Flavour in S_3 multi-Higgs models

C. Espinoza J. C. Gómez Izquierdo F. González Canales M. Mondragón A. Mondragón

FLASY 2014 - Sussex University

June 17, 2014

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Contents

Our Strategy

The S_3 flavour model

 S_3 models with extended Higgs sector

Quarks

Leptons

 $S_3 \times Z_2$ in both quarks and leptons

Conclusions

How do we choose a flavour symmetry?

• Find the smallest possible flavour symmetry suggested by the data

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

- Explore how generally ("universally") it can be applied
- Follow it to the end
- Compare with the data

Logarithmic plot of fermion masses

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Fundamental fermions normalized by the heaviest of each type

suggests $\mathbf{2} \oplus \mathbf{1}$ structure

Also, prior to electroweak symmetry breaking all three families are interchangeable

The S_3 symmetry group: permutations of 3 objects.

Assignment between fermion fields and irreps:

$$\Phi \rightarrow F = F(\Phi_1, \Phi_2, \Phi_3)$$

 ${\it F}$ is a ${\it S}_3$ reducible representation ${\bf 1}_S \oplus {\bf 2}$

$$F_{s} = \frac{1}{\sqrt{3}} \left(\Phi_{1} + \Phi_{2} + \Phi_{3} \right); \qquad F_{D} = \begin{pmatrix} \frac{1}{\sqrt{2}} (\Phi_{1} - \Phi_{2}) \\ \\ \frac{1}{\sqrt{6}} (\Phi_{1} + \Phi_{2} - 2\Phi_{3}) \end{pmatrix}$$

◆□ > ◆□ > ◆臣 > ◆臣 > ○ = ○ ○ ○ ○

Some references to work with an S_3 symmetry

- S. Pakvasa et al, Phys. Lett. 73B, 61 (1978)
- E. Derman, Phys. Rev. D19, 317 (1979)
- D. Wyler, Phys. Rev. D19, 330 (1979)
- R. Yahalom, Phys. Rev. D29, 536 (1984)
- A. Mondragón et al, Phys. Rev. D59, 093009, (1999)
- J. Kubo, A. Mondragón, et al, Prog. Theor. Phys. 109, 795 (2003)
- J. Kubo et al, Phys. Rev. D70, 036007 (2004)
- S. Chen, M. Frigerio and E. Ma, Phys. Rev. D70, 073008 (2004)
- A. Mondragón et al, Phys. Rev. D76, 076003, (2007)
- S. Kaneko et al, hep-ph/0703250, (2007)
- D. Meloni et al, Nucl. Part. Phys. 38 015003, (2011)
- T. Teshima et al, Phys.Rev. D84 (2011) 016003 Phys.Rev. D85 105013 (2012)
- F. González Canales, A&M. Mondragón Fort. der Physik 61, Issue 4-5 (2013)
- H.B. Benaoum, Phys. RevD.87.073010 (2013)
- E. Ma and B. Melic, arXiv:1303.6928
- F. González Canales, A. &M Mondragón, U. Saldaña, L. Velasco, arXiv:1304.6644
- R. Jora et al, Int.J.Mod.Phys. A28 (2013) 1350028

- S. Pakvasa and H. Sugawara, Phys. Lett. 73B, 61 (1978)
- E. Derman, Phys. Rev. D19, 317 (1979)
- D. Wyler, Phys. Rev. D19, 330 (1979)
- R. Yahalom, Phys. Rev. D29, 536 (1984)
- Y. Koide, Phys. Rev. D60, 077301 (1999)
- J. Kubo et al, Phys. Rev. D70, 036007 (2004)
- S. Chen et al, Phys. Rev. D70, 073008 (2004)
- O. Félix-Beltrán, M.M., et al, J.Phys.Conf.Ser. 171, 012028 (2009)
- D. Meloni et al, Nucl. Part. Phys. 38 015003, (2011)
- G. Bhattacharyya et al, Phys. Rev. D83, 011701 (2011)
- D. Meloni, JHEP 1205 (2012) 124
- S. Dev et al, Phys.Lett. B708 (2012) 284-289
- S. Zhou, Phys.Lett. B704 (2011) 291-295
- E. Barradas et al, 2014
- P. Das et al, 2014
- There are many more, I apologize for those not included.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□

Facts

Some aspects of the flavour problem:

• Quark masses vastly different

```
m_u: m_c: m_t \approx 10^{-6}: 10^{-3}: 1, \quad m_d: m_s: m_b \approx 10^{-4}: 10^{-2}: 1,
m_e: m_\mu: m_\tau \approx 10^{-5}: 10^{-2}: 1.
```

- Quark weak mixing angles:
 - $\theta_{12} \approx 13.0^{\circ}$
 - $\theta_{23} \approx 2.4^{o}$
 - $\theta_{13} \approx 0.2^{o}$
- Lepton masses not known (only difference of squared masses), but extremely small
- Lepton weak mixing angles, best fit of recent experimental data
 - $\Theta_{12} \approx 33.9^{o}$
 - Θ₂₃ ≈ 46.1^o
 - $\Theta_{13} \approx 9.2^{\circ}(IH \ 9.45^{\circ})$ $\Rightarrow \Theta_{13} \neq 0$
- CP-violation occurs in the weak sector

• In the SM with S_3 , to give masses to the particles the flavor symmetry has to be broken

A. Mondragón, E. Rodríguez-Jáuregui, 1999, 2000

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- The breaking of the symmetry can be parametrized with *Z*, satisfies cubic equation
- Possible to classify texture zeroes in equivalence classes, simplify analysis
 A. Mondragón and F. González, 2011
- If S_3 it's not explicitly broken then... \Rightarrow

we need to introduce additionally two Higgs weak-doublets more to the SM to preserve the permutational symmetry (at least before eW breaking)

S_3 symmetry with 3 Higgs doublets in the Lagrangian

- To build an S₃ invariant Lagrangian: assign the first two families to the doublet irrep 2 the third one either to the singlet symmetric 1_S or the singlet antisymmetric 1_A.
- Add three right handed neutrinos to implement the seesaw mechanism
- All sectors follow this assignment: quarks, leptons (left and right) and Higgs
- Different assignments lead to different models Also important in symmetries left in the Higgs potential after eW breaking

González-Felipe, Ivanov, Nishi, Serodio and Silva, 2014

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

After electroweak symmetry breaking, the Higgs $SU(2)_L$ doublets acquire real vacuum expectation values (vev's),

$$w_1 \equiv \langle 0|H_1|0 \rangle, \ w_2 \equiv \langle 0|H_2|0 \rangle,$$

$$v_{\mathcal{S}}\equiv \langle 0|H_{\mathcal{S}}|0
angle, \;\; {
m and} \;\; v_{\mathcal{A}}\equiv \langle 0|H_{\mathcal{A}}|0
angle,$$

J. Kubo, A. Mondragón, M. M., E. Rodríguez-Jáuregui, 2003

We get for every Dirac fermion the generic mass matrix:

$$\mathcal{M}_{f} = \begin{pmatrix} \mu_{1} + \mu_{2} & \mu_{4} & \mu_{5} \\ \mu_{4} & \mu_{1} - \mu_{2} & \mu_{6} \\ \mu_{7} & \mu_{8} & \mu_{3} \end{pmatrix}$$

Furthermore, the concept of flavour is extended to the Higgs sector

Q	u	а	r	ks
~	~	-	2.2	

Numerical study of quarks and three Higgses showed compatibility with data

Kubo, Mondragón, M, Rodríguez-Jáuregui, 2003

Teshima, 2012

FCNC's in quark sector are suppressed

Quark lepton complementarity studied

Barranco, A. Mondragón, González Canales, 2009

Data on quarks has improved considerably \Rightarrow important to go back to data and check compatibility with symmetry

Possible to classify different S_3 models in equivalence classes and obtain known textures Comparison with recent data gives very good agreement between theoretical and experimental V_{CKM}

González-Canales, A& M Mondragón, Saldaña-Salazar, Velasco-Sevilla, 2013

- Depending on whether the singlet Higgs in the symmetric or anti-symmetric singlet irrep:
- H_S ⇒ Viable models (quarks) only when left and right parts of the third family share the same assignement
- *H_A* ⇒ Viable models (quarks) only when left and right part of the third family are in different irreps
- They lead to two zero textures (Fritzsch type) or NNI form
- Both known to give good phenomenology
- Case with four Higgs (*H_A* and *H_S*) reduces to the case with three Higgses, but Higgs potential may differ

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

2 zeroes mass matrices

We can bring the quark mass matrices from a symmetric basis to a hierarchical basis via a rotation and a shift

$$\mathcal{M}_{S_3}^f \longrightarrow \mathcal{M}_{Hier}^f \equiv \mathcal{R}(\theta)_{12} \mathcal{M}_{S_3}^f \mathcal{R}(\theta)_{12}^T = \begin{pmatrix} \mu_0^f & a^f & 0\\ a^{f*} & b^f & c^f\\ 0 & c^{f*} & d^f \end{pmatrix}$$
$$= \mu_0^f \mathbf{1}_{3\times 3} + \widehat{\mathcal{M}}_{Hier}^f ,$$

The matrix $\widehat{\mathcal{M}}_{\textit{Hier}}^{\it{f}}$ has two texture zeroes

$$\widehat{\mathcal{M}}_{Hier}^{f} = \begin{pmatrix} 0 & a^{f} & 0 \\ a^{f*} & b'^{f} & c^{f} \\ 0 & c^{f*} & d'^{f} \end{pmatrix} = \begin{pmatrix} 0 & a^{f} & 0 \\ a^{f*} & b^{f} - \mu_{0}^{f} & c^{f} \\ 0 & c^{f*} & d^{f} - \mu_{0}^{f} \end{pmatrix},$$

and eigenvalues denoted as σ_i^f , i = 1, 2, 3.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

To achieve these textures we

- Perform a rotation
- May choose a particular value for the rotation angle θ , i.e. a particular change of basis
- Mass matrices hermitian or symmetric
- Shift the matrix and use the known two zeroes textures reparameterization

Rodríguez-Jáuregui, Mondragón, 2000;Barranco, González-Canales, Mondragón, 2008

Then, the physical masses m_i^f are related to the shifted masses σ_i^f simply by

$$m_i^f = \mu_0^f + \sigma_i^f.$$

We denote

$$\begin{array}{ll} \mu_1^f \equiv \sqrt{2} Y_2^f v_S, & \mu_2^f \equiv Y_3^f w_2, & \mu_3^f \equiv 2Y_1^f v_S, \\ \mu_4^f \equiv Y_3^f w_1, & \mu_5^f \equiv \sqrt{2} Y_4^f v_A, & \mu_6^f \equiv \sqrt{2} Y_5^f w_1, \\ \mu_7^f \equiv \sqrt{2} Y_5^f w_2, & \mu_8^f \equiv \sqrt{2} Y_6^f w_1, & \mu_9^f \equiv \sqrt{2} Y_6^f w_2, \\ \nu_3^f \equiv 2Y_1^f v_A, \end{array}$$

 $w_{1,2}$ are the vev's of the Higgs doublets, and v_S is the one of the singlet

The shift and the rotation are unobservable as long as we rotate the matrices in the u and d sectors with the same angle θ

$$\tan \theta = w_1/w_2$$

 $\theta = \pi/3$ corresponds to one of the global minima of the Higgs potential E. Rodríguez-Jáuregui, O. Félix, M.M., 2009; E. Barradas et al, 2014; P. Das et al, 2014

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Diagonalization procedure

• Bring the matrices to the general basic S_3 form by means of a rotation and a shift

$$\mathcal{M}_{Hier}^{f} = \mu_{0}^{f} \mathbf{1}_{3 \times 3} + \widehat{\mathcal{M}}_{Hier}^{f}$$

• Factorize \mathcal{M}^{f}_{Hier} in polar form in terms of a real symmetric matrix $\bar{\mathcal{M}}^{f}_{Hier}$ and a diagonal matrix of phases

$$\mathcal{P}_f \equiv \mathsf{diag}[1, e^{i\phi_{1f}}, e^{i(\phi_{1f} + \phi_{2f})}]$$

$$\bar{\mathcal{M}}_{Hier}^{f} \equiv \mathcal{P}_{f}^{\dagger} \frac{\widehat{\mathcal{M}}_{Hier}^{f}}{\sigma_{3}} \mathcal{P}_{f}$$

The CP phase will be a combination of these two phases, so there is only one independent phase in the V_{CKM}

Normalize by the heaviest shifted mass in the sector

$$\tilde{\sigma}_i = \frac{\tilde{m}_i - \tilde{\mu}_3}{1 - \tilde{\mu}_3}; \quad \tilde{\sigma}_i = \frac{\sigma_i}{\sigma_3}; \quad \tilde{\mu}_3 = \frac{\mu_3}{m_3}; \quad \tilde{m}_i = \frac{m_i}{m_3}$$

i=1,2

• Reparameterize using the three matrix invariants

$$\begin{array}{lll} {\rm Tr}[\bar{\mathcal{M}}^f_{{\it Hier}}] &=& \widetilde{\sigma}^f_1 - \widetilde{\sigma}^f_2 + 1 \ , \\ {\rm Det}[\bar{\mathcal{M}}^f_{{\it Hier}}] &=& -\widetilde{\sigma}^f_1 \widetilde{\sigma}^f_2 \ , \\ {\rm Tr}[(\bar{\mathcal{M}}^f_{{\it Hier}})^2] &=& (\widetilde{\sigma}^f_1)^2 + (\widetilde{\sigma}^f_2)^2 + 1 \ , \end{array}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

This allows us to write the mass matrix *M*^f_{S3} in terms of its invariants and just one parameter δ_f

$$\bar{\mathcal{M}}_{\text{Hier}}^{f} = \begin{pmatrix} 0 & \sqrt{\frac{\widetilde{\sigma}_{1}^{f}\widetilde{\sigma}_{2}^{f}}{1-\delta_{f}}} & 0 \\ \sqrt{\frac{\widetilde{\sigma}_{1}^{f}\widetilde{\sigma}_{2}^{f}}{1-\delta_{f}}} & \widetilde{\sigma}_{1}^{f} - \widetilde{\sigma}_{2}^{f} + \delta_{f}} & \sqrt{\frac{\delta_{f}}{1-\delta_{f}}}\xi_{1}^{f}\xi_{2}^{f} \\ 0 & \sqrt{\frac{\delta_{f}}{1-\delta_{f}}}\xi_{1}^{f}\xi_{2}^{f}} & 1-\delta_{f} \end{pmatrix},$$

where

$$\xi_1^f \equiv 1 - \widetilde{\sigma}_1^f - \delta_f, \quad \xi_2^f \equiv 1 + \widetilde{\sigma}_2^f - \delta_f \;,$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- δ_f is a constrained parameter, not entirely free: $0 < \delta_f < 1 - \widetilde{\sigma}_1^f$
- CP phase is only "free free" parameter

The CKM matrix

The V_{CKM} matrix is defined as

$$V_{CKM}^{th} = \mathbf{U}_{u_L}^{\dagger} \mathbf{U}_{d_L} = \mathbf{O}_u^T P^{(u-d)} \mathbf{O}_d,$$

where $P^{(u-d)} = \text{diag}[1, e^{i\phi_1}, e^{i(\phi_1 + \phi_2)}]$ with $\phi_i \equiv \phi_{iu} - \phi_{id}$, and $\mathbf{O}_{u,d}$ are the real orthogonal matrices, that diagonalize the mass matrix.

Thus, we can express the V_{CKM} as function of the quark masses:

exact, analytical expressions

$$\begin{split} V_{ud}^{1} &= \sqrt{\frac{\tilde{v}_{c}\tilde{\sigma}_{s}\xi_{1}^{*}\xi_{1}^{*}}{D_{1u}D_{1d}}} + \sqrt{\frac{\tilde{\sigma}_{u}\tilde{\sigma}_{d}}{D_{1u}D_{1d}}} \left(\sqrt{\left(1-\delta_{u}\right)\left(1-\delta_{d}\right)\xi_{1}^{u}\xi_{1}^{d}} + \sqrt{\delta_{u}\delta_{d}\xi_{2}^{u}\xi_{2}^{d}}e^{i\left(\phi_{2}-\phi_{1}\right)}\right)e^{i\phi_{1}}, \\ V_{us}^{1} &= \sqrt{\frac{\tilde{\sigma}_{c}\tilde{\sigma}_{d}\xi_{1}^{*}\xi_{2}^{*}}{D_{1u}D_{2d}}} - \sqrt{\frac{\tilde{\sigma}_{u}\tilde{\sigma}_{u}}{D_{1u}D_{2d}}} \left(\sqrt{\left(1-\delta_{u}\right)\left(1-\delta_{d}\right)\xi_{1}^{u}\xi_{2}^{d}} + \sqrt{\delta_{u}\delta_{d}\xi_{2}^{u}\xi_{1}^{d}}e^{i\left(\phi_{2}-\phi_{1}\right)}\right)e^{i\phi_{1}}, \\ V_{ub}^{1} &= -\sqrt{\frac{\tilde{\sigma}_{c}\tilde{\sigma}_{d}\tilde{\sigma}_{s}\delta_{d}\xi_{1}^{*}}{D_{1u}D_{3d}}} - \sqrt{\frac{\tilde{\sigma}_{u}}{D_{1u}D_{3d}}} \left(\sqrt{\left(1-\delta_{u}\right)\left(1-\delta_{d}\right)\delta_{d}\xi_{1}^{u}} - \sqrt{\delta_{u}\xi_{2}^{u}\xi_{1}^{d}}e^{i\left(\phi_{2}-\phi_{1}\right)}\right)e^{i\phi_{1}}, \\ V_{cd}^{1} &= \sqrt{\frac{\tilde{\sigma}_{u}\tilde{\sigma}_{s}\xi_{2}^{u}\xi_{1}^{d}}{D_{2u}D_{1d}}} - \sqrt{\frac{\tilde{\sigma}_{c}\tilde{\sigma}_{d}}{D_{2u}D_{1d}}} \left(\sqrt{\left(1-\delta_{u}\right)\left(1-\delta_{d}\right)\xi_{2}^{u}\xi_{1}^{d}} + \sqrt{\delta_{u}\delta_{d}\xi_{1}^{u}\xi_{2}^{d}}e^{i\left(\phi_{2}-\phi_{1}\right)}\right)e^{i\phi_{1}}, \\ V_{cd}^{1} &= \sqrt{\frac{\tilde{\sigma}_{u}\tilde{\sigma}_{d}\xi_{2}^{u}\xi_{2}^{d}}{D_{2u}D_{2d}}} + \sqrt{\frac{\tilde{\sigma}_{c}\tilde{\sigma}_{d}}{D_{2u}D_{2d}}} \left(\sqrt{\left(1-\delta_{u}\right)\left(1-\delta_{d}\right)\xi_{2}^{u}\xi_{2}^{d}} + \sqrt{\delta_{u}\delta_{d}\xi_{1}^{u}\xi_{2}^{d}}e^{i\left(\phi_{2}-\phi_{1}\right)}\right)e^{i\phi_{1}}, \\ V_{cb}^{1} &= -\sqrt{\frac{\tilde{\sigma}_{u}\tilde{\sigma}_{d}\tilde{\sigma}_{s}\delta_{d}\xi_{2}^{u}}{D_{2u}D_{2d}}} + \sqrt{\frac{\tilde{\sigma}_{c}\tilde{\sigma}_{c}}{D_{2u}D_{2d}}} \left(\sqrt{\delta_{u}\left(1-\delta_{u}\right)\left(1-\delta_{d}\right)\xi_{2}^{d}} - \sqrt{\delta_{u}\xi_{1}^{u}\xi_{2}^{d}}e^{i\left(\phi_{2}-\phi_{1}\right)}\right)e^{i\phi_{1}}, \\ V_{td}^{1} &= -\sqrt{\frac{\tilde{\sigma}_{u}\tilde{\sigma}_{d}\tilde{\sigma}_{s}\delta_{d}\xi_{2}^{u}}{D_{3u}D_{2d}}} - \sqrt{\frac{\tilde{\sigma}_{u}}{D_{3u}D_{2d}}} \left(\sqrt{\delta_{u}\left(1-\delta_{u}\right)\left(1-\delta_{d}\right)\xi_{2}^{d}} - \sqrt{\delta_{d}\xi_{1}^{u}\xi_{2}^{u}\xi_{2}^{d}}e^{i\left(\phi_{2}-\phi_{1}\right)}\right)e^{i\phi_{1}}, \\ V_{tb}^{1} &= -\sqrt{\frac{\tilde{\sigma}_{u}\tilde{\sigma}_{u}\tilde{\sigma}_{s}\delta_{s}\xi_{2}^{d}}{D_{3u}D_{2d}}} + \sqrt{\frac{\tilde{\sigma}_{u}}}{D_{3u}D_{2d}}} \left(\sqrt{\delta_{u}\left(1-\delta_{u}\right)\left(1-\delta_{d}\right)\xi_{2}^{d}} - \sqrt{\delta_{d}\xi_{1}^{u}\xi_{2}^{u}\xi_{1}^{d}}e^{i\left(\phi_{2}-\phi_{1}\right)}\right)e^{i\phi_{1}}, \\ V_{tb}^{1} &= -\sqrt{\frac{\tilde{\sigma}_{u}\tilde{\sigma}_{u}\tilde{\sigma}_{s}\delta_{s}\xi_{2}^{d}}{D_{3u}D_{2d}}} + \left(\sqrt{\frac{\tilde{\varepsilon}_{u}^{u}\xi_{u}^{u}\xi_{1}^{d}\xi_{1}^{d}}}{D_{3u}D_{2d}}} + \sqrt{\frac{\tilde{\sigma}_{u}\tilde{\sigma}_{u}^{u}\xi_{1}^{d}\xi_{1}^{d}}}{D_{3u}D_{3d}}}e^{i(\phi_{2}-\phi_{1})}\right)e^{i\phi_{1}}, \\ V_{tb}^{1} &= \sqrt{\frac{\tilde{\sigma}_{u}\tilde{\sigma}_{u}\tilde{\sigma}_{u}\tilde{\sigma$$

where

$$\begin{split} \xi_1^{u,d} &= 1 - \widetilde{\sigma}_{u,d} - \delta_{u,d}, \quad \xi_2^{u,d} = 1 + \widetilde{\sigma}_{c,s} - \delta_{u,d}, \\ \mathcal{D}_{1(u,d)} &= (1 - \delta_{u,d})(\widetilde{\sigma}_{u,d} + \widetilde{\sigma}_{c,s})(1 - \widetilde{\sigma}_{u,d}), \\ \mathcal{D}_{2(u,d)} &= (1 - \delta_{u,d})(\widetilde{\sigma}_{u,d} + \widetilde{\sigma}_{c,s})(1 + \widetilde{\sigma}_{c,s}), \\ \mathcal{D}_{3(u,d)} &= (1 - \delta_{u,d})(1 - \widetilde{\sigma}_{u,d})(1 + \widetilde{\sigma}_{c,s}). \end{split}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

where $\phi_1 \neq 0, \ \phi_2 = \phi_1$

Using the most recent data for the quark masses

2013 values and mass ratios (with \widetilde{m}_s^{th})											
m_t	171.8 ± 1.1										
m_b	2.85 ± 0.04										
m _c	0.63 ± 0.025	$\widetilde{m_c}(M_Z)$	0.0036 ± 0.00017								
m _s	0.059 ± 0.0066	$\widetilde{m_s}(M_Z)$	0.021 ± 0.0026								
m _d	0.0028 ± 0.0005	$\widetilde{m_d}(M_Z)$	0.00097 ± 0.00017								
m _u	0.0013 ± 0.0005	$\widetilde{m_u}(M_Z)$	0.0000077 ± 0.0000030								

We find a very good agreement of the V_{CKM} matrix with the data for appropriate values of the constrained parameters δ_f and a CP violating phase $\sim 80 \sim 100^{\circ}$

via a (test of hypothesis) χ^2 analysis

González-Canales, et al; 2014

Leptons

$$\begin{array}{|c|c|c|c|c|}\hline - & + & \\ \hline H_{S}, \ \nu_{3R} & H_{I}, \ L_{3}, \ L_{I}, \ e_{3R}, \ e_{IR}, \ \nu_{IR} \end{array}$$

- In the leptonic sector we add a Z_2 symmetry
- FCNC's are strongly suppressed by the $S_3 \times Z_2$ symmetry and the mass hierarchy of the charged leptons
- Possible to write the mixing angles in terms of the lepton masses
- Predictions for neutrino masses and mixings
- S_3 gives $\theta_{13} \neq 0$
- If $M_{1R} = M_{2R}$, θ_{13} too small: lower bound, and θ_{12}, θ_{23} within experimental limits

A. Mondragón, M. M., E. Peinado, 2007,2008

• If
$$M_{1R} \neq M_{2R} \Rightarrow \theta_{12}, \theta_{23}, \theta_{13}$$
 compatible with recent data

Charged leptons

The mass matrix of the charged leptons takes the form

$$\mathbf{M}_{e} = m_{\tau} \begin{pmatrix} \tilde{\mu}_{2} & \tilde{\mu}_{2} & \tilde{\mu}_{5} \\ \tilde{\mu}_{2} & -\tilde{\mu}_{2} & \tilde{\mu}_{5} \\ \tilde{\mu}_{4} & \tilde{\mu}_{4} & 0 \end{pmatrix}.$$
 (1)

Reparametrized in terms of its eigenvalues and written to order $\left(m_{\mu}m_{e}/m_{\tau}^{2}\right)^{2}$ and $x^{4}=\left(m_{e}/m_{\mu}\right)^{4}$, is

$$\mathbf{M}_{e} \approx m_{\tau} \begin{pmatrix} \frac{1}{\sqrt{2}} \frac{\tilde{m}_{\mu}}{\sqrt{1+x^{2}}} & \frac{1}{\sqrt{2}} \frac{\tilde{m}_{\mu}}{\sqrt{1+x^{2}}} & \frac{1}{\sqrt{2}} \sqrt{\frac{1+x^{2}-\tilde{m}_{\mu}^{2}}{1+x^{2}}} \\ \frac{1}{\sqrt{2}} \frac{\tilde{m}_{\mu}}{\sqrt{1+x^{2}}} & -\frac{1}{\sqrt{2}} \frac{\tilde{m}_{\mu}}{\sqrt{1+x^{2}}} & \frac{1}{\sqrt{2}} \sqrt{\frac{1+x^{2}-\tilde{m}_{\mu}^{2}}{1+x^{2}}} \\ \frac{\tilde{m}_{e}(1+x^{2})}{\sqrt{1+x^{2}-\tilde{m}_{\mu}^{2}}} e^{i\delta_{e}} & \frac{\tilde{m}_{e}(1+x^{2})}{\sqrt{1+x^{2}-\tilde{m}_{\mu}^{2}}} e^{i\delta_{e}} & 0 \end{pmatrix}$$

Only free parameter is the Dirac phase δ_e

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

Neutrinos

The $S_3 \times Z_2$ gives the following matrix for Dirac neutrinos

$$\mathbf{M}_{\nu_{D}} = \begin{pmatrix} \mu_{2}^{\nu} & \mu_{2}^{\nu} & 0\\ \mu_{2}^{\nu} & -\mu_{2}^{\nu} & 0\\ \mu_{4}^{\nu} & \mu_{4}^{\nu} & \mu_{3}^{\nu} \end{pmatrix},$$
(2)

Kubo et al 2003, Felix, Mondragón 2006, Mondragon 2007

and considering the following form to the mass matrix of right-handed neutrinos $\mathbf{M}_{\nu_R} = \operatorname{diag} \{M_1, M_2, M_3\}$ Then, the mass matrix \mathbf{M}_{ν_L} takes the form

$$\mathbf{M}_{\nu_{\mathbf{L}}} = \begin{pmatrix} \frac{2\left(\mu_{2}^{\nu}\right)^{2}}{\overline{M}} & \frac{2\lambda\left(\mu_{2}^{\nu}\right)^{2}}{\overline{M}} & \frac{2\mu_{2}^{\nu}\mu_{4}^{\nu}}{\overline{M}} \\ \frac{2\lambda\left(\mu_{2}^{\nu}\right)^{2}}{\overline{M}} & \frac{2\left(\mu_{2}^{\nu}\right)^{2}}{\overline{M}} & \frac{2\mu_{2}^{\nu}\mu_{4}^{\nu}\lambda}{\overline{M}} \\ \frac{2\mu_{2}^{\nu}\mu_{4}^{\nu}}{\overline{M}} & \frac{2\mu_{2}^{\nu}\mu_{4}^{\nu}\lambda}{\overline{M}} & \frac{2\left(\mu_{4}^{\nu}\right)^{2}}{\overline{M}} + \frac{\left(\mu_{2}^{\nu}\right)^{2}}{\overline{M}_{2}} \end{pmatrix}, \quad \lambda = \frac{1}{2}\left(\frac{M_{2}-M_{1}}{M_{1}+M_{2}}\right), \text{ and } \overline{M} = 2\frac{M_{1}M_{2}}{M_{2}+M_{1}}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Reparameterized in terms of the neutrino masses, \mathbf{M}_{ν_L} for a normal [inverted] hierarchy

$$\mathbf{M}_{\nu_{L}}^{N[l]} = \begin{pmatrix} \mu_{0} + d & d & \frac{1}{\sqrt{2}} \left(C^{N[l]} + A^{N[l]} \right) \\ d & \mu_{0} + d & \frac{1}{\sqrt{2}} \left(C^{N[l]} - A^{N[l]} \right) \\ \frac{1}{\sqrt{2}} \left(C^{N[l]} + A^{N[l]} \right) & \frac{1}{\sqrt{2}} \left(C^{N[l]} - A^{N[l]} \right) & m_{\nu_{1}} + m_{\nu_{2}} + m_{\nu_{3}} - 2 \left(\mu_{0} + d \right) \end{pmatrix}$$
(3)

with

$$C^{N[I]} = \sqrt{\frac{\left(2d + \mu_0 - m_{\nu_1}\right)\left(2d + \mu_0 - m_{\nu_{2[3]}}\right)\left(m_{\nu_{3[2]}} - \mu_0 - 2d\right)}{2d}}$$
$$A^{N[I]} = \sqrt{\frac{\left(m_{\nu_2} - \mu_0\right)\left(m_{\nu_{3[1]}} - \mu_0\right)\left(\mu_0 - m_{\nu_{1[3]}}\right)}{2d}}$$
$$d = \frac{2\left|\lambda\right|\left|\mu_2^{\nu}\right|^2}{\left|\overline{M}\right|} \qquad \mu_0 = \frac{2\left|\mu_2^{\nu}\right|^2}{\left|\overline{M}\right|}$$

The values allowed for the parameters μ_0 and $2d + \mu_0$ are in the following ranges: $m_{\nu_{2[1]}} > \mu_0 > m_{\nu_{1[3]}}$ and $m_{\nu_{3[2]}} > 2d + \mu_0 > m_{\nu_{2[1]}}$.

・ロト・西ト・ヨト・ヨー シック

 V_{PMNS} matrix also parameterized in terms of the leptons masses. Possible to write the mixing angles in terms of the lepton masses, and the parameters μ_0 and d, which carry the information of the heavy right-handed neutrinos

A. Mondragón, M. M., E. Peinado, 2007, 2008; F. González, A. Mondragón, M.M., 2012

For the reactor mixing angle θ_{13}^l and for an inverted neutrino mass hierarchy $(m_{\nu_2} > m_{\nu_1} > m_{\nu_3})$ we obtain:

$$\sin^2 heta_{13}' pprox rac{(\mu_0+2d-m_{
u_3})(\mu_0-m_{
u_3})}{(m_{
u_1}-m_{
u_3})(m_{
u_2}-m_{
u_3})}.$$

We have information on the right-handed neutrinos $M_{1,2}$ in the mixing angles When $d = 0 \Rightarrow M_1 = M_2$ gives lower bound for θ_{13}

recover previous results of A. Mondragón, M.M., E. Peinado

- The case $M_1 = M_2$ gives us a lower bound for θ'_{13} and sets the mass of the Dirac neutrinos
- Using these results as a starting point, we can do an analysis with μ₀ and d and find the best values for the mixing angles
- For a normal neutrino mass hierarchy $m_{\nu_1} = 3.22 \times 10^{-3} \text{ eV}, \ m_{\nu_2} = 9.10 \times 10^{-3} \text{ eV}, \ m_{\nu_3} = 4.92 \times 10^{-2} \text{ eV}$ and the parameter values $\delta_l = \pi/2, \ \mu_0 = 0.049 \text{ eV}$ and $d = 8 \times 10^{-5} \text{ eV}$, we obtain

$$\sin^2\theta_{13}^{\prime}\approx 0.029 \longrightarrow \theta_{13}^{\prime}\approx 10.8^\circ,$$

in good agreement with experimental data.

• The solar and atmospheric mixing angles:

$$\theta_{12}^{l^{th}} = 35^{\circ}, \quad \theta_{23}^{l^{th}} = 46^{\circ},$$

• Complete analysis similar to the one presented here with χ^2 and both hierarchies underway

$S_3 \times Z_2$ in both quarks and leptons

- S₃ works very well, what happens when we go to higher energies?
- Could it be a residual symmetry from a larger broken one?
- Study details and variations of the symmetry
- We look at $S_3 \times Z_2$ in both sectors, with different assignments of the Higgs singlet
- The symmetry gives NNI textures
- Leads to different models with different features
- In some models mass matrices similar to the Q_6 case

(Kawashima, Kubo, Lenz, 2009; see Félix González's talk)

Some lost textures

Two examples, with simplifying assumptions $w_1 = w_2$ and $M_{1R} = M_{2R}$

Matter	L_I	L ₃	ℓ _{IR}	ℓ _{3R}	Q_I	Q3	d _{IR}	d _{3R}	uIR	u _{3R}	NI	N ₃	H _l	H ₃
S ₃	2	1 ₅	2	1 ₅	2	1 ₅	2	1 _A	2	1_{A}	2	1_{A}	2	1_A
Z_2	1	-1	1	-1	1	-1	1	-1	1	-1	1	-1	-1	1

Table: Assignment for scenario C

Matter	L	L ₃	ℓ _{IR}	ℓ _{3R}	Q_I	Q3	d _{IR}	d _{3R}	UIR	u _{3R}	NI	N ₃	H	H ₃
S_3	2	1 ₅	2	1 _A	2	1 ₅	2	1 _A	2	1_{A}	2	1 ₅	2	1_{A}
Z_2	1	-1	1	-1	1	-1	1	-1	1	-1	1	-1	-1	1

Table: Assignment for scenario D

Both give mass matrices for the quarks which lead to NNI after a $\pi/4$ rotation

$$\mathbf{M}_{(u,d)} = \begin{pmatrix} a_{(u,d)} & 0 & b_{(u,d)} \\ 0 & a_{(u,d)} & -b_{(u,d)} \\ c_{(u,d)} & c_{(u,d)} & d_{(u,d)} \end{pmatrix} \Rightarrow \begin{pmatrix} 0 & \hat{a}_f & 0 \\ \hat{a}_f & 0 & \hat{B}_f \\ 0 & \hat{C}_f & \hat{d}_f \end{pmatrix}; \quad \mathbf{U}_{\pi/4} = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

In the leptonic sector the chaged mass matrix for D is the same as for the quarks, but in C it is different

$$\mathsf{M}_\ell = egin{pmatrix} \mathsf{a}_\ell & 0 & b_\ell \ 0 & \mathsf{a}_\ell & b_\ell \ c_\ell & c_\ell & 0 \end{pmatrix}$$

The effective neutrino mass matrix $\mathbf{M}_{\nu} = \mathbf{M}_{\mathbf{D}}\mathbf{M}_{\mathbf{R}}^{-1}\mathbf{M}_{\mathbf{D}}^{\mathsf{T}}$ for C gives

$$\mathbf{M}_{\nu} = \begin{pmatrix} A_{\nu} & -B_{\nu} & C_{\nu} \\ -B_{\nu} & A_{\nu} & D_{\nu} \\ C_{\nu} & D_{\nu} & E_{\nu} \end{pmatrix}$$

For scenario D in the neutrino sector, the different assignment leads to

$$\mathbf{M}_
u = egin{pmatrix} A_
u & B_
u & C_
u \ B_
u & A_
u & C_
u \ D_
u & D_
u & E_
u \end{pmatrix}$$

where the entries in the two matrices are different combinations of the vevs and the parameters $x=1/M_1$ and

 $y = 1/M_2$.

CKM matrices

Now we can express the V_{CKM} matrix in terms of only three parameters, δ_u , δ_d and a phase. The V_{CKM} elements look like

$$V_{us} \approx \sqrt{\frac{\tilde{m}_d \delta_d}{\tilde{m}_s}} - \sqrt{\frac{\tilde{m}_u \delta_u}{\tilde{m}_c}} \exp(i\bar{\eta}_{q_2}), \quad V_{cd} \approx \sqrt{\frac{\tilde{m}_u \delta_u}{\tilde{m}_c}} - \sqrt{\frac{\tilde{m}_d \delta_d}{\tilde{m}_s}} \exp(i\bar{\eta}_{q_2}).$$
(4)

where δ_f are constrained parameters $1 > \delta_f > \tilde{m}_{f_2} > \tilde{m}_{f_1}$

Then the Jarlskog invariant comes out as a prediction

A previous analysis of this type of matrices in S_3 gives good fit to the data, work in progress

J. Barranco, F. González, A. Mondragón, 2009

PMNS matrices

The orthogonal matrix O_{ν} that appears in the V_{PMNS} is,

$$\mathbf{O}_{\nu} \begin{pmatrix} \sqrt{\frac{e_{-}^{\nu}p_{1}^{\nu}k_{2}^{\nu}}{r_{1}^{\nu}}} & -\sqrt{\frac{e_{-}^{\nu}p_{2}^{\nu}k_{1}^{\nu}}{r_{2}^{\nu}}} & \sqrt{\frac{e_{+}^{\nu}k_{1}^{\nu}k_{2}^{\nu}}{r_{3}^{\nu}}} \\ \sqrt{\frac{p_{1}^{\nu}k_{1}^{\nu}}{r_{1}^{\nu}}} & \sqrt{\frac{p_{2}^{\nu}k_{2}^{\nu}}{r_{2}^{\nu}}} & \sqrt{\frac{p_{3}^{\nu}k_{3}^{\nu}}{r_{3}^{\nu}}} \\ -\sqrt{\frac{e_{+}^{\nu}p_{2}^{\nu}k_{1}^{\nu}}{r_{1}^{\nu}}} & -\sqrt{\frac{e_{+}^{\nu}p_{1}^{\nu}k_{2}^{\nu}}{r_{2}^{\nu}}} & \sqrt{\frac{e_{-}^{\nu}p_{1}^{\nu}p_{2}^{\nu}}{r_{3}^{\nu}}} \end{pmatrix}$$
(5)

with

$$\begin{split} r_{(1,2)}^{\nu} &\equiv (1-\tilde{m}_{\nu_{(1,2)}})(\tilde{m}_{\nu_2}-\tilde{m}_{\nu_1}), r_3^{\nu} \equiv (1-\tilde{m}_{\nu_2})(1-\tilde{m}_{\nu_1}), \quad p_{(1,2)}^{\nu} \equiv |\tilde{x}_+| - \tilde{m}_{\nu_{(1,2)}}; \\ p_3^{\nu} &\equiv 1-|\tilde{x}_+|, \quad k_1^{\nu} \equiv |\tilde{x}_-| - \tilde{m}_{\nu_1}, k_2^{\nu} \equiv \tilde{m}_{\nu_2} - |\tilde{x}_-|, \quad k_3^{\nu} \equiv 1-|\tilde{x}_-|, \quad e_{\mp}^{\nu} = \frac{1-|\tilde{x}_{\mp}|}{|\tilde{x}_+| - |\tilde{x}_-|}. \end{split}$$

Here, $|\tilde{x}_+|$ and $|\tilde{x}_-|$ are two free parameters which cannot be fixed in terms of the physical masses, and $1 > |\tilde{x}_+| > \tilde{m}_{\nu_2} > |\tilde{x}_-| > \tilde{m}_{\nu_1}$.

For scenario C, making the following approximations $|\tilde{x}_+| \approx 2\tilde{m}_{\nu_2}$ and $|\tilde{x}_-| \approx 2\tilde{m}_{\nu_1}$

$$\begin{split} & \mathcal{O}_{11}^{\nu} \approx \mathcal{O}(1), \quad \mathcal{O}_{21}^{\nu} \approx \sqrt{\frac{\tilde{m}_{\nu_1}}{2\tilde{m}_{\nu_2}}}, \quad \mathcal{O}_{31}^{\nu} \approx -\sqrt{\frac{\tilde{m}_{\nu_1}(\tilde{m}_{\nu_2}^- - \tilde{m}_{\nu_2})}{2\tilde{m}_{\nu_2}}}, \quad \mathcal{O}_{12}^{\nu} \approx -\sqrt{\frac{\tilde{m}_{\nu_1}\tilde{m}_{\nu_2}}{\tilde{m}_{\nu_2}}}; \\ & \mathcal{O}_{22}^{\nu} \approx \sqrt{\frac{\tilde{m}_{\nu_2}^-}{2}}, \quad \mathcal{O}_{32}^{\nu} \approx -\sqrt{\frac{\tilde{m}_{\nu_1}^+}{2}}, \quad \mathcal{O}_{13}^{\nu} \approx \sqrt{\tilde{m}_{\nu_1}\tilde{m}_{\nu_2}\tilde{m}_{\nu_2}^+}, \quad \mathcal{O}_{23}^{\nu} \approx \sqrt{\frac{\tilde{m}_{\nu_2}^+}{2}}, \quad \mathcal{O}_{33}^{\nu} \approx \sqrt{\frac{\tilde{m}_{\nu_2}^-}{2}}. \end{split}$$

where $\tilde{m}_{\nu_2}^{\pm} \equiv 1 \pm \tilde{m}_{\nu_2}$. With these particular values for the free parameters, one obtains

$$\sin \theta_{13} \approx \sqrt{\tilde{m}_{\nu_2}^+/2} \left[\sqrt{2\tilde{m}_{\nu_1}\tilde{m}_{\nu_2}} - \tilde{m}_{\mu} \exp i\eta_{\nu} \right]; \\ \sin \theta_{23} \approx \frac{\exp i\eta_{\nu_3} \sqrt{\tilde{m}_{\nu_2}^-/2}}{\sqrt{1 - |\sin \theta_{13}|^2}}; \\ \sin \theta_{12} \approx \frac{-\sqrt{\tilde{m}_{\nu_2}^-/2}}{\sqrt{1 - |\sin \theta_{13}|^2}} \left[\sqrt{2\tilde{m}_{\nu_1}/\tilde{m}_{\nu_2}} + \tilde{m}_{\mu} \exp i\eta_{\nu} \right];$$

where $\cos heta_\ell pprox 1 - ilde{m}_\mu^2/2$ and $\sin heta_\ell pprox ilde{m}_\mu$.

We have three equations with three variables. Scenario D is the same as $SU(5) \times Q_6$

And now?

- The details of the Higgs potential are crucial to distinguish between scenarios
- Flavour symmetry breaking related directly to the electroweak breaking
- In S_3 models in the quark sector at least one of the global minima is compatible with good phenomenology $\theta = \pi/6$
- Other minima have to be analysed
- In the $S_3 \times Z_2$ models the more general models have to be studied $(w_1 \neq w_2 \text{ and } M_1 \neq M_2)$, together with the potential
- Try to embed in a Grand Unified Theory

e.g. Antusch et al, 2011; Cooper et al, 2010, 2012; Raby et al 2011; and many more...

One S₃ × Z₂ gives same matrices as SU(5) × Q₆
 ⇒ NNI form with interesting neutrino sector

J.C. Gómez Izquierdo, F. González Canales, M.M.

• Full analysis of leptonic and Higgs sectors underway

Conclusions

- The permutational symmetry S_3 is the smallest non-abelian discrete symmetry suggested by data
- Used as a flavour symmetry in the quark, lepton and Higgs sectors allows for a "unified" treatment of fermion masses
- Interesting new textures with $S_3 \times Z_2$ also in quark sector
- Possible to find analytical expressions for mixing matrices of both quarks and leptons in terms of mass ratios
- Good phenomenology **both** in the quark and lepton sectors
- In the quark sector \Rightarrow Fritzsch mass textures and the NNI form, both of which give good phenomenology \Rightarrow fitting V_{CKM} with only three parameters
- In the leptonic sector ⇒ the neutrino masses and mixing angles compatible with experimental data, related to the lepton and right-handed neutrino masses