GAUGE ANOMALY FREE U(1) AND SEESAW MODELS

DAVID EMMANUEL-COSTA

FLASY 2014 FRIDAY,20JUNE 2014 UNIVERSITY OF SUSSEX, BRIGHTON,U

OUTLINE

Motivation
 Extra U(1)_X gauge group
 Seesaw mechanisms: type-I and type-III
 Anomaly-free constraints
 Texture zeroes on the effective neutrino mass matrix
 Phenomenological constraints
 Conclusions

In collaboration with [work in progress]:

L. M. Cebola, R. González Felipe, Phys. Rev. **D** 88 (2013) 116008 E. T. Franco, R. González Felipe, Phys. Rev. **D** 79 (2009) 115001

Motivation

* 1998: Lepton Family Number Violation [Secular low violated]
 * Implementation of seesaw Type-I (ν_R) and Type-III (Σ)
 * Extending the Gauge Group:

 $SU(3)_C \otimes SU(2)_L \otimes U(1)_Y \otimes U(1)_X$

 $X \equiv a B - \sum_{i=1}^{n_G} b_i L_i$

with

[Ma, Roy, Sarkar]

★ Gauge anomaly cancellation \implies prediction of two zero textures (m_{ν}) ★ Minimal Higgs sector: doublet *H* (neutral) and singlet *S* (charged) ★ Richer Phenomenology:

- If kinematically accessible: detectable at LHC
- New gauge boson Z'
- Nonstandard neutrino interactions

Anomaly-free Constraints

[Gross, Jackiw Bouchiat, Illiopoulos, Meyer Georgi, Glashow]

$$\begin{aligned} A_{1} &= n_{G} \left(2 x_{q} - x_{u} - x_{d} \right) = 0 \\ A_{2} &= \frac{3n_{G}}{2} x_{q} + \frac{1}{2} \sum_{i=1}^{n_{G}} x_{\ell i} - 2 \sum_{i=1}^{n_{\Sigma}} x_{\sigma i} = 0 \\ A_{3} &= n_{G} \left(\frac{x_{q}}{6} - \frac{4x_{u}}{3} - \frac{x_{d}}{3} \right) + \sum_{i=1}^{n_{G}} \left(\frac{x_{\ell i}}{2} - x_{ei} \right) = 0 \\ A_{4} &= n_{G} \left(x_{q}^{2} - 2x_{u}^{2} + x_{d}^{2} \right) + \sum_{i=1}^{n_{G}} \left(-x_{\ell i}^{2} + x_{ei}^{2} \right) = 0 \\ A_{5} &= n_{G} \left(6 x_{q}^{3} - 3 x_{u}^{3} - 3 x_{d}^{3} \right) + \sum_{i=1}^{n_{G}} \left(2 x_{\ell i}^{3} - x_{ei}^{3} \right) - \sum_{i=1}^{n_{R}} x_{\nu i}^{3} - 3 \sum_{i=1}^{n_{\Sigma}} x_{\sigma i}^{3} = 0 \\ A_{6} &= n_{G} \left(6x_{q} - 3x_{u} - 3x_{d} \right) + \sum_{i=1}^{n_{G}} \left(2 x_{\ell i} - x_{ei} \right) - \sum_{i=1}^{n_{R}} x_{\nu i} - 3 \sum_{i=1}^{n_{\Sigma}} x_{\sigma i} = 0 \end{aligned}$$

Anomaly-free solutions

 $X \equiv a B - \sum_{i=1}^{n_G} b_i L_i$

Under the gauge group $U(1)_X$, the charge for the quarks q_L , u_R , d_R , is universal, $x_q = x_u = x_d = a/3$, while the charged leptons ℓ_{Li} , e_{Ri} have the family nonuniversal charge assignment $x_{\ell i} = x_{ei} = -b_i$, with all b_i different

$$\sum_{k\leq n_\Sigma}b_k=0$$

 $\sum_{i=1}^{n_G}b_i=\sum_{j\leq n_R}b_j=n_G a$
 $\sum_{i=1}^{n_G}b_i^3-\sum_{j\leq n_R}b_j^3-3\sum_{k\leq n_\Sigma}b_k^3=0$

0

Anomaly-free solutions

★ Minimal seesaw type I and/or type III with $n_R + n_{\Sigma} \le 4$ ★ Charged lepton mass diagonal $i \ne j \ne k$ and $b'_i \equiv b_i/a$ ★ Purely leptonic symmetry when a = 0

n_R	n_{Σ}	Anomaly constraints	Symmetry generator X		
2	0	$b_i + b_j = 3a, \ b_k = 0$	$B - 3L_j - b_i'(L_i - L_j)$		
14		$b_i+b_j=0,\ b_k=0$	$L_i - L_j$		
0	2	$b_i+b_j=0,\ b_k=0$	$L_i - L_j$		
2		$b_i + b_j = 3a, b_k = 0$	$B - 3L_j - b'_i(L_i - L_j)$		
		$b_i+b_j=0,\;b_k=0$	$L_i - L_j$		
1	2	$b_i + b_j = 0, \ b_k = 3a$	$B - 3L_k - b_i'(L_i - L_j)$		
		$b_i+b_j=0,\;b_k=0$	$L_i - L_j$		
3	0	$b_i + b_j + b_k = 3a$	$(B-L) + (1-b_i')(L_i-L_j) + (1-b_k')(L_k-L_j)$		
		$b_i + b_j + b_k = 0$	$-b_i'(L_i-L_k)-b_j'(L_j-L_k)$		
0	3	$b_i+b_j=0,\ b_k=0$	$L_i - L_j$		
3	1	$b_i + b_j = 3a, b_k = 0$	$B-3L_j-b_i'(L_i-L_j)$		
		$b_i+b_j=0,\ b_k=0$	$L_i - L_j$		
1	3	$b_i+b_j=0,\ b_k=0$	$L_i - L_j$		
2	2	$b_i+b_j=0,\;b_k=0$	$L_i - L_j$		

Yukawa interactions

 $\mathbf{Y}_{u} \overline{q_{L}} u_{R} \widetilde{H} + \mathbf{Y}_{d} \overline{q_{L}} d_{R} H + \mathbf{Y}_{e} \overline{\ell_{L}} e_{R} H + \mathbf{Y}_{\nu} \overline{\ell_{L}} \nu_{R} \widetilde{H}$ $+ rac{1}{2}\mathbf{m}_{R}
u_{R}^{T}C
u_{R} + \mathbf{Y}_{1}\,
u_{R}^{T}C
u_{R}S + \mathbf{Y}_{2}\,
u_{R}^{T}C
u_{R}S^{*}$ $+\frac{1}{2}\mathbf{m}_{\Sigma}\mathrm{Tr}\left(\Sigma^{T}C\Sigma\right)+\mathbf{Y}_{T}\overline{\ell}_{L}i\tau_{2}\Sigma H$ + $\mathbf{Y}_3 \operatorname{Tr} \left(\Sigma^T C \Sigma \right) S + \mathbf{Y}_4 \operatorname{Tr} \left(\Sigma^T C \Sigma \right) S^* + \text{H.c.}$ Seesaw type-I and type-II $\mathbf{m}_{
u} \simeq -\mathbf{m}_D \, \mathbf{M}_p^{-1} \, \mathbf{m}_D^T - \mathbf{m}_T \, \mathbf{M}_{
abla}^{-1} \, \mathbf{m}_T^T$

where

 $egin{aligned} \mathbf{m}_D &= \mathbf{Y}_
u \langle H
angle, \quad \mathbf{M}_R &= \mathbf{m}_R + 2 \mathbf{Y}_1 \langle S
angle + 2 \mathbf{Y}_2 \langle S^*
angle \ \mathbf{m}_T &= \mathbf{Y}_T \langle H
angle, \quad \mathbf{M}_\Sigma &= \mathbf{m}_\Sigma + 2 \mathbf{Y}_3 \langle S
angle + 2 \mathbf{Y}_4 \langle S^*
angle \end{aligned}$

Neutrino two-zero textures

[Frampton, Glashow, Marfatia]

 $egin{aligned} \mathcal{P}_1 &\equiv (\mathbf{A}_1, \mathbf{A}_2, \mathbf{B}_3, \mathbf{B}_4, \mathbf{D}_1, \mathbf{D}_2), \ \mathcal{P}_2 &\equiv (\mathbf{B}_1, \mathbf{B}_2, \mathbf{E}_3), \ \mathcal{P}_3 &\equiv (\mathbf{C}, \mathbf{E}_1, \mathbf{E}_2), \ \mathcal{P}_4 &\equiv (\mathbf{F}_1, \mathbf{F}_2, \mathbf{F}_3). \end{aligned}$

Two-zero textures compatible with data

 $\mathbf{A}_1: \left(egin{array}{ccccc} 0 & 0 & * \ 0 & * & * \ \end{array}
ight) \cdot \mathbf{A}_2: \left(egin{array}{ccccccccc} 0 & * & 0 \ * & * & * \ 0 & * & * \ \end{array}
ight)$ $\mathbf{B}_1: egin{pmatrix} st & st & 0 \ st & 0 & st \end{pmatrix} \quad \mathbf{B}_2: egin{pmatrix} st & 0 & st \ 0 & st & st \end{pmatrix} \quad \mathbf{B}_2: egin{pmatrix} st & 0 & st \ st & st & 0 \end{pmatrix}$ $\mathbf{B}_3: \begin{pmatrix} * & 0 & * \\ 0 & 0 & * \\ \vdots & \vdots & \vdots \end{pmatrix} \quad \mathbf{B}_4: \begin{pmatrix} * & * & 0 \\ * & * & * \\ 0 & \vdots & 0 \end{pmatrix}$ $\mathbf{C}: \begin{pmatrix} * & * & * \\ * & 0 & * \\ \vdots & \vdots & 0 \end{pmatrix}$

[Frampton, Glashow, Marfatia Z.-z. Xing W. Grimus, Ludl Ludl, S. Morisi, E. Peinado Meloni, Blankenburg Frigerio, Villanova del Moral Fritzsch, Xing, Zhou]

- m_{ℓ} is diagonal with proper ordering
- This textures are viable and imply correlations among the data

Viable type I (type III) two-zero textures

 \star Case: $n_R = 3$ $(n_\Sigma = 3)$ with \mathbf{m}_D (\mathbf{m}_T) diagonal

 \star All cases belong to the permutation set \mathcal{P}_1

★ Case: $n_R = 3$ ($n_\Sigma = 3$) with \mathbf{m}_D (\mathbf{m}_T) non-diagonal ★ All cases belong to the permutation set \mathcal{P}_1

11/21

 \star The cases with $n_R = 2~(n_\Sigma = 2)$ and $n_R = 3~(n_\Sigma = 3)$

★ The cases of type I/III mixed seesaw with $n_R = n_{\Sigma} = 2$ ★ \mathbf{m}_D and \mathbf{m}_T contain the maximum 4 zeroes elements

Anomaly-free and viable two-zero textures

Symmetry generator X	$ x_s $	\mathbf{M}_R	$\mathbf{m}_{ u}$
$B + L_e - L_\mu - 3L_\tau$	2	\mathbf{D}_2	
$B+3L_e-L_\mu-5L_\tau$	2		٨
$B + 3L_e - 6L_{\tau}$	3	$(\mathbf{M}_R)_{11} = (\mathbf{M}_R)_{23} = (\mathbf{M}_R)_{33} = 0$	Π1
$B + 9L_e - 3L_\mu - 9L_\tau$	6		the Area is
$B+L_e-3L_\mu-L_\tau$	2	\mathbf{D}_1	
$B+3L_e-5L_\mu-L_\tau$	2		•
$B+3L_e-6L_\mu$	3	$(\mathbf{M}_R)_{11} = (\mathbf{M}_R)_{22} = (\mathbf{M}_R)_{23} = 0$	A ₂
$B + 9L_e - 9L_\mu - 3L_\tau$	6		and the second
$B-L_e+L_\mu-3L_\tau$	2	\mathbf{B}_4	
$B-L_e+3L_\mu-5L_\tau$	2		D
$B+3L_{\mu}-6L_{ au}$	3	$(\mathbf{M}_R)_{13} = (\mathbf{M}_R)_{22} = (\mathbf{M}_R)_{33} = 0$	D 3
$B-3L_e+9L_{\mu}-9L_{\tau}$	6		
$B - L_e - 3L_\mu + L_\tau$	2	B ₃	-
$B-L_e-5L_\mu+3L_ au$	2		R
$B-6L_{\mu}+3L_{ au}$	3	$(\mathbf{M}_R)_{12} = (\mathbf{M}_R)_{22} = (\mathbf{M}_R)_{33} = 0$	₽4
$B - 3L_e - 9L_\mu + 9L_\tau$	6		

For a mixed type I/III seesaw scenario with $n_R = 3$ and $n_{\Sigma} = 1$ only the solutions with $|x_s| = 3$ remain viable

Phenomenology

 \star Minimal scalar content: a doublet H and a complex singlet S :

 $V = -m^2 H^{\dagger} H + \lambda (H^{\dagger} H)^2 - m_S^2 S^{\dagger} S + \lambda_S (S^{\dagger} S)^2 + \beta (S^{\dagger} S) (H^{\dagger} H)$

 \star Spontaneous breaking of the gauge group (v \simeq 246 GeV)

$$H = \begin{pmatrix} 0\\ \frac{h+v}{\sqrt{2}} \end{pmatrix} \qquad S = \frac{s+v}{\sqrt{2}}$$

with $m^2 > 0$ and $m_S^2 > 0$ \star For V to be positive-definitive $\lambda, \lambda_S > 0$ and $\beta^2 < 4\lambda\lambda_S$ \star Massive gauge bosons: W^{\pm}, Z and Z' \star The massive *h* and *s* mixes (limit $v_S \gg v$ and $\lambda_S v_S^2 \gg \lambda v^2$)

$$m_1^2\simeq 2\left(\lambda-rac{eta^2}{4\lambda_S}
ight)
u^2 \quad m_2^2\simeq 2\lambda_S\,
u_S^2 \quad heta\simeq rac{eta
u}{2\lambda_S\,
u_S}$$

 \star The mass of the new Z' gauge boson

 $m_{Z'}=|x_s|g_Xv_S|$

* An indirect constraint on $m_{Z'}$ from analyses of LEP2 precision electroweak data:

 $rac{m_{Z'}}{g_X} = |x_s| \ v_S \gtrsim 13.5 \ {
m TeV}$

★ Depending on the charge x_s , different lower bounds on the breaking scale of the $U(1)_X$ gauge symmetry are obtained are

 $|x_s|=2, \ 3, \ 6 \implies v_S \gtrsim 6.75 \ {
m TeV}, 4.5 \ {
m TeV}, 2.25 \ {
m TeV}$

 \star To put limits on the $m_{Z'}$ the gauge coupling strength must be known

 $g_X \sim 0.1 \implies m_{Z'} \gtrsim 1.4 \ {
m TeV}$

★ Could be probed through the search of dilepton Z' resonances at the final stage of the LHC, √s = 14 TeV TeV and L ≃ 100 fb⁻¹
 ★ pp collisions (ATLAS and CMS) at √s = 8 TeV and integrated luminosity of about 20 fb⁻¹ requires m_{Z'} > 3 TeV

16/21

Non Standard Interactions

[Wolfenstein]

 $\mathcal{L}_{
m NSI}\,=\,-\overline{2\sqrt{2}}\,G_F\,arepsilon_{lphaeta}^{f\!P}\,(ar{
u}_lpha\gamma_\mu L
u_eta)(ar{f}\gamma^\mu Pf)$

★ The dimensionless couplings $\varepsilon_{\alpha\beta}^{fP}$ encode the deviations from SI ★ If NSI are mediated by intermediate particles: $m_{\rm NSI} \sim 1$ (10) TeV

 $ert arepsilon ert lpha ert \sim m_W^2/m_{
m NSI}^2 \implies ert arepsilon ert \sim 10^{-2}\,(10^{-4})$

\star For the extra $U(1)_X$ model one has

$$rac{f^p}{lphaeta}\,=\,rac{
u^2}{2
u_S^2}rac{x_f\,x_{
u_lpha}}{x_s^2}\,\delta_{lphaeta}$$

★ Model-independent bounds

$$\begin{split} |\varepsilon_{ee}^{\oplus}| &< 4.2 \, |\varepsilon_{\mu\mu}^{\oplus}| < 0.068 \, |\varepsilon_{\tau\tau}^{\oplus}| < 21.0 \\ |\varepsilon_{ee}^{\odot}| &< 2.5 \, |\varepsilon_{\mu\mu}^{\odot}| < 0.046 \, |\varepsilon_{\tau\tau}^{\odot}| < 9.0 \end{split}$$

[Ohlsson]

Non Standard Interactions

Lower bounds: breaking scale v_S , Earth-like (v_S^{\oplus}) and solar-like (v_S^{\odot}) matter

$(x_e, x_\mu, x_ au)$	$ x_s $	v_S^{\oplus} [GeV]	v_S^{\odot} [GeV]
(1,-1,-3)	2	522	539
(3,-1,-5)	2	723	849
(3,0,-6)	3	106	133
(9, -3, -9)	6	692	837
(1,-3,-1)	2	905	934
(3, -5, -1)	2	1617	1898
(3,-6,0)	3	1181	1386
(9, -9, -3)	6	1198	1451
(-1, 1, -3)	2	522	539
$\left(-1,3,-5 ight)$	2	905	934
(0, 3, -6)	3	545	481
(-3, 9, -9)	6	723	849
(-1, -3, 1)	2	905	934
(-1, -5, 3)	2	1168	1205
(0, -6, 3)	3	771	680
(-3, -9, 9)	6	723	849

Branching Ratio Plane

[Diener, Godfrey, Martin]

 \star Flavour model discrimination

$$\Gamma(Z' \to f\overline{f}) \simeq rac{g_X^2}{24\pi} m_{Z'} \left(x_{fL}^2 + x_{fR}^2
ight),$$

in the limit $m_f << m_{Z'}$

$$\begin{split} R_{b/\mu} &= \frac{\sigma(pp \to Z' \to b\,\overline{b})}{\sigma(pp \to Z' \to \mu^+\mu^-)} \simeq \frac{K_b}{3} \frac{a^2}{b_2^2} \\ R_{t/\mu} &= \frac{\sigma(pp \to Z' \to t\,\overline{t})}{\sigma(pp \to Z' \to \mu^+\mu^-)} \simeq \frac{K_t}{3} \frac{a^2}{b_2^2} \\ R_{\tau/\mu} &= \frac{\sigma(pp \to Z' \to \tau^+\tau^-)}{\sigma(pp \to Z' \to \mu^+\mu^-)} \simeq K_\tau \frac{b_3^2}{b_2^2} \end{split}$$

★ $K_{b,t} \sim \mathcal{O}(1)$ factors incorporate the QCD and QED next-to-leading order corrections

Branching Ratio Plane

Leading to neutrino mass matrix patterns of type $A_{1,2}$ and $B_{3,4}$

 $R_{t/\mu} - R_{\tau/\mu}$

 $R_{t/\mu} - R_{b/\mu}$

Conclusions

 \star Extensions of the SM based on Abelian gauge symmetries ${\it U}(1)_X$

$X \equiv a B - \sum_{i=1}^{n_G} b_i L_i$

- * We looked the possible charge assignments that lead to cancellation of gauge anomalies and to a predictive flavor structure for m_{ν}
- ★ We restricted the charges so charged leptons are diagonal and therefore m_{ν} is directly linked to low-energy parameter
- ★ We found that only a limited set of solutions are viable, leading to two-zero textures of the neutrino mass matrix with a minimal extra fermion and scalar content
- ★ All allowed patterns were obtained in the framework of the type I seesaw mechanism with three right-handed neutrinos (or in a mixed type I/III seesaw framework with three right-handed neutrinos and one fermion triplet), extending the SM scalar sector with a complex scalar singlet field