Neutrino Mass Textures

 Impact of CP phase observation on Neutrino Mass Textures -

Morimitsu Tanimoto

Niigata University JAPAN

June 20, 2014 @ FLASY2014, Sussex University

1 Introduction

FLASY predicts Lepton Mass Matrices,

which can be tested by Neutrino Masses and Mixing Angles. Especially, experimental data of CP violating phase will give us severe tests for

FTY texture for Lepton

Fukugita, M.T, Yanagida, 2003

$$m_{E} = \begin{pmatrix} 0 & A_{\ell} & 0 \\ A_{\ell} & 0 & B_{\ell} \\ 0 & B_{\ell} & C_{\ell} \end{pmatrix}, \qquad m_{\nu D} = \begin{pmatrix} 0 & A_{\nu} & 0 \\ A_{\nu} & 0 & B_{\nu} \\ 0 & B_{\nu} & C_{\nu} \end{pmatrix}$$
$$U_{e2} \simeq -\left(\frac{m_{1}}{m_{2}}\right)^{1/4} + \left(\frac{m_{e}}{m_{\mu}}\right)^{1/2} e^{i\sigma} \qquad \qquad M_{R} = M_{0}\mathbf{1}$$
$$U_{e3} \simeq \left(\frac{m_{e}}{m_{\mu}}\right)^{1/2} U_{\mu3} + \left(\frac{m_{2}}{m_{3}}\right)^{1/2} \left(\frac{m_{1}}{m_{3}}\right)^{1/4}$$
$$U_{\mu3} \simeq \left(\frac{m_{2}}{m_{3}}\right)^{1/4} e^{i\sigma} - \left(\frac{m_{\mu}}{m_{\tau}}\right)^{1/2} e^{i\tau}$$
$$\operatorname{Sin} \theta_{23} \simeq \sqrt[8]{\frac{\Delta m_{sol}^{2}}{\Delta m_{atm}^{2}}} = 0.63 \sim 0.66 = \mathcal{O}(\sqrt[4]{\lambda})$$
$$|U_{e3}| \approx |U_{\mu3}|^{2} |U_{e2}U_{\mu3}| = |U_{\mu3}|^{3} |U_{e2}|$$

3

FTY texture for Lepton

Fukugita, Shimizu, M.T, Yanagida, 2012

CP phase is predicted ! 1 σ 90% C.L.

Let us examine the CP phase in the FLASY motivated Texture of Neutrino Masses focusing on T2K data.

Conventional definition of Mixing Matrix

$$U = \begin{bmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{bmatrix} \begin{bmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{-i\delta} & 0 & c_{13} \end{bmatrix} \begin{bmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

 $c_{ij} \equiv \cos \theta_{ij}, \ s_{ij} \equiv \sin \theta_{ij}$

2 FLASY motivated Textures

Before 2012 (no data for Θ_{13}) Neutrino Data suggested Tri-bimaximal Mixing of Neutrinos

$$\sin^2 heta_{12}=1/3$$
, $\sin^2 heta_{23}=1/2$, $\sin^2 heta_{13}=0$,

$$U_{\rm tri-bimaximal} = \begin{pmatrix} \sqrt{2/3} & \sqrt{1/3} & 0\\ -\sqrt{1/6} & \sqrt{1/3} & -\sqrt{1/2}\\ -\sqrt{1/6} & \sqrt{1/3} & \sqrt{1/2} \end{pmatrix}$$

Harrison, Perkins, Scott (2002)

Tri-bimaximal Mixing (TBM) is realized by

$$m_{TBM} = \frac{m_1 + m_3}{2} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} + \frac{m_2 - m_1}{3} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} + \frac{m_1 - m_3}{2} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

in the diagonal basis of charged leptons.

Mixing angles are independent of neutrino masses.

Integer (inter-family related) matrix elements suggest Non-Abelian Discrete Flavor Symmetry.

In 2012

Reactor angle θ_{13} was measured by T2K, Daya Bay, MINOS, RENO, Double Chooz

$$\theta_{13} \simeq 9^{\circ} \simeq \theta_c / \sqrt{2}$$

Tri-bimaximal mixing was ruled out !

- Deviation from Tri-bimaximal mixing ?
- Different Anzatz ? Tri-maximal mixing, Tri-bimaximal Cabibbo

Indirect Approach : A_4 Model to realize large θ_{13}

Modify G. Altarelli, F. Feruglio, Nucl. Phys. B720 (2005) 64

	(l_e, l_μ, l_τ)	e^{c}	μ^{c}	τ^c	$h_{u,d}$	ϕ_l	ϕ_{ν}	Ę	<u>(</u> <i>É</i> ')
SU(2)	2	1	1	1	2	1	1	1	1
A_4	3	1	1''	1'	1	3	3	1	$\mathbf{1'}$
Z_3	ω	ω^2	ω^2	ω^2	1	1	ω	ω	ω

Y. Simizu, M. Tanimoto, A. Watanabe, PTP 126, 81(2011)

$$\begin{array}{rcl}
\mathbf{3} \times \mathbf{3} \Rightarrow \mathbf{1} &= a_1 * b_1 + a_2 * b_3 + a_3 * b_2 \\
\mathbf{3} \times \mathbf{3} \Rightarrow \mathbf{1}' &= a_1 * b_2 + a_2 * b_1 + a_3 * b_3 \\
\mathbf{3} \times \mathbf{3} \Rightarrow \mathbf{1}'' &= a_1 * b_3 + a_2 * b_2 + a_3 * b_1 \\
\begin{pmatrix} \xi \\ \mathbf{1} \times \mathbf{1} \Rightarrow \mathbf{1} \\ 1 \times \mathbf{1} \Rightarrow \mathbf{1} \\
\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} & \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \\
\begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}
\end{array}$$

Additional Matrix

$$M_{\nu} = a \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} + b \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} + c \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} + d \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

$$a = \frac{y_{\phi_{\nu}}^{\nu} \alpha_{\nu} v_{u}^{2}}{\Lambda}, \qquad b = -\frac{y_{\phi_{\nu}}^{\nu} \alpha_{\nu} v_{u}^{2}}{3\Lambda}, \qquad c = \frac{y_{\xi}^{\nu} \alpha_{\xi} v_{u}^{2}}{\Lambda}, \qquad d = \frac{y_{\xi'}^{\nu} \alpha_{\xi'} v_{u}^{2}}{\Lambda}$$
$$a = -3b$$

Both normal and inverted mass hierarchies are possible. After rotaing it by Tri-bimaximal mixing matrix, we get

$$M_{\nu} = V_{\text{tri-bi}} \begin{pmatrix} a + c - \frac{d}{2} & 0 & \frac{\sqrt{3}}{2}d \\ 0 & a + 3b + c + d & 0 \\ \frac{\sqrt{3}}{2}d & 0 & a - c + \frac{d}{2} \end{pmatrix} V_{\text{tri-bi}}^{T}$$

Tri-maximal mixing: TM2

Direct Approach of FLASY

 $\begin{array}{l} A_4 \text{ has 12 elements and subgroups:} \\ \text{three } Z_2, \text{ four } Z_3, \text{ one } Z_2 \times Z_2 \text{ (klein four-group)} \\ Z_2 & \{1, 5\}, \{1, T^2 ST\}, \{1, TST^2\} \\ Z_3 & \{1, T, T^2\}, \{1, ST, T^2 S\}, \{1, TS, ST^2\}, \{1, STS, ST^2S\} \\ X_4 & \{1, 5, T^2 ST, TST^2\} \\ \text{Suppose } A_4 \text{ is spontaneously broken to subgroups:} \\ \text{Neutrino sector preserves} \qquad Z_2 & \{1, S\} \\ \text{Charged lepton sector preserves} \quad Z_3 & \{1, T, T^2\} \end{array}$

$$T^T m_{LL}^{\nu} S = m_{LL}^{\nu}, \quad T^{\dagger} Y_e Y_e^{\dagger} T = Y_e Y_e^{\dagger}$$
$$[S, m_{LL}^{\nu}] = 0, \quad [T, Y_e Y_e^{\dagger}] = 0$$

Mixing matrices diagonalise $m_{LL}^{\nu},\ Y_eY_e^{\dagger}$ also diagonalize S and T, respectively !

For the triplet representation

$$S = \frac{1}{3} \begin{pmatrix} -1 & 2 & 2\\ 2 & -1 & 2\\ 2 & 2 & -1 \end{pmatrix}, \quad T = \begin{pmatrix} 1 & 0 & 0\\ 0 & \omega^2 & 0\\ 0 & 0 & \omega \end{pmatrix}; \quad \omega = e^{2\pi i/3}$$

$$m_{\nu LL} = \alpha \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix} + \beta \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} + \gamma \begin{pmatrix} 0 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} + \epsilon \begin{pmatrix} 0 & 1 & -1 \\ 1 & -1 & 0 \\ -1 & 0 & 1 \end{pmatrix}$$

Ding, King, Luhn, Stuart, JHEP1305, arXiv:1303.6180

This matrix respects $G_v = \{1, S\}$.

$$V_{\nu} = \begin{pmatrix} 2c/\sqrt{6} & 1/\sqrt{3} & 2s/\sqrt{6} \\ -c/\sqrt{6} + s/\sqrt{2} & 1/\sqrt{3} & -s/\sqrt{6} - c/\sqrt{2} \\ -c/\sqrt{6} - s/\sqrt{2} & 1/\sqrt{3} & -s/\sqrt{6} - c/\sqrt{2} \\ 1/\sqrt{3} & -s/\sqrt{6} + c/\sqrt{2} \end{pmatrix}$$

 $c = \cos \theta, \ s = \sin \theta$

1-3 mixing in TBM basis Tri-maximal mixing : TM2

Freedom of the rotation between 1st and 3rd column.

θ is fixed by the experimental data.

Another example with S_4 group All permutations among four objects, 4 = 24 elements

24 elements can be generated by S,T and U: $S^{2}=T^{3}=U^{2}=1$, $ST^{3}=(SU)^{2}=(TU)^{2}=(STU)^{4}=1$ h=2

Irreducible representations: 1, 1', 2, 3, 3'

$$U = \mp \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

Symmetry of a cube

$$S = \frac{1}{3} \begin{pmatrix} -1 & 2 & 2\\ 2 & -1 & 2\\ 2 & 2 & -1 \end{pmatrix}, \quad T = \begin{pmatrix} 1 & 0 & 0\\ 0 & \omega^2 & 0\\ 0 & 0 & \omega \end{pmatrix}; \quad \omega = e^{2\pi i/3}$$

 S₄ has subgroups nine Z₂, four Z₃, three Z₄, four Z₂ × Z₂ (K₄)
 Suppose S₄ is spontaneously broken to subgroups: Neutrino sector preserves SU (Z₂) Charged lepton sector preserves T (Z₃)

$$\begin{split} (SU)^T m_{LL}^{\nu} SU &= m_{LL}^{\nu}, \quad T^{\dagger} Y_e Y_e^{\dagger} T = Y_e Y_e^{\dagger} \\ & \blacksquare \\ & [SU, m_{LL}^{\nu}] = 0, \quad [T, Y_e Y_e^{\dagger}] = 0 \end{split}$$

$$m_{\nu LL} = \alpha \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix} + \beta \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} + \gamma \begin{pmatrix} 0 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} + \epsilon \begin{pmatrix} 0 & 1 & -1 \\ 1 & 2 & 0 \\ -1 & 0 & -2 \end{pmatrix}$$

¹⁶ Rodejohann, Zhang, arXiv:1207.1225, Li, Ding, arXiv1312.4401

$$V_{\nu} = \begin{pmatrix} 2/\sqrt{6} & c/\sqrt{3} & s/\sqrt{3} \\ -1/\sqrt{6} & c/\sqrt{3} - s/\sqrt{2} & -s/\sqrt{3} - c/\sqrt{2} \\ -1/\sqrt{6} & c/\sqrt{3} - s/\sqrt{2} & -s/\sqrt{3} - c/\sqrt{2} \\ c/\sqrt{3} + s/\sqrt{2} & -s/\sqrt{3} + c/\sqrt{2} \end{pmatrix}$$

$$c = \cos\theta, \ s = \sin\theta$$

2nd-3rd column mixing in TBM basis

Tri-maximal mixing TM1

3 Predicting CP phase Mixing sum rules

 $\begin{array}{l} \text{TM2} \\ \text{A}_{4}, \, \text{S}_{4} \end{array} V_{\nu} = \begin{pmatrix} 2c/\sqrt{6} & 1/\sqrt{3} & 2s/\sqrt{6} \\ -c/\sqrt{6} + s/\sqrt{2} & 1/\sqrt{3} & -s/\sqrt{6} - c/\sqrt{2} \\ -c/\sqrt{6} - s/\sqrt{2} & 1/\sqrt{3} & -s/\sqrt{6} + c/\sqrt{2} \end{pmatrix} \end{array}$

 $\begin{array}{ll} \textbf{TM1} & V_{\nu} = \begin{pmatrix} 2/\sqrt{6} & c/\sqrt{3} & s/\sqrt{3} \\ -1/\sqrt{6} & c/\sqrt{3} + s/\sqrt{2} & s/\sqrt{3} - c/\sqrt{2} \\ -1/\sqrt{6} & c/\sqrt{3} - s/\sqrt{2} & s/\sqrt{3} + c/\sqrt{2} \end{pmatrix} \\ c = \cos\theta, \ s = \sin\theta \\ \end{array}$

$$\begin{array}{l}
\textbf{TM2: Including CP phase} \\
V_{\nu} &= \begin{pmatrix} 2c/\sqrt{6} \\ -c/\sqrt{6} + se^{i\sigma}/\sqrt{2} \\ -c/\sqrt{6} - se^{i\sigma}/\sqrt{2} \\ -c/\sqrt{6} - se^{i\sigma}/\sqrt{2} \\ \end{bmatrix} \begin{pmatrix} 1/\sqrt{3} \\ 1/\sqrt{3} \\ -se^{-i\sigma}/\sqrt{6} - c/\sqrt{2} \\ -se^{-i\sigma}/\sqrt{6} + c/\sqrt{2} \\ \end{bmatrix} \\
sin^{2} \theta_{13} &= \frac{2}{3} \sin^{2} \theta, \quad \sin^{2} \theta_{12} = \frac{1}{1+2\cos^{2} \theta} \\
sin^{2} \theta_{23} &= \frac{1}{2} \left(1 + \frac{\sqrt{6} \sin 2\theta \cos \sigma}{1+2\cos^{2} \theta} \right) \\
\end{array}$$

$$\sin \delta_{CP} = -\frac{(2+\cos 2\theta)\sin\sigma}{\sqrt{[(2+\cos 2\theta)^2 - 3\sin^2 2\theta\cos^2\sigma]}}$$

Y.Shimizu, M.T, arXiv 1405.1521

Y.Shimizu, M.T, arXiv 1405.1521

]σ

Unitarity Triangle $U_{e1}U_{\mu 1}^* + U_{e2}U_{\mu 2}^* + U_{e3}U_{\mu 3}^* = 0$

Reference Triangle

$$\delta_{CP} = -\frac{\pi}{2}, \quad \sin^2 \theta_{13} = 0.0251, \quad \sin^2 \theta_{12} = 0.312, \quad \sin^2 \theta_{23} = 0.514$$

$$V_{\nu} = \begin{pmatrix} 2/\sqrt{6} & c/\sqrt{3} & se^{-i\sigma}/\sqrt{3} \\ -1/\sqrt{6} & c/\sqrt{3} + se^{i\sigma}/\sqrt{2} & se^{-i\sigma}/\sqrt{3} - c/\sqrt{2} \\ -1/\sqrt{6} & c/\sqrt{3} - se^{i\sigma}/\sqrt{2} & se^{-i\sigma}/\sqrt{3} - c/\sqrt{2} \\ -1/\sqrt{6} & c/\sqrt{3} - se^{i\sigma}/\sqrt{2} & se^{-i\sigma}/\sqrt{3} + c/\sqrt{2} \end{pmatrix}$$

$$\sin^2 \theta_{13} = \frac{1}{3} \sin^2 \theta, \quad \sin^2 \theta_{12} = 1 - \frac{1}{2 + \cos^2 \theta}$$

$$\sin \delta_{CP} = -\frac{\sin 2\theta (5 + \cos 2\theta) \sin \sigma}{\sqrt{\sin^2 2\theta [(5 + \cos 2\theta)^2 - 24 \sin^2 2\theta \cos^2 \sigma]}}$$

Y.Shimizu, M.T., arXiv 1405.1521

Y.Shimizu, M.T., arXiv 1405.1521

Generalized CP : maximal CP phase

Unitarity Triangle $U_{e1}U_{\mu1}^* + U_{e2}U_{\mu2}^* + U_{e3}U_{\mu3}^* = 0$

$$\delta_{CP} = -\frac{\pi}{2}, \quad \sin^2 \theta_{13} = 0.0251, \quad \sin^2 \theta_{12} = 0.312, \quad \sin^2 \theta_{23} = 0.514$$

We consider another case: Rotation of charged lepton mass matrix

$$U_{\rm PMNS} = \begin{pmatrix} \cos \phi & 0 & -e^{-i\sigma} \sin \phi \\ 0 & 1 & 0 \\ e^{i\sigma} \sin \phi & 0 & \cos \phi \end{pmatrix} V_{\rm TBM}$$
$$\sin^2 \theta_{12} = \frac{2(1 - \sin 2\phi \cos \sigma)}{3(2 - \sin^2 \phi)}, \quad \sin^2 \theta_{13} = \frac{1}{2} \sin^2 \phi, \quad \sin^2 \theta_{23} = \frac{1}{2 - \sin^2 \phi}$$
$$\sin \delta_{CP} = \frac{\sin 2\phi(2 - \sin^2 \phi) \sin \sigma}{\sqrt{\sin^2 2\phi(4 - 3\sin^2 \phi + 2\sin 2\phi \cos \sigma)(1 - \sin 2\phi \cos \sigma)}} \begin{bmatrix} \sin^2 \theta_{23} > \frac{1}{2} \\ \sin^2 \theta_{23} > \frac{1}{2} \\ \sin^2 \theta_{23} > \frac{1}{2} \end{bmatrix}$$

Marzocca, Petcov, Romanio, Sevilla, arXiv 1302.0423 Petcov, arXiv 1405.6006

Rotation of Charged Lepton

Y.Shimizu, M.T., arXiv:1405.1521

Rotation of Charged Lepton

Unitarity Triangle $U_{e1}U_{\mu1}^* + U_{e2}U_{\mu2}^* + U_{e3}U_{\mu3}^* = 0$

4 Summary

- CP phase can test the neutrino mass textures with combination of the mixing angles.
- Require the precise determination of Θ_{23}
- Wait improved T2K data and NOvA new data !