Searching for the LFV decay $\mu \rightarrow e\gamma$ with MEG and MEG-II

on behalf of the MEG collaboration

4th workshop on flavour symmetries and consequences in accelerators and cosmology

University of Sussex 17-21 June 2014

 As for other charged lepton flavor violating decays: allowed but unobservable in the Standard Model (SM)

 Enanched (sometimes just below experimental limit) in many New Physics Model

Observation of $\mu \rightarrow e\gamma$ is Physics beyond SM

$$BR(\mu \rightarrow e\gamma)\Big|_{SM} < 10^{-50}$$

Cecilia Voena, FLASY 2014

A long quest

Why $\mu \rightarrow e\gamma$? - experiment

- Intense muon beams available
- Clear two-body signature (muon decays at rest)
- Very good experimental resolutions are needed to suppress backgrounds

Cecilia Voena, FLASY 2014

SIGNAL

 $\Theta_{ev}=0$

T_{ev}=0

E_v=52.8 MeV

E_=52.8 MeV

The MEG experiment

Paul Scherrer Institut:

most intense muon beam in the world up to $10^8 \mu^+/s$ (3x10⁷ μ^+/s used)

- J. Adam et al., Eur.Phys.J. C 73(2013) 2365
 - 900I liquid Xe detector
 - Low mass drift chambers planes with fast scintillators in a gradient magnetic field

MEG Datasets

• New results on full data set will be released soon

Analysis strategy

- Blind-box likelihood analysis strategy
- Observables: $E_{e+}E_{v}, \theta_{ev}, \phi_{ev}, T_{ev}$ (energies, relative angle and time)
- Careful treatment of correlations

- Signal and radiative decay PDF by combining the results of the calibration procedures
- Accidental background PDF from data sidebands

PDF definitions

Statistical approach and sensitivity

Confidence intervals from a frequentistic procedure based on the profile likelihood ratio

$$\lambda_p(N_{SIG}) = \frac{\max_{N_{RMD}, N_{ACC}} \mathcal{L}(N_{SIG}, N_{RMD}, N_{ACC})}{\max_{N_{SIG}, N_{RMD}, N_{ACC}} \mathcal{L}(N_{SIG}, N_{RMD}, N_{ACC})}$$

Sensitivity: median of upper limits from an ensamble of toy MC experiments (checked on data-sidebands)

Branching ratio sensitivity: 7.7x10⁻¹³

2009-2011 likelihood fit result

Physics results

Constraints on new Physics

Outlook

 Current MEG result improves by a factor four previous result

- Final MEG sensitivity: ~5x10⁻¹³
- We are approaching the limit of the current detector performances while the available beam rate is not fully exploited

MEG-II concept

- Upgraded items
 - Higher µ intensity
 - Single volume
 drift chamber with
 stereo angle wire
 configuration
 - Pixelated timing
 counter with SiPM
 readout
 - LXe detector with SiPM readout
 - Thinner target
 - New readout electronics

MEG-II goals

Beam rate $7 \times 10^7 \,\mu/s$

2013	201	4	2015		2016		2017	,	2018	}	2019
											J
Des	ign	Construc	ction	Eng.Run		Run		Run		Run	

weeks

New position spectrometer

- Single volume 2π coverage drift chamber
 - 2m long, stereo wire, low mass
 - 1200 sense wires
 - 8° stereo angle
 - high transparency to timing counter
 - high rate capability

New timing counter

Pixelated detector
600 counters read out by SiPM
many time measurements per track

~250 counters $\times 2$ (upstream, downstream side)

Cecilia Voena, FLASY 2014

New LXe detector

- Smaller readout devices
- => better light collection
- Different devices rearrangements
- => better light containment
- New VUV sensitive large area SiPM

In the next decade

- MEG-II $\mu \rightarrow e\gamma$: goal sensitivity 5x10⁻¹⁴
- mu2e, COMET μ N \rightarrow eN: goal sensitivity 10⁻¹⁶-10⁻¹⁸
- Mu3e μ →eee: 10⁻¹⁵ 10⁻¹⁶

Conclusions

• MEG at PSI established a new constraint on the existence of the LFV $\mu \rightarrow e\gamma$ decay:

 $BR(\mu \rightarrow e\gamma) < 5.7 \times 10^{-13} @90\% CL.$

• Final MEG sensitivity: 5x10⁻¹³

- MEG-II program fully funded is proceeding timely
 - Keep MEG basic design but important upgrades of all the subsystems
- MEG-II 2018 ultimate sensitivity: ~5x10⁻¹⁴

Backup

The muon beam: why PSI?

- Most intense continuous muon beam in the world
- Up to ~10⁸ μ⁺/s: only 3x10⁷ μ⁺/s used for MEG to optimize the sensitivity

Proton beam current Muon production

- Muon central momentum Δp/p
- : ~2.2mA
- : from π decaying on the production target surface

m :28 MeV/c

: 5% (full-width)

2009-2011 event distribution

Calibrations

New: pulsed neutron generator: 9 MeV photons

Cecilia Voena, FLASY 2014

Performances

PDF parameters	Present MEG	Upgrade scenario		
e ⁺ energy (keV)	306 (core)	130		
$e^+ \theta$ (mrad)	9.4	5.3		
$e^+ \phi$ (mrad)	8.7	3.7		
e ⁺ vertex (mm) Z/Y(core)	2.4 / 1.2	1.6/0.7		
$\gamma \text{ energy } (\%) (w < 2 \text{ cm})/(w > 2 \text{ cm})$	m) 2.4/1.7	1.1 / 1.0		
γ position (mm) $u/v/w$	5/5/6	2.6 / 2.2 / 5		
γ -e ⁺ timing (ps)	122	84		
Efficiency (%)				
trigger	≈ 99	≈ 99		
γ	63	69		
e+	40	88		
muon rate	3.3x10 ⁷ /sec	7x10 ⁷ /sec		

TABLE XI: Resolution (Gaussian σ) and efficiencies for MEG upgrade

New Kalman filter

- New Kalman filter procedure:
 - 7% increase in tracking efficiency
 - smaller resolution tails
 - per event estimate of track uncertainties parameters used in the likelihood analysis (10% increase of sensitivity)

New photon pile-up rejection

- New analysis of the Liquid Xenon waveforms to reject pile-up of photons
 - 7% increase in photon detection efficiency
 - suppressed rate of unrecognized pile-up events

- Fictitious analysis regions in the sidebands of $E_{\gamma},\,T_{e\gamma}$ and angular

Example: phi negative sideband -150mrad< ϕ_{ev} <50mrad

Systematic errors

Table 16: Relative contributions of uncertainties to upper limit of \mathcal{B} .

Center of $\theta_{e\gamma}$ and $\phi_{e\gamma}$			
Positron correlations			
E_{γ} scale	0.07		
$E_{\rm e}$ bias	0.06		
$t_{e\gamma}$ signal shape	0.06		
$t_{e\gamma}$ center	0.05		
Normalization			
E_{γ} signal shape			
E_{γ} BG shape	0.03		
Positron angle resolutions (θ_e , ϕ_e , z_e , y_e)			
γ angle resolution $(u_{\gamma}, v_{\gamma}, w_{\gamma})$			
$E_{\rm e}$ BG shape			
$E_{\rm e}$ signal shape			
Angle BG shape	0.00		
Total	0.25		

Normalization

Two methods:

- Count (prescaled) Michel positron (correcting for small differences with signal)

- Count radiative decays

Projected RMD distributions (2011 data)