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Some Questions Flavour Symmetries Try to Answer

m Why do particles mix as they do? (— this talk)
m Why are there 3 families of particles?
m Why are the masses of the particles what they are?

m Is there CP violation in the lepton sector? (— this
talk)

(http://quovadisblog.com /wp-
content/uploads/2009/08/Question-

sign.jpg)




Flavour Symmetries (1)

m Flavour symmetries extend the symmetry group of the
Standard Model by an additional (“horizontal*) ©
symmetry that connects different flavours of particles: e T e

\
Ggauge X GFlavour- 6;0 s ‘
A
m The invariance of the Lagrangian under Gpayour e o

restricts the possible couplings and thus the possible
mixing matrices. Picture from

http://theophys.kth.se/tepp/Flavor.jpg




Flavour Symmetries (2)

m For Example, have left-handed doublets transform under a 3-dim representation:
v v
() = prle) (<)
m Under such transformations, Majorana Neutrinos with a mass term u[M”VL #0
have a maximal symmetry of K = Z, x Z;.

m = The flavour group Gplayour must be broken to G¥ = K, Z, or {1} in the
neutrino sector.

Models with G¥ = K = Z, x Z, are called " Direct Models".

m Dirac fields can accomodate a maximal symmetry of U(1) x U(1).




Direct Models

Generators
S,T,U

Family
symmetry

S,U preserve

(From Steve F. King, Christoph Luhn,
Neutrino Mass and Mixing with Discrete

Symmetry, 1303.6180)

In direct models, the mixing matrix is fixed just from
the choice of the Z; X Z» subgroup of Ggjavour-

Call the matrices that diagonalise M€ and MY, U¢
and UY resp. = UPMNS — et yv

Let G¥ = {1,G}, G}, Gy }. Then

[(M)TMmY, G/]1=0and G/UY = U}.

One can systematically list all mixing matrices allowed
in a direct model by a flavour group via its subgroups.

For Reviews see e.g. S. F. King and C. Luhn, Rept.
Prog. Phys. 76 (2013) 056201 and S. F. King, A.
Merle, S. Morisi, Y. Shimizu and M. Tanimoto,
arXiv:1402.4271




A(6n°) Groups (1)

The groups A(6n?) are non-abelian discrete
subgroups of U(3) of order 6n2 and are isomorphic to

a semidirect product: A(6n2) = (Z, x Z,) x S3

The best-known member of the series A(6n?) is

Sy = A(24). (

The left-handed leptons transform (without loss of b=
generality) under a 3-dimensional representation with
the generators a, b, ¢, d (where 1 = €27/, (

U(3) D A(6n%) D A(3n?) €=
A(6 x 12) = S5, A(6 x 22) = Sy,
A(6 x 3%) = A(54), A(6 x 4%) = A(96), d= (

A3 x1%) = Z3, A(3x 22) = As, A3 x 3%) = A(27)
m The group theory of A(6n?): J. A. Escobar and C.
Luhn, J. Math. Phys. 50 (2009) 013524




A(6n°) Groups (2)

m Searches in GAP for allowed mixing matrices in direct models = Only A(6n?)
groups remain viable
(C. S. Lam, Phys. Rev. D 87 (2013) 013001; M. Holthausen, K. S. Lim and M.
Lindner, Phys. Lett. B 721 (2013) 61)

m Models with examples of A(6n?) groups are popular and succesful:
(R. d. A. Toorop, F. Feruglio and C. Hagedorn, Phys. Lett. B 703, 447 (2011);
R. de Adelhart Toorop, F. Feruglio and C. Hagedorn, Nucl. Phys. B 858, 437
(2012);
G. -J. Ding, Nucl. Phys. B 862, 1 (2012);
S. F. King, C. Luhn and A. J. Stuart, Nucl. Phys. B 867, 203 (2013);
C. S. Lam, Phys. Rev. D 87, no. 5, 053012 (2013);
S. F. King and C. Luhn, JHEP 0910, 093 (2009);
I. de Medeiros Varzielas and G. G. Ross, JHEP 1212, 041 (2012);
R. Krishnan, J. Phys. Conf. Ser. 447, 012043 (2013);
M. Holthausen and K. S. Lim, Phys. Rev. D 88, 033018 (2013))



Mixing Results from A(6n?)

m Only for even n does A(6n?) always contain phenomenologically viable Klein
subgroups

m In terms of the generators a, b, ¢, the (relevant) Klein groups are given by
K=1{1, c"? abc?, abc7+"/2} with vy =10,...,n/2

m All mixing matrices for even n have the form (up to ordering and without
Majorana phases) where 9 depends on the subgroup and takes values
9 =mny/n,y=0,...,n/2

\/E cos(v) e \/g sin(9)
V| —/Zsin(z+9) L \[lcos(T+9)
Visn(G=0) 5 Eeos(z-0)

m This lepton mixing matrix is trimaximal with 6;3 fixed up to a discrete choice and
CP-phase 0 or 7.

m Each value of Vi3 corresponds to two possible values of 63 with cp = 0 and
§cp = m, leading to the sum rule 63 = 45° F 013/1/2.

o =] - =




Mixing Results (contd.)

One can plot the possible values of | Vi3], the lines denote the present approximate 3o
range of |Vi3| (from Fogli et al,1205.5254):

[V1s]
020 T
0.15 —
010"
0.052— - -:'j.-:
0 0 100 150

Examples include |Vi3| = 0.211,0.170,0.160,0.154 for n = 4,10, 16, 22, respectively.

o F = = =




Generalised CP (1)

m In a direct model, all mixing angles and the Dirac phase are purely predicted from
symmetry.

m In the Standard Model, violation of CP occurs in the flavour sector.

m Promoting CP to a symmetry at high energies which is then broken allows to
impose further constraints on low energy mass matrices.

m For direct models and especially with A(6n2) groups, CP symmetries had not
been studied in detail yet.




Generalised CP (2)

m Examples for models employing generalised CP:
I. Girardi, A. Meroni, S. T. Petcov and M. Spinrath, JHEP 1402, 050 (2014)
G. -J. Ding and Y. -L. Zhou, arXiv:1312.5222
F. Feruglio, C. Hagedorn and R. Ziegler, Eur. Phys. J. C 74, 2753 (2014)
C. Luhn, Nucl. Phys. B 875, 80 (2013)
G. -J. Ding, S. F. King and A. J. Stuart, JHEP 1312, 006 (2013)
G. -J. Ding, S. F. King, C. Luhn and A. J. Stuart, JHEP 1305, 084 (2013)
M. S. Boucenna, S. Morisi, E. Peinado, Y. Shimizu and J. W. F. Valle, Phys.
Rev. D 86, 073008 (2012)

m The interplay of flavour and CP must be carefully discussed, this will make up the
remainder of the talk. Literature:
M. -C. Chen, M. Fallbacher, K. T. Mahanthappa, M. Ratz and A. Trautner,
arXiv:1402.0507
F. Feruglio, C. Hagedorn and R. Ziegler, JHEP 1307, 027 (2013)
C. C. Nishi, Phys. Rev. D 88, 033010 (2013)
W. Grimus and M. N. Rebelo, Phys. Rept. 281, 239 (1997)
M. Holthausen, M. Lindner and M. A. Schmidt, JHEP 1304, 122 (2013)



Generalised CP (3)

m For fields that transform as ¢, — pr(g)¢r under Gpjayour, define generalised CP as
or = Xr (‘/’;F(XP)) :

Xg is a unitary matrix.

m Only gCP transformations that map each representation on itself make
observables conserve CP (M. -C. Chen, M. Fallbacher, K. T. Mahanthappa,
M. Ratz and A. Trautner, arXiv:1402.0507).

m The mass matrices will be constrained by

Xetme(Me)txe = (M8)*(M®)T and XY T MY XY = (MY)*

m If both flavour and gCP symmetries are present, they have to fulfill the
consistency equation: X,p* (g)X,Jr = pr(g’).

m For faithful representations, this defines a bijective mapping on the group:

ux(g) = p; H(Xep} (g)XT)




Brief Digression: Group automorphisms

m Inner automorphisms: A single group element h, exists such that
—1

Vg : u(g) = hy " ghy

Outer automorphisms: All other automorphisms

(u inner) = (All group elements are mapped into their original class)

(u outer) = (u inner) = (Not all group elements are mapped into their original
class)

(All group elements are mapped into their original class) = (u inner)

(Not all group elements are mapped into their original class)
= (u outer)

m This proves

(u inner) < (All group elements are mapped into their original class)




Group automorphisms and generalised CP:
X, € €'*G for real representations

m For ux(g) := p; {(Xepr(g)XT), if p,(g) is real and X, € e'®G, ux is an inner
automorphism.

m Can there be a matrix X, that is not in € *G but where us maps every group
element into its original class?

m ug is inner = 3lhy : ug(g) = h; ghy.

m From this follows that p,(hu)_lf(,p,(g) = p,(g)p,(hljl)f(,, i.e. p,(hu_l))"(,
commutes with every group element.

m With Schur’s Lemma follows X: = Apr(hy) with |A| = 1 which contradicts
Xr & e'*G.

m For real representations this proves that inner automorphisms correspond to
X, € e'*G.




Group automorphisms and gCP:
X, € €'*G for complex representations

Assume a matrix w, exists such that p,(g) — W,Tpr(g)*w, is in the class of the
inverse of g, C(g~1).

This can be seen as mapping g onto g~ ! followed by an inner automorphism
onto another element in C(g™1).

Are there X, ¢ e/®G that map elements into a different class as g =17 - No, c.f.
previous page.

Only gCP transformations that map into the class of the inverse make
observables conserve CP (M. -C. Chen, M. Fallbacher, K. T. Mahanthappa,
M. Ratz and A. Trautner, arXiv:1402.0507).

A(6n?) contains an element that can be w,, namely w, = p,(b).
= gCP (A(6n?)) = e’ *A(6n?).




Predictions for Majorana phases and Ov 3 purely from flavour and CP
symmetry (1)

m Residual flavour and residual gCP symmetries must still be consistent: For
K =1, c"/? abc?, abc’Y‘*'"/z}, consistent gCP transformations are

X, = pr(e*cXdPF2) p, (e’ abc*d®) with x =0,...,n—1

m = Choice of residual flavour symmetry determines allowed residual gCP
symmetries

m = For all A(6n?) groups enhanced by CP invariance the mixing matrix is fixed up
to a discrete choice and always has the form

\/gcos( ’Y) e"(‘Pl\_/iPS)/z [i]i[sm(" )
USHE = | = /2 sin(=(3+2)) I i B cos(n(3+ %
ol

\/75|n(7r l77)) 7& []\/7cos(7r(67

where @1 — @3 = —M;rx) for X = c*d®*+27 abc*d?




Predictions for Majorana phases and Ov 3 purely from flavour and CP
symmetry (2)

m The key observable for Majorana phases is neutrinoless double-beta decay.

m In this framework, the effective mass is given by

"(0431—25)|

2 ! 1 . 2 /
[Mee| = |5 m C°52(ﬂ) 4+ Zmpe'® 4 “mg sin2(ﬂ)e
3 n 3 3 o

with my =m; , my = ,/m,2 + Amg1 , m3 = ,/m,2 + Amg1 for normal ordering
and m; = 1/m,2 + Am%1 L, my = \/m,2 + Am%1 + Am%1 , m3 = m; for inverted

ordering, where m; is the mass of the lightest neutrino and ' = v mod %.

m There are 8 cases to distinguish for az; = ao; + 67I"YT+X , 3] = a3 — 20 .




0vBB (1)
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0vBpB (2)

m For inverted hierarchy there is no particular structure visible. Additionally, the
predicted values for |mee| are well within the reach of e.g. phase Il of the
GERDA experiment of |mgs"| ~ 0.02...0.03 eV.

m For normal ordering, it follows that for the values of v/n and x/n considered
there always is a lower limit on |mee| which means that these parameters are
accessible to future experiments.

m Further for normal ordering, in the very low mjightes: region, predicted values of
|mee| are closer to the upper end of the blue three sigma range.

m With the current data, no combination of a»; and @33 is favoured. Only for
values of |mee| < 0.0001 eV and miightest < 0.01...0.001 eV it would be possible
to distinguish different values of &p; and &s;.




Summary and Outlook

m We examine lepton mixing patterns in direct models with A(6n?) groups and
consistent generalised CP.

m For direct models, without corrections, A(6n?) is the most (only?) promising
class of flavour groups

m Further in direct flavour models, one can analyse A(6n?) for all n simultaneously.

m This yields experimentally viable predictions for lepton mixing parameters and a
sum rule.

m (Broken) invariance under consistent generalised CP transformations is the only
framework that allows to predict Majorana phases purely from symmetry.

m We show, using a general arguement, that in presence of A(6n?), physical CP
transformations are X, = e*A(6n?).

m Predictions for neutrinoless double-beta decay are accessible to experiments in
the (near) future.




