Multicomponent dark matter in radiative seesaw model

Mayumi Aoki (Kanazawa U.)

Collaboration with J. Kubo (Kanazawa U.), H. Takano (IPMU)

[arXiv:1406.xxxx [hep-ph]]

Mayumí Aokí

FLASY2014 University of Sussex June. 17, 2014

Contents

- I. Introduction
- II. 1-loop radiative seesaw model
- III. Model

Relic abundance, Direct detection, Indirect detection

IV. Summary

Dark Matter

The existence of DM has been confirmed by astronomy, but the origin of DM is still unknown.

Gravitational lens

Galaxy rotation curves

Bullet Cluster

- Stability of the DM can be guaranteed by an unbroken symmetry.
- The simplest possibility is a Z₂ symmetry.
- If the DM stabilizing symmetry is larger than Z₂, a multicomponent DM system can be realized.

e.g.) $Z_N (N \ge 4)$

a product of two or more Z_2 's

Boehm, Fayet and Silk, PRD69 (2004); D'Eramo and Thaler, JHEP 1006 (2010); Belanger et al, JCAP 1204 (2012), arXiv:1403.4960 [hep-ph]; Ivanov and Keus, Phys. Rev. D 86, (2012), etc.

Mayumí Aokí

FLASY2014 University of Sussex

Multicomponent DM system

DM annihilation processes

In addition to the standard annihilation processes, there can be nonstandard DM annihilation processes.

FLASY2014 University of Sussex

DM annihilation processes

In addition to the standard annihilation processes, there can be nonstandard DM annihilation processes.

DM annihilation processes

In addition to the standard annihilation processes, there can be nonstandard DM annihilation processes.

Mayumí Aokí

FLASY2014 University of Sussex

DM annihilation processes

In addition to the standard annihilation processes, there can be nonstandard DM annihilation processes.

We study the multicomponent DM system in the extended Ma model.

Mayumí Aokí

LASY2014 University of Sussex

• Inert doublet scalar
$$\eta = \begin{pmatrix} \eta^+ \\ (\eta^0_R + i\eta^0_I)/\sqrt{2} \end{pmatrix}, \quad \langle \eta \rangle = 0$$

- Z₂ symmetry is introduced to forbid the Dirac neutrino mass term. Φ^{0}_{SM} even \rightarrow Then the neutrino masses are generated at the one-loop level . N_R^{α}
- Relevant Lagrangian

$$\mathcal{L} = Y_{ik}^{\nu} L_i \epsilon \eta N_k^c - \left[\frac{1}{2} M_k N_{Rk}^c N_{Rk}^c + \frac{1}{2} \lambda_5 (H^{\dagger} \eta)^2 + h.c.\right]$$

- Single component DM

$$N_{R}$$
, $\eta^{0}{}_{R}$ or $\eta^{0}{}_{I}$

Mayumi Aoki

FLASY2014 University of Sussex

even

odd

• Neutrino masses

$$(\mathcal{M}_{\nu})_{ij} = \sum_{k} \frac{Y_{ik}^{\nu} Y_{jk}^{\nu} M_{k}}{16\pi^{2}} \left[\frac{m_{\eta_{R}^{0}}^{2}}{m_{\eta_{R}^{0}}^{2} - M_{k}^{2}} \ln \left(\frac{m_{\eta_{R}^{0}}}{M_{k}} \right)^{2} - \frac{m_{\eta_{I}^{0}}^{2}}{m_{\eta_{I}^{0}}^{2} - M_{k}^{2}} \ln \left(\frac{m_{\eta_{I}^{0}}}{M_{k}} \right)^{2} \right]$$

$$\cdot \text{ small } \lambda_{5} \text{ case } (\lambda_{5} << \mathbf{m}_{0})$$

$$2\lambda_{5}v^{2} = m_{\eta_{R}}^{2} - m_{\eta_{I}}^{2} \qquad m_{0}^{2} = \frac{m_{\eta_{R}^{0}}^{2} + m_{\eta_{I}^{0}}^{2}}{2} \qquad v_{L}^{i} \xrightarrow{\times} N_{R}^{c \alpha} \qquad v_{L}^{j}$$

$$(M_{\nu})_{ij} \simeq \frac{Y_{ik}Y_{jk}\lambda_{5}v^{2}}{8\pi^{2}} \frac{M_{k}}{m_{0}^{2} - M_{k}^{2}} \left\{ 1 - \frac{M_{k}^{2}}{m_{0}^{2} - M_{k}^{2}} \ln \frac{m_{0}^{2}}{M_{k}^{2}} \right\}$$

$$M\nu = 0.1 \text{ eV, New masses } \sim O(100) \text{ GeV} \rightarrow |Y_{\nu}Y_{\nu}\lambda_{5}| \sim 10^{-10}$$

• Lepton Flavor Violation :

- $\mu \rightarrow e\gamma$ constraint :

B(μ→eγ)^{exp} ≤ 5.7×10⁻¹³ MEG(2013)
$$Y_{\nu}Y_{\nu} \le 10^{-4}$$

FLASY2014 University of Sussex

• Dark Matter

 N_{R} , $\eta^{0}{}_{R}$ or $\eta^{0}{}_{I}$

Mayumí Aokí

FLASY2014 University of Sussex

- There is the tension between the LFV and the relic abundance.
- We need some fine tuning to obtain the small λ_5 for $Y_{\nu} \sim 0.01$.

 $\lambda_5 \sim 10^{-5}$ for $Y_{\nu} \sim 0.01$

\rightarrow Extension the Ma model

Mayumi Aoki

FLASY2014 University of Sussex June. 17, 2014

11

Model

- The λ_5 term , $\lambda_5 (H^{\dagger}\eta)^2 + h.c.$, in Ma model is forbidden by #L.
- The λ_5^{eff} is generated at the 1-loop level.
- New relevant terms for neutrino mass :

$$V \supset \frac{\kappa}{2} \left[(H^{\dagger} \eta) \chi \phi + h.c. \right] + \frac{1}{2} m_5^2 [\phi^2 + (\phi^*)^2]$$

- #*L* is softly violated at m_5^2 term.
- $m_{\eta R} = m_{\eta I}$ at the tree level. The degeneracy is lifted by λ_5^{eff} .
- DM candidates are N_{R} , $\eta^{0}_{R/I}$, χ , $\phi^{0}_{R/I}$ Multicomponent DM system $(Z_2, Z_2') = (-,+), (+,-), (-,-)$

Mayumí Aokí

FLASY2014 University of Sussex June. 17, 2014 12

Neutrino mass

• Neutrino mass

Neutrino mass

$$(\mathcal{M}_{\nu})_{ij} \simeq -\frac{\lambda_{5}^{\text{eff}} v_{h}^{2}}{8\pi^{2}} \sum_{k} \frac{Y_{ik}^{\nu} Y_{jk}^{\nu} M_{k}}{m_{\eta^{0}}^{2} - M_{k}^{2}} \left[1 - \frac{M_{k}^{2}}{m_{\eta^{0}}^{2} - M_{k}^{2}} \ln \frac{m_{\eta^{0}}^{2}}{M_{k}^{2}} \right].$$

$$m_{\eta^{0}} = m_{\eta_{R}^{0}} \simeq m_{\eta_{I}^{0}}$$

$$\nu_{L}^{i}$$

$$\nu_{L}^{i}$$

$$N_{R}^{c a}$$

$$\lambda_{5}^{\text{eff}} \operatorname{term} \left(\operatorname{for} m_{5}^{2} = m_{\phi R}^{2} - m_{\phi I}^{2} < < m_{\phi R}^{2} \right)$$

$$\lambda_{5}^{\text{eff}} \simeq -\frac{\kappa^{2}}{64\pi^{2}} \frac{m_{5}^{2}}{m_{\phi_{R}}^{2} - m_{\chi}^{2}} \left[1 - \frac{m_{\chi}^{2}}{m_{\phi_{R}}^{2} - m_{\chi}^{2}} \ln \frac{m_{\phi_{R}}^{2}}{m_{\chi}^{2}} \right]$$

- The neutrino mass is proportional to $|Y_{\nu} \kappa|^2 m_5^2$.
- $M\nu = 0.1 \text{ eV}$, New physical masses ~O(100) GeV $\rightarrow \kappa Y_{\nu} m_5 \sim 10^{-2} \text{ GeV}$
- $\kappa \sim 0.1$, $Y_{\nu} \sim 0.01 \rightarrow m_5 \sim 10 \text{ GeV}$, $\lambda_5^{\text{eff}} \sim 10^{-5}$

The smallness of λ_5 is explained by the radiative generation.

Mayumi Aoki

FLASY2014 University of Sussex June. 17, 2014 13

 ϕ

U

Dark matter

We assume N_R , χ and ϕ_R are the DM.

Three-component DM system.

DM annihilation processes:

We assume $m_{\phi} > m_{\chi}$.

Standard annihilation : $NN \to XX', \ \phi_R \phi_R \to XX', \ \chi \chi \to XX',$

DM conversion : $\phi_R \phi_R \to \chi \chi$,

Semiannihilation : $N\phi_R \to \chi\nu, \ \chi N \to \phi_R\nu, \ \phi_R\chi \to N\nu,$

- Annihilation processes of ϕ_I

- Conversion between $\phi_I \rightleftharpoons \phi_R$

Standard annihilation : $\phi_I \phi_I \to XX'$, DM conversion : $\phi_I \phi_I \to \chi \chi$, Semiannihilation : $N\phi_I \to \chi \nu$, $\chi N \to \phi_I \nu$, $\phi_I \chi \to N \nu$.

- We sum up the number densities of ϕ_I and ϕ_R , $n_{\phi} = n_{\phi I} + n_{\phi R}$, and solve the Boltzmann equation of n_N , n_{ϕ} and n_{χ} .

Dark matter

- In the Ma model, the $\Omega_N h^2$ tends to be larger than 0.12. However, in this model, the contribution from the semiannihilation can enhance the annihilation rate for N_R .

The tension between the constraints of LFV and $\Omega_N h^2$ becomes mild.

Mayumi Aoki

FLASY2014 University of Sussex June. 17, 2014 15

Relic abundance

Benchmark Point

M_1	300 GeV		
$m_{\eta^0_R}$	$m_{\chi} + m_{\phi_R} - 10 \text{ GeV}$		
m_{ϕ_I}	$m_{\chi} + 60 \text{ GeV}$		
m_{ϕ_R}	$m_{\chi} + 50 \text{ GeV}$		
$\gamma \equiv \gamma_{2,5,7}$	0.1		
κ	0.4		

Mayumí Aokí

Relic abundance

Benchmark Point

Mayumí Aokí

FLASY2014 University of Sussex

Direct detection

The current upper bound for the DM-nucleon cross section is estimated assuming the single component DM scenario.

Constraint on the detection rate in the multicomponent DM scenario.

effective cross section :
$$\sigma_i^{\text{eff}} = \sigma_i \left(\frac{\Omega_i h^2}{\Omega_{\text{total}} h^2} \right)$$

Direct detection

The current upper bound for the DM-nucleon cross section is estimated assuming the single component DM scenario.

effective cross section : $\sigma_i^{\text{eff}} = \sigma_i \left(\frac{\Omega_i h^2}{\Omega_{\text{total}} h^2} \right)$

Constraint on the detection rate in the multicomponent DM scenario.

Our model

- χ and ϕ_R have interactions to the quarks.

- The effective cross sections :

$$\sigma_{\phi_R}^{\text{eff}} = \sigma_{\phi_R} \left(\frac{\Omega_{\phi_R} h^2}{\Omega_{\text{tot}} h^2} \right) \qquad \sigma_{\chi}^{\text{eff}} = \sigma_{\chi} \left(\frac{\Omega_{\chi} h^2}{\Omega_{\text{tot}} h^2} \right)$$

Direct detection

The current upper bound for the DM-nucleon cross section is estimated assuming the single component DM scenario.

Constraint on the detection rate in the multicomponent DM scenario.

effective cross section : $\sigma_i^{\text{eff}} = \sigma_i \left(\frac{\Omega_i h^2}{\Omega_{\text{total}} h^2} \right)$ χ, ϕ_R $\gamma_2, \gamma_5/2$ χ, ϕ_R Our model - χ and ϕ_R have interactions to the quarks. q - The effective cross sections : $\Omega_{total}h^2 \sim 0.12$ $\sigma_{\phi_R}^{\text{eff}} = \sigma_{\phi_R} \left(\frac{\Omega_{\phi_R} h^2}{\Omega_{\text{tot}} h^2} \right) \qquad \sigma_{\chi}^{\text{eff}} = \sigma_{\chi} \left(\frac{\Omega_{\chi} h^2}{\Omega_{\text{tot}} h^2} \right)$ c c t 10^{-44} o e t t t 10^{-45} - At m χ =220 (380) GeV for M₁=300 (500)GeV ت _ک 10⁻⁴⁵ $M_1=300 \text{ GeV}$ $M_1=500 \text{ GeV}$ \rightarrow large γ , small $\Omega \chi, \phi$

- The obtained cross section is accessible to XENON1ton.

University of Sussex FLASY2014

June. 17, 2014 17

200 250 300 350 400 450 500

 m_{γ} [GeV]

q

LUX

Cosmic ray from the DM annihilation.

Indirect signals

We discuss the neutrinos from the annihilation of captured DM in the Sun.

Neutrino from the Sun

Mayumí Aokí

FLASY2014 University of Sussex June. 17, 2014

18

Cosmic ray from the DM annihilation.

Indirect signals

We discuss the neutrinos from the annihilation of captured DM in the Sun.

Mayumí Aokí

LASY2014 University of Sussex

Single component DM : χ

- Time evolution of n_{χ} in the Sun

 n_{χ} : Number of DM in the Sun C : Capture rate in the Sun. C_A: Annihilation rate C_A= $<\sigma v > /V_{eff}$

$$\begin{split} C_A(\chi\chi \leftrightarrow XX') &= \frac{<\sigma(\chi\chi \to XX')v>}{V_{\rm eff}}\\ \mathbf{V_{eff}}: \mathbf{Effective \ Volume \ of \ the \ Sun}\\ V_{\rm eft} &= 5.7 \times 10^{27} \left(\frac{100 \ {\rm GeV}}{m_\chi}\right)^{3/2} {\rm cm}^3 \end{split}$$

- At the time of birth of the Sun the n_{χ} were zero.
- The n_{χ} increase with time and approach the fixed point values.

Fixed point at $C=C_A n_{\chi^2}$

- \rightarrow equilibrium \rightarrow The number of DM reaches its maximal value.
- DM annihilation rate : $\Gamma = C_A n_{\chi^2}/2 = C/2$.
- Neutrino production rate : $\Gamma_{\nu} = \Gamma Br(\chi\chi \rightarrow XX'\nu\nu)$

IceCUBE (2013)

Neutralino DM

 $\chi \chi \rightarrow WW \rightarrow XX'\nu\nu$

mχ=250 GeV :

		Phys.Rev.Lett. 110 (2013) 13, 131302			
m_{χ} (GeV/c ²)	Channel	$ \Phi_{\nu} $ (km ⁻² y ⁻¹)	$\sigma_{{ m SI},p}$ (cm ²)	$\sigma_{\mathrm{SD},p}$ (cm ²)	
20	$ au^+ au^-$	2.35×10^{15}	1.08×10^{-40}	1.29×10^{-38}	
35	$ au^+ au^-$	$1.02 imes 10^{14}$	$6.59 imes 10^{-42}$	1.28×10^{-39}	
35	$bar{b}$	$6.29 imes 10^{15}$	1.28×10^{-39}	2.49×10^{-37}	
50	$ au^+ au^-$	1.17×10^{13}	1.03×10^{-42}	2.70×10^{-40}	
50	$b\bar{b}$	$5.64 imes 10^{14}$	1.51×10^{-40}	3.96×10^{-38}	
100	W^+W^-	1.23×10^{12}	6.01×10^{-43}	2.68×10^{-40}	
100	$bar{b}$	6.34×10^{13}	3.30×10^{-41}	1.47×10^{-38}	
250	W^+W^-	$9.72 imes 10^{10}$	1.67×10^{-43}	1.34×10^{-40}	
250	bb	4.59×10^{12}	7.37×10^{-42}	5.90×10^{-39}	

IceCube Collaboration

Mayumí Aokí

University of Sussex FLASY2014

Multicomponent DM : ϕ_R , χ , N_R

- Since *C*_{*N*}=0, the *n*_{*N*} cannot increase.
- $\phi \chi \rightarrow N \nu$ is the only ν production process.
- Monochromatic v production rate :

$$\Gamma_{\nu} = C_A(\chi\phi \to N_R^c \nu) n_{\chi} n_{\phi}$$

- Neutrino flux : $\Phi_{\nu} = \Gamma_{\nu}/(4\pi R^2)$

R: the distance to the Sun

Multicomponent DM : ϕ_R , χ , N_R

Multicomponent DM : ϕ_R , χ , N_R

We have proposed the radiative seesaw model with multicomponent DM system.

Two-loop extension of Ma model with $Z_2 \times Z_2$ **symmetry.**

- The small $\lambda 5$ coupling is realized by the radiative correction.

Three-component (N, χ , ϕ_R **) DM system.**

- $\Omega_N h^2$ is reduced by the semi-annihilation processes.
- For the direct detection, the predicted value will be covered by XENON1T.
- The monochromatic neutrino is produced by the semi-annihilation.
- The neutrino flux from the Sun is enhanced by the resonant effect. However, the flux is very small compared with the IceCUBE sensitivity.

Thank you for your attention.

Mayumí Aokí

FLASY2014 University of Sussex