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Setup

• QFT with some sort of discrete (finite) symmetry G
e.g. S3, A4, T7, T′, ∆(27) , . . .

• Most interesting: flavor model building

+ Reduce # of flavor parameters
+ Specific mixing patterns (TBM,...)
+ Avoid Goldstones

(+ This talk: predictive CP violation )

But not limited to flavor! Other applications thinkable...
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CP symmetries in these settings

Scalar field for example:

φ(x) =

∫
d3p

1

2E~p

[
a(~p) e−i p·x + b†(~p) ei p·x

]
Transformation under CP ? (jµ C7−→ −jµ)

(C P)−1 a (~p)C P ∝ b(−~p)
(C P)−1 b†(~p)C P ∝ a†(−~p)

Transformation of the fields

C P : φ(x)
? ? ?7−−−−−→ . . . φ′(Px)
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Physical CP transformations
What does a physical CP symmetry need to do?

Physical observable: Asymmetry⇔ Basis–invariants, e.g. J .

εi→f =
|Γ(i→ f)|2 −

∣∣Γ(ı→ f)
∣∣2

|Γ(i→ f)|2 +
∣∣Γ(ı→ f)

∣∣2 ⇔ J = det
[
MuM

†
u,MdM

†
d

]
CP conservation:
need a map Mu/d →M∗u/d to guarantee ε, J ≡ 0.
note: non–trivial map Mu/d →Mu/d cannot do this! (would just
increase flavor symmetry...)
Therefore:

L ⊃ c O(x) + c∗ O†(x)

i.e.

C P : φ(x) 7−−→ ?× φ∗(Px)

CP
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CP symmetries in settings with G
Clearly: φ in representation r =⇒ φ∗ in representation r∗

• in general: inequivalent representations: φa, φ∗ȧ
⇒ CP has to act on the group from the “outside”

Character table:
G . . .
.
r . . .
r∗ . . .

.

.

need matrix U (think about spinors... )

φa
CP7−−→ Uaȧ φ

∗
ȧ

(True for charge conjugation of any symmetry with

complex irreps. Often Uaȧ = δaȧ, so people forget...)

U is basis dependent!

Consistency with G⇐⇒ U ρr∗(g)U †
!

= ρr(u(g))
[Holthausen, Lindner, Schmidt, 2013; Feruglio, Hagedorn, Ziegler, 2013]

- ρr(g): representation matrix for group element g ∈ G
- u : g 7→ u(g) : outer automorphism

Note: There is no distinction “canonical CP”↔ “generalized CP”, whether U = 1 or

not (if possible) is basis dependent !

CP
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CP symmetries in settings with G
• CP transformations are outer automorphisms (auts) ofG.

[Holthausen, Lindner, Schmidt, 2013]

(this is actually true for all symmetries, not only discrete symmetries)

Out :=
Aut

Inn

Inn: reshuffling of g ∈ G within
conjugacy classes

Out: reshuffling of conjugacy classes

and representations

• But: not all outer auts are CP transformations!
[Chen, Fallbacher, Mahanthappa, Ratz, AT, 2014]

CP

Out
Out : r 7→ r′

CP: r 7→ r∗
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CP symmetries in settings with G
Given a model it is clear what is needed for CP :
Outer automorphism which maps all representations present to
their c.c.

G . . .
.
r1 . . .
r∗1 . . .

.
r2 . . .
r∗2 . . .

.

But: Not all groups allow for
such trafos. Fine print: often depends on

representation content of the model.

close relation to whether

ri ⊗ rj ⊃ r′ ⊕ r′′ ⊕ · · ·

Clebsch–Gordan (CG)
coefficients can be taken real.

CP

CP
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CP symmetries in settings with G

Group G with au-
tomorphisms u

there is
a class–

inverting u

Type II: u de-
fines a physical

CP transformation

there is an
involutory u
for which all
FS(1)

u are +1

Type II A: there is
a CP basis in which

all CG’s are real

Type II B: there
is no basis in which

all CG’s are real

Type I: generic settings
based on G do not
allow for a physical
CP transformation

no

yes

yes

no

(For details see [Chen, Fallbacher, Mahanthappa, Ratz, AT, 2014])

Mathematical tool to decide: Twisted Frobenius–Schur indicator FSu(Backup slides)
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Basically two types of groups
• Groups which do not allow for CP symmetry: Type I

Fine print: assuming sufficient # of irreps are there

G Z5 o Z4 T7 ∆(27) Z9 o Z3

SG id (20, 3) (21, 1) (27, 3) (27, 4)

• Groups which do allow for CP symmetry: Type II
Among those: all groups which allow for real CG’s: Type II A

G S3 A4 T′ S4 A5

SG id (6, 1) (12, 3) (24, 3) (24, 12) (60, 5)

But also: CP trafo w/o real CG’s: Type II B

G Σ(72) ((Z3 × Z3) o Z4) o Z4

SG id (72, 41) (144, 120)

Type II A groups: CP violation completely analogue to well known case: SU(N)
Type II B groups: CP violation tied to certain operators

II

II A
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Toy example for CPV from Type I group
Type I group: take G ≡ ∆(27) and sufficient # of irreps.
[ Such that any map ri 7→ r∗i is inconsistent w/ the group. ]
⇒ Presence of G itself signals (explicit) CPV.
Toy model:

X Y Z Ψ Σ

∆(27) 11 13 18 3 3
U(1) qΨ − qΣ 0 qΨ − qΣ qΨ 6= qΣ

Ltoy ⊃ + GijX X ΨiΣj + GijZ Z ΨiΣj + Hij
Ψ Y ΨiΨj + Hij

Σ Y ΣiΣj + h.c. .

w/ Yukawa couplings dictated by the symmetry:

GX = gX

 0 1 0
0 0 1
1 0 0

 , GZ = gZ

 0 0 ω2

1 0 0
0 ω 0

 , HΨ/Σ = hΨ/Σ

 1 0 0

0 ω2 0
0 0 ω


Here gX , gZ , hΨ/Σ ∈ C and ω := e2π i/3.
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Toy example: Decay asymmetry Y → ΨΨ

Y

Ψ

Ψ

HΨ

Σ

Σ

XY

Ψ

Ψ

HΣ

G†
X

GX

Σ

Σ

ZY

Ψ

Ψ

HΣ

GZ
†

GZ

εY→ΨΨ ∝ |gX |
2 Im [IX ] Im [ω hΨ h∗Σ] + |gZ |2 Im [IZ ] Im[ω2 hΨ h∗Σ] 6= 0 .

( IX = I(MX ,MY ), IZ = I(MZ ,MY ) loop integral & phase space)

Indeed: CP violated! Crosschecks:

3 invariant under rephasing of the fields

3 basis independent

3 cancellation between the two terms? Not RGE stable! (or G > ∆(27))

3 imposing [Holthausen et al., 2013] “generalized CP” which maps 3 7→ 3 does not
lead to CPC
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Even better: SSB⇒ prediction of CP phases

Take this model and embed it in G ≡ ∆(27) ⊂ H

- where H is Type II (explicitly H ≡ ∆(27) o Z2
∼= SG(54, 5))

- X,Z combined to a doublet
- coupling relations |gX | = |gZ |, hΨ = hΣ, MX = MZ

⇒ εY→ΨΨ = 0, i.e. CP conserved at the level of H

Now SSB: H
〈φ〉−−−→ ∆(27)

- coupling relations stay, but : mass splitting MX 6= MZ

⇒ εY→ΨΨ ∝ |gX |
2 |hΨ|2 Im [ω] (Im [IX ]− Im [IZ ])

- CP phase is predicted from the flavor symmetry !
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Conclusion

• CP transformations are outer automorphisms of G
• Not all outer automorphisms are CP transformations
• Two types of discrete groups:

- Type I: incompatible with CP 7 Attention: some (model dependent) fine print!

- Type II: compatible with CP 3

• In generic model w/ Type I group: CP is violated as a
consequence of the flavor symmetry

• Explicit example: CP phase is predicted from the flavor
symmetry
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Thank You!
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Backup slides
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Twisted Frobenius–Schur indicator

Criterion to decide: existence of a CP outer automorphism.
y can be probed by computing the

“twisted Frobenius–Schur indicator” FSu

FSu(ri) :=
1

|G|
∑
g∈G

χri(g u(g))

( χri(g)
: Character )

[Chen, Fallbacher, Mahanthappa, Ratz, AT, 2014]

FSu(ri) =

{
+1 or − 1 ∀ i, ⇒ u is good for CP,
different from ±1, ⇒ u is no good for CP.

In analogy to the Frobenius–Schur indicator

FS
�Au

(ri) = +1,−1, 0 for real / pseudo–real / complex irrep.
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