{12\sqrt{3}} |\sin 2\theta|, \quad |\tan \delta_{CP}| = \left| \frac{5 + \cos 2\theta}{1 + 5 \cos 2\theta} \right|, \quad \cot \alpha_{21} = \cot \alpha'_{31} = 0.$$

Scenario 3.2: $G_l = Z_3^T$, $G_v = Z_2^{UTUT^2UST}$, $H_{CP}^v = \left\{ \rho(T^2UTUT^2), \rho(UT^2ST) \right\}$ $U_{PMNS} = \frac{1}{\sqrt{\epsilon}} \begin{pmatrix} 2 & \sqrt{2} e^{-\frac{i\pi}{4}} \cos\theta & \sqrt{2} e^{-\frac{i\pi}{4}} \sin\theta \\ -1 & \sqrt{3} \sin\theta + \sqrt{2} e^{-\frac{i\pi}{4}} \cos\theta & -\sqrt{3} \cos\theta + \sqrt{2} e^{-\frac{i\pi}{4}} \sin\theta \end{pmatrix}$.

$$\sqrt{6} \begin{pmatrix} 1 & \sqrt{3} \sin\theta + \sqrt{2}e^{-i\frac{\pi}{4}}\cos\theta & \sqrt{3}\cos\theta + \sqrt{2}e^{-i\frac{\pi}{4}}\sin\theta \\ -1 & -\sqrt{3}\sin\theta + \sqrt{2}e^{-i\frac{\pi}{4}}\cos\theta & \sqrt{3}\cos\theta + \sqrt{2}e^{-i\frac{\pi}{4}}\sin\theta \end{pmatrix}$$

The lepton mixing parameters are

$$\sin^{2} \theta_{13} = \frac{1}{6} (1 - \cos 2\theta), \quad \sin^{2} \theta_{12} = \frac{1 + \cos 2\theta}{5 + \cos 2\theta}, \quad \sin^{2} \theta_{23} = \frac{1}{2} - \frac{\sqrt{3} \sin 2\theta}{5 + \cos 2\theta},$$
$$|J_{CP}| = \frac{1}{12\sqrt{3}} |\sin 2\theta|, \quad |\tan \delta_{CP}| = \left|\frac{5 + \cos 2\theta}{1 + 5 \cos 2\theta}\right|, \quad \cot \alpha_{21} = \cot \alpha'_{31} = 0.$$

Predictions for lepton flavor mixing in $\Delta(96)$ and generalized CP

Predictions for lepton flavor mixing in $\Delta(96)$ and generalized CP

Scenario 4: $G_l = Z_8^{UTS}, G_v = Z_2^U, H_{CP}^v = \{\rho(S), \rho(SU)\}$

$$U_{PMNS} = \frac{1}{2} \begin{pmatrix} -i\left(\sqrt{2}\cos\theta + \sin\theta\right) & 1 & -i\left(\cos\theta - \sqrt{2}\sin\theta\right) \\ i\sqrt{2}\sin\theta & \sqrt{2} & i\sqrt{2}\cos\theta \\ i\left(\sqrt{2}\cos\theta - \sin\theta\right) & 1 & -i\left(\cos\theta + \sqrt{2}\sin\theta\right) \end{pmatrix}$$

Predictions for lepton flavor mixing in $\Delta(96)$ and generalized CP

Scenario 4: $G_l = Z_8^{UTS}$, $G_v = Z_2^U$, $H_{CP}^v = \{\rho(S), \rho(SU)\}$

$$U_{PMNS} = \frac{1}{2} \begin{pmatrix} -i\left(\sqrt{2}\cos\theta + \sin\theta\right) & 1 & -i\left(\cos\theta - \sqrt{2}\sin\theta\right) \\ i\sqrt{2}\sin\theta & \sqrt{2} & i\sqrt{2}\cos\theta \\ i\left(\sqrt{2}\cos\theta - \sin\theta\right) & 1 & -i\left(\cos\theta + \sqrt{2}\sin\theta\right) \end{pmatrix}$$

Lepton mixing parameters:

$$\sin^{2}\theta_{13} = \frac{1}{8} \left(3 - \cos 2\theta - 2\sqrt{2}\sin 2\theta \right), \quad \sin^{2}\theta_{12} = \frac{2}{5 + \cos 2\theta + 2\sqrt{2}\sin 2\theta},$$
$$\sin^{2}\theta_{23} = \frac{2 + 2\cos 2\theta}{5 + \cos 2\theta + 2\sqrt{2}\sin 2\theta}, \quad \tan \delta_{CP} = \tan \alpha_{21} = \tan \alpha_{31} = 0.$$

Conclusions

• Combining the family symmetry and generalized CP symmetry together is a promising approach to understanding lepton mixing and CP violations.

Conclusions

- Combining the family symmetry and generalized CP symmetry together is a promising approach to understanding lepton mixing and CP violations.
- The allowed mixing patterns within $\Delta(96)$ and generalized CP are studied in a model-independent way. Non-regular CP phases $\delta_{CP} \neq 0, \pi, \pm \pi/2$ can be achieved.
Conclusions

- Combining the family symmetry and generalized CP symmetry together is a promising approach to understanding lepton mixing and CP violations.
- The allowed mixing patterns within $\Delta(96)$ and generalized CP are studied in a model-independent way. Non-regular CP phases $\delta_{CP} \neq 0, \pi, \pm \pi/2$ can be achieved.
- Theoretical predictions can be tested by near future neutrino oscillation experiments. It is intriguing to explore further CP relevant phenomena 0vββ, leptogenesis etc and extend the present scheme to quark sector.

Conclusions

- Combining the family symmetry and generalized CP symmetry together is a promising approach to understanding lepton mixing and CP violations.
- The allowed mixing patterns within $\Delta(96)$ and generalized CP are studied in a model-independent way. Non-regular CP phases $\delta_{CP} \neq 0, \pi, \pm \pi/2$ can be achieved.
- Theoretical predictions can be tested by near future neutrino oscillation experiments. It is intriguing to explore further CP relevant phenomena 0vββ, leptogenesis etc and extend the present scheme to quark sector.

Thank you for your attention!