

Nonzero θ_{13} and Leptogenesis with A_4 symmetry

Arunansu Sil (Co-author: Biswajit Karmakar)

University of Sussex June 20, 2014

Outline

Introduction:

Neutrino oscillation data before 2011 was suggestive of a low energy lepton mixing matrix that could be described by tribimaximal (TB) pattern (with $\theta_{13} = 0$) at the zeroth order;

 A_4 is the simplest symmetry to realize TB pattern.

Ma, Rajasekharan PRD64; Babu, Valle, Ma PLB512

Altarelli, Feruglio NPB741, Varzielas, King, Ross PLB648;

After Double-Chooz, T2K, RENO, Daya Bay, $\theta_{13} \neq 0$ & hence deviation from TB is necessary.

• The set-up:

- a) particle contents and symmetries
- b) light neutrino mass generated by Type-I see-saw

c) parameters involved and their correlations with Majorana phases involved in lepton mixing matrix

Leptogenesis:

Baryon asymmetry can be realized with next-to-leading-order contribution to the neutrino Yukawa matrix and its dependence on Majorana phases and θ_{13} .

Conclusions

Neutrino Oscillation Parameters

• Neutrino flavour and mass eigenstates are related by $\Rightarrow |\nu_{\alpha}\rangle = \sum_{i} U_{\alpha i} |\nu_{i}\rangle$.

Pontecorvo-Maki-Nakagawa-Sakata parametrization

$$U_{PMNS} = \begin{bmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{13}s_{23}e^{i\delta} & c_{12}c_{23} - s_{12}s_{13}s_{23}e^{i\delta} & c_{13}s_{23} \\ s_{12}s_{23} - c_{12}s_{13}c_{23}e^{i\delta} & -c_{12}s_{23} - s_{12}s_{13}c_{23}e^{i\delta} & c_{13}c_{23} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & e^{i\alpha}21/2 & 0 \\ 0 & 0 & e^{i\alpha}31/2 \end{bmatrix}$$

here $C_{ii} = \cos\theta_{ii}$ and $S_{ii} = \sin\theta_{ii}$.

Summary of Neutrino Parameters[Forero, Tortola, Valle, PRD86 (2012)]

Parameter	Best Fit	1σ range	3σ range		
$\Delta m_{\odot}^2 \ [imes 10^{-5} eV^2]$	7.62	7.43 — 7.81	7.12 - 8.20		
$ \Delta m_A^2 [\times 10^{-3} eV^2]$	2.55	2.46 - 2.61	2.31 - 2.74		
	2.43	2.37 - 2.50	2.21 - 2.64		
$\sin^2 \theta_{12}$	0.320	0.303 - 0.336	0.27 - 0.37		
. 2 .	0.613 (0.427)	0.400 - 0.461 & 0.573 - 0.635	0.36 - 0.68		
sin ⁻ θ_{23}	0.600	0.569 - 0.626	0.37 - 0.67		
. 2 0	0.0246	0.0218 - 0.0275	0.017 0.022		
sin- 013	0.0250	0.0223 - 0.0276	0.017 - 0.033		
5	0.80π	0.2-	0 2-		
8	-0.30 <i>π</i>	$0 - 2\pi$	$0 - 2\pi$		

Tribimaximal (TBM) mixing:

Global analysis of neutrino oscillation data (before 2011) was suggestive of TBM form, $\sin^2\theta_{12} = 1/3$ and $\sin^2\theta_{23} = 1/2$ along with $\theta_{13} = 0$; the lepton mixing matrix takes the form

$$U_{TB} = \begin{bmatrix} \sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} & 0\\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}}\\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \end{bmatrix}$$

Measurement of θ_{13}

• Important discovery in 2011-12 apart from Higgs T2K : $\sin^2 2\theta_{13} = 0.140^{+0.038}_{-0.032} (0.170^{+0.036}_{-0.037})$, arXiv:1106.2822; arXiv:1311.4750 DOUBLE-CHOOZ: $\sin^2 2\theta_{13} = 0.109 \pm 0.030(stat.) \pm 0.025(syst.)$, arXiv:1112.6353 Daya Bay : $\sin^2 2\theta_{13} = 0.089 \pm 0.010(stat.) \pm 0.005(syst.)$, arXiv:1203.1669 RENO : $\sin^2 2\theta_{13} = 0.113 \pm 0.013(stat.) \pm 0.019(syst.)$, arXiv:1204.0626 hence $\theta_{13} \approx 9^\circ$

Structure of the Model

Modified Altarelli-Feruglio (AF) [arXiv:hep-ph/0512103] model with $A_4 \times Z_3$

	e ^c	μ^{c}	τ^{c}	L	N ^c	Hu	H_d	ϕ_S	ϕ_T	ξ	ξ'	ϕ_0^S	ϕ_0^T	ξ0
SU(2)	1	1	1	2	1	2	2	1	1	1	1	1	1	1
A ₄	1	1″′	1'	3	3	1	1	3	3	1	1'	3	3	1
Z ₃	ω	ω	ω	ω	ω^2	1	ω	ω^2	1	ω^2	ω^2	ω^2	1	ω^2
$U(1)_R$	1	1	1	1	1	0	0	0	0	0	0	2	2	2

Also in Shimizu, Tanimoto, Watanabe PTP126; King, Luhn JHEP1109

• Vacuum expectation values (vev) of the scalar fields

$$\langle \phi_T \rangle = (v_T, 0, 0), \ \langle \phi_S \rangle = (v_S, v_S, v_S), \ \langle H_{u,d} \rangle = v_{u,d}, \ \langle \xi \rangle = u, \ \langle \xi' \rangle = u_N$$

• This alignments are ensured by the driving fields ϕ_0^S , ϕ_0^T and ξ_0 .

Superpotential and Coupling Matrices (at Leading Order)

Charged Leptons:

$$w_L = \left[y_e e^c(\phi_T L) + y_\mu \mu^c(\phi_T L)' + y_\tau \tau^c(\phi_T L)'' \right] \left(\frac{H_d}{\Lambda} \right) \quad \rightarrow Y_L = \frac{v_T}{\Lambda} \quad \begin{vmatrix} y_e & 0 & 0 \\ 0 & y_\mu & 0 \\ 0 & 0 & y_\tau \end{vmatrix}$$

• Dirac mass terms for neutrinos:

$$w_{\nu} = y(N^{c}L)H_{u} \rightarrow Y_{\nu 0} = y \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

Superpotential and Coupling Matrices

Majorana Mass Matrix (without ξ')

$$w_N = x_A \xi (N^c N^c) + x_B \phi_S (N^c N^c)$$
$$\mathcal{M}_R = \begin{bmatrix} a + 2b/3 & -b/3 & -b/3 \\ -b/3 & 2b/3 & a - b/3 \\ -b/3 & a - b/3 & 2b/3 \end{bmatrix}$$

where $a = 2x_A u$, $b = 2x_B v_S$

• It can be diagonalized by U_{TB} , having the form

$$U_{TB} = \begin{bmatrix} \sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} & 0\\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}}\\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \end{bmatrix}.$$

Light neutrino masses obtained through seesaw mechanism, m_ν = -m_D^TM_R⁻¹m_D.
 Diagonalizing matrix is U_ν, m^{diag}_ν = U^T_νm_νU_ν, where U_ν = U_{TB} diag(1, e^{iα₂₁/2}, e^{iα₃₁/2}).

• Exact TBM mixing has been extensively studied in [arXiv:hep-ph/0512103v2, 0511133v3, 0905.0620, 0908.0240]etc.] literature. Here, we will study the deviation of this TBM mixing.

Arunansu Sil

Deviation from TBM mixing

• To make $\theta_{13}\neq 0$, introduce new scalar singlet ξ' , which contributes in the heavy Majorana neutrino sector through $x_N\xi'(N^cN^c)$

Mojarana mass matrix is then given by

$$M_{Rd} = \begin{bmatrix} a+2b/3 & -b/3 & -b/3 \\ -b/3 & 2b/3 & a-b/3 \\ -b/3 & a-b/3 & 2b/3 \end{bmatrix} + \begin{bmatrix} 0 & 0 & d \\ 0 & d & 0 \\ d & 0 & 0 \end{bmatrix},$$

where $d = 2x_N u_N$.

- Above structure of RH neutrino mass matrix is no longer diagonalizable by U_{TB} only.
- Additional rotation is required. Let us consider a matrix U_1 (parametrized by angle θ and phase ψ), which do this job.
- Then RH neutrino mass matrix can be diagonalized by

$$\operatorname{diag}(M_1e^{i\varphi_1}, M_2e^{i\varphi_2}, M_3e^{i\varphi_3}) = (U_{TB}U_1)^T M_{Rd} U_{TB}U_1.$$

Here, $M_{1,2,3}$ all are real, positive eigenvalues of M_{Rd} .

RH-Neutrino masses and phases associated

 $= |a+d| = |a| |1 + \alpha_1 e^{i\phi_{da}}|,$

• Majorana neutrino mass eigenvalues and phases associated can be given by

$$\mathcal{M}_1 = |b + \sqrt{a^2 + d^2 - ad}| = |a| \left| \alpha_2 e^{i\phi_{b\theta}} + \sqrt{1 + \alpha_1^2 e^{2i\phi_{d\theta}} - \alpha_1 e^{i\phi_{d\theta}}} \right|$$

$$M_3 = |b - \sqrt{a^2 + d^2 - ad}| = |a| \left| \alpha_2 e^{i\phi_{ba}} - \sqrt{1 + \alpha_1^2 e^{2i\phi_{da}} - \alpha_1 e^{i\phi_{da}}} \right|$$

$$\begin{aligned} \varphi_1 &= \arg(b + \sqrt{a^2 + d^2 - ad}) \\ \varphi_2 &= \arg(a + d) \\ \varphi_3 &= \arg(b - \sqrt{a^2 + d^2 - ad}) \end{aligned}$$

where $\alpha_1 = |d/a|$ and $\alpha_2 = |b/a|$, also $\phi_{da} = \phi_d - \phi_a$ and $\phi_{ba} = \phi_b - \phi_a$ are phase difference between (d, a) and (b, a) respectively.

• Without loss of generality we will work with $\phi_{da} = 0$ and say $K = \sqrt{1 - \alpha_1 + \alpha_1^2}$, then we have

Arunansu Sil

Ma

Light neutrino masses and mixings

• Light neutrino masses obtained via $m_{\nu} = m_D^{\mathsf{T}} M_{Rd}^{-1} m_D = U_{\nu}^* m_{\nu}^{diag} U_{\nu}^{\dagger}$, here

$$U_{\nu} = \frac{m_D^T}{yv_u} U_{TB} U_1^* \operatorname{diag}(e^{i\varphi_1/2}, e^{i\varphi_2/2}, e^{i\varphi_3/2}).$$

King, Luhn JHEP1109

• Light neutrino masses given by

$$m_i=\frac{(yv_u)^2}{M_i},$$

where m_i 's are real and positive.

. We find a general sum rule for light neutrino masses as given by,

$$\frac{1}{m_1} - \frac{2\mathrm{K}e^{i\alpha_{21}}}{m_2(1+\alpha_1)} = \frac{e^{i\alpha_{31}}}{m_3}.$$

• When, $K\left(=\sqrt{1-\alpha_1+\alpha_1^2}\right) \rightarrow 1$ (i.e. with $\alpha_1 = 0$), the sum rule is reduced to the one found in Altarelli,Meloni JPG36 and Hagedorn,Molinaro,Petcov JHEP0909.

Light neutrino masses and mixings

 $\,\bullet\,$ Final form of unitary matrix that diagonalizes $m_{\nu}\,$ is given by

$$\begin{aligned} U_{\nu} &= \frac{m_{D}^{T}}{yv_{u}} U_{TB} \begin{bmatrix} \cos\theta & 0 & -\sin\theta e^{-i\psi} \\ 0 & 1 & 0 \\ \sin\theta e^{+i\psi} & 0 & \cos\theta \end{bmatrix} diag(1, e^{i\phi_{2}/2}, e^{i\phi_{3}/2}) \\ &= \begin{bmatrix} \sqrt{\frac{2}{3}}\cos\theta & 1/\sqrt{3} & -\sqrt{\frac{2}{3}}\sin\theta e^{-i\psi} \\ -\frac{\cos\theta}{\sqrt{6}} + \frac{\sin\theta}{\sqrt{2}}e^{i\psi} & 1/\sqrt{3} & \frac{\cos\theta}{\sqrt{2}} + \frac{\sin\theta}{\sqrt{6}}e^{-i\psi} \\ -\frac{\cos\theta}{\sqrt{6}} - \frac{\sin\theta}{\sqrt{2}}e^{i\psi} & 1/\sqrt{3} & -\frac{\cos\theta}{\sqrt{2}} + \frac{\sin\theta}{\sqrt{6}}e^{-i\psi} \\ 0 & 0 & e^{i\phi_{3}/2} \end{bmatrix}. \end{aligned}$$

here we have parametrized the extra U_1 matrix by heta and ψ as mentioned earlier.

 \bullet We can now remove one common phase by setting $\varphi_1=0$ and we find the Majorana phases as

$$\varphi_2 = \alpha_{21}$$
$$\varphi_3 = \alpha_{31}$$

Generation of nonzero θ_{13} and effect on other mixing angles

• Comparing
$$U_{PMNS}$$
 and U_{ν} we get
 $\sin \theta_{13} = \sqrt{\frac{2}{3}} \sin \theta$, $\delta_{CP} = \psi + \pi$ $\sin^2 \theta_{12} = \frac{1}{3(1 - \sin^2 \theta_{13})}$,
 $\sin^2 \theta_{23} = \frac{1}{2} + \frac{1}{\sqrt{2}} \sin \theta_{13} \cos \psi$ and with $\psi = 0$, $\tan 2\theta = \frac{\sqrt{3}\alpha_1}{(2 - \alpha_1)}$.

• Here $\psi = 0$. Now, for 3σ (blue patch) and 1σ (red patch) range of $\sin^2 \theta_{13}$ we get $\alpha_1 = 0.32 - 0.44$ and $\alpha_1 = 0.36 - 0.40$ respectively. Best-fit value of $\sin^2 \theta_{13}$ makes $\alpha_1 = 0.38$.

Non-zero θ_{13} and effect on other mixing angles

•Here, vertical blue patch indicates allowed value for α_1 corresponding to 3σ range of $\sin^2 \theta_{13}$ and horizontal red dashed line represents 3σ allowed range for $\sin^2 \theta_{12}$ and $\sin^2 \theta_{23}$

Summary:

Range of α_1 obtained from Fig.1	$\sin^2 \theta_{12}$	$\sin^2 \theta_{23}$
$0.36 \leq lpha_1 \leq 0.40$	0.341-0.343	0.38-0.40
$0.32 \leq lpha_1 \leq 0.44$	0.339-0.345	0.37-0.41

Table : Allowed regions of $\sin^2 \theta_{12}$ and $\sin^2 \theta_{23}$ depending on α_1 in our set-up

Arunansu Sil

Correlation of parameters involved

Parameters involved Majorana neutrino masses:

$$\alpha_1, \alpha_2, \phi_{ba}, |\mathbf{a}|.$$

• First three can be constrained by low energy neutrino oscillation data through ratio of solar and atmospheric mass squared difference defined as

$$r = \frac{\Delta m_{\odot}^2}{|\Delta m_A^2|}, \ \Delta m_{\odot}^2 = \Delta m_{21}^2 \equiv m_2^2 - m_1^2, \ |\Delta m_A^2| = |\Delta m_{31}^2| \equiv |\Delta m_{32}^2|.$$

Hence using above relations we get

$$r = \frac{(\alpha_2^2 + 2\alpha_2 \mathrm{K} \cos \phi_{ba} - \alpha_1)(\alpha_2^2 - 2\alpha_2 \mathrm{K} \cos \phi_{ba} + \mathrm{K}^2)}{4(1 + \alpha_1)^2 \alpha_2 \mathrm{K} |\cos \phi_{ba}|}$$

• Variation of $\cos \phi_{ba}$ with α_2 for r = 0.03 and $\alpha_1 = 0.38$

• From the above plot for NH cos $\phi_{ba} > 0$ ($\alpha_2 = 0.73 - 1.2$) and for IH cos $\phi_{ba} < 0$ ($\alpha_2 = 1.1 - 2.3$).

Arunansu Sil

Constraints on Light Neutrino Mass

• Using $r = \frac{\Delta m_{\odot}^2}{|\Delta m_A^2|}$ and neutrino mass eigenvalues we obtain

$$m_1^2 = |\Delta m_A^2| r \frac{(1+\alpha_1)^2}{(\alpha_2^2 + 2\alpha_2 K \cos \phi_{ba} + K^2 - 1 - 2\alpha_1 - \alpha_1^2)}$$

• Using the best fit value of $|\Delta m_A^2| = 2.55 \times 10^{-3} \mathrm{eV}^2$ [NH] (2.43 $\times 10^{-3} \mathrm{eV}^2$ [IH]), r = 0.03 and $\alpha_1 = 0.38$, we can estimate m_i 's from the above relation for both the NH (and IH) as follows

• Here in the right panel horizontal shaded region indicated disfavored region as $\sum_i m_{\nu_i} < 0.440$ eV (95% CL) [WMAP Collaboration, arXiv:1212:5225]; so we have,

$$0.07 \text{ eV} \le \sum m_i \le 0.10 \text{ eV} (\text{NH}, \alpha_2 = 0.73 - 1.20),$$
 (1)

0.13 eV
$$\leq \sum m_i \leq$$
 0.23 eV (IH, $\alpha_2 = 1.30 - 2.30$). (2)

Constraints on Majorana phases

- Majorana phases are insensitive to neutrino oscillation experiments.
- They can an be constrained using parameters appearing in mass eigenvalues.
- With ϕ_{da} =0, we found Majorana phases $\alpha_{21,31}$ as [arXiv: 0908.0240]

Figure : Majorana phases $\alpha_{21,31}$ as function of α_2 for NH (upper row with $\cos \phi_{ba} > 0$ and $\sin \phi_{ba} < 0$) and IH (lower row with $\cos \phi_{ba} < 0$ and $\sin \phi_{ba} < 0$) respectively.

Bound on neutrinoless double beta decay:

• Effective neutrino mass parameter $|m_{ee}|$

$$|m_{ee}| = \left|\frac{2}{3}m_1\cos^2\theta + \frac{1}{3}m_2e^{i\alpha_{21}} + \frac{2}{3}m_3\sin^2\theta e^{i\alpha_{31}}\right|.$$

with $\delta_{CP} = \pi$

• For $\alpha_1 = 0.38$

Leptogenesis

$$Y_B = \frac{n_B - n_{\bar{B}}}{s} = (8.77 \pm 0.24) \times 10^{-11}$$

where $n_B - n_{\bar{B}}$ is the difference between baryon and anti-baryon number and 's' stands for entropy density[WMAP, arXiv:1212:5225].

• Out of equilibrium decay of heavy Majorana neutrinos can produce lepton asymmetry (in one flavor approximation) in the basis where RH Majorana neutrinos are diagonal as

$$\epsilon_{i} = \frac{1}{8\pi} \sum_{j \neq i} \frac{\operatorname{Im} \left[\left((\hat{Y}_{\nu} \, \hat{Y}_{\nu}^{\dagger})_{ji} \right)^{2} \right]}{(\hat{Y}_{\nu} \, \hat{Y}_{\nu}^{\dagger})_{ii}} f\left(\frac{m_{i}}{m_{j}} \right)$$

where $\hat{Y}_{\nu} = \text{diag}(1, e^{-i\alpha_{21}/2}, e^{-i\alpha_{31}/2})U_R^T Y_{\nu}$. • The loop factor f(x) in above expression with $x = m_i/m_i$:

$$f(x) \equiv -x\left(rac{2}{x^2-1} + \log\left(1+rac{1}{x^2}
ight)
ight)$$

• $Y_B \approx \sum Y_{Bi}$; where $Y_{Bi} \simeq -1.48 \times 10^{-3} \epsilon_i \eta_{ii}$; the efficiency factor η_{ii}

$$\frac{1}{\eta_{ii}} \approx \frac{3.3 \times 10^{-3} \text{ eV}}{\tilde{m_i}} + \left(\frac{\tilde{m_i}}{0.55 \times 10^{-3} \text{ eV}}\right)^{1.16}$$

where washout mass parameter, $\tilde{m_i} = \frac{(\hat{Y}_{\nu} \ \hat{Y}_{\nu}^{\dagger})_{ii} v_u^2}{M_i}$

Introduction The Set-up Leptogenesis

Leptogenesis

- FLASY 2014
- At LO, $\hat{Y}_{\nu 0} \hat{Y}^{\dagger}_{\nu 0} \propto |y^2|$ I: vanishing asymmetry [Jenkins, Manohar PLB668]

 NLO correction in Yukawa sector; [Jenkins, Manohar PLB668, Hagedorn, Molinaro, Petcov JHEP0909]

•such contributions in our set-up are :

$$y(LN^{c})H_{u} + x_{C}N^{c}(L\phi_{T})_{3S}H_{u}/\Lambda + x_{D}N^{c}(L\phi_{T})_{3A}H_{u}/\Lambda$$

• Yukawa matrix and $\hat{Y}_{\nu}\,\hat{Y}_{\nu}^{\dagger}$:

$$\begin{array}{rcl} Y_{\nu} & = & Y_{\nu 0} + \delta Y_{\nu} \\ & = & y \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} + \frac{x_C v_T}{\Lambda} \begin{bmatrix} 2 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & -1 & 0 \end{bmatrix} + \frac{x_D v_T}{\Lambda} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix},$$

From definition

$$\begin{split} \epsilon_{1} &= \frac{-1}{2\pi} \left(\frac{v_{T}}{\Lambda}\right)^{2} \left[\sin \alpha_{21} \left(2\operatorname{Re}(x_{C})^{2} \cos^{2} \theta + \frac{2\operatorname{Re}(x_{D})^{2}}{3} \sin^{2} \theta + \frac{2\operatorname{Re}(x_{C})\operatorname{Re}(x_{D})}{\sqrt{3}} \sin 2\theta \right) f\left(\frac{m_{1}}{m_{2}}\right) \right. \\ &+ \sin \alpha_{31} \left(\operatorname{Re}(x_{C})^{2} \sin^{2} 2\theta + \frac{\operatorname{Re}(x_{D})^{2}}{3} \cos^{2} 2\theta + \frac{\operatorname{Re}(x_{C})\operatorname{Re}(x_{D})}{\sqrt{3}} \sin 4\theta \right) f\left(\frac{m_{1}}{m_{3}}\right) \right] \end{split}$$

(similar expressions for ϵ_2 and ϵ_3).

• $y >> (\operatorname{Re}(x_{C,D})v_T/\Lambda)$ is considered, $\operatorname{Re}(x_{C,D})$ are of same order of y and $(v_T/\Lambda) << 1$. Small value of (v_T/Λ) is required to reproduce $|\epsilon_i| \gtrsim 10^{-6}$ for generating baryon asymmetry of proper order. With this consideration, the washout mass parameters becomes identic to light neutrino masses (i.e. $\tilde{m}_i \approx m_i$).

Leptogenesis

$$Y_B = \sum_{i=1}^{3} Y_{Bi} \simeq -1.48 \times 10^{-3} \left(\epsilon_1 \eta_{11} + \epsilon_2 \eta_{22} + \epsilon_3 \eta_{33} \right).$$

Baryon Asymmetry

Figure : Green, orange and blue dashed lines stands for Y_{B1} , Y_{B2} and Y_{B3} respectively and red line for total baryon asymmetry Y_B .

Parameters involved and their contribution:

- + $\frac{v_T}{\Lambda}\sim 10^{-2}$, and typical magnitude of lepton asymmetry $|\epsilon_i|\gtrsim 10^{-6}$
- $\alpha_1 = 0.38$ for best fit value of $\sin^2 \theta_{13}$.

•
$$x_C = 0.2$$
, $x_D = 0.2$ for NH and $x_C = 0.03$, $x_D = 0.2$ for IH

IIT Guwahati

Leptogenesis and $\sin \theta_{13}$

• Y_B vs sin θ_{13} for NH ($\alpha_2 = 1$)

•
$$Y_B$$
 vs sin θ_{13} for IH ($\alpha_2 = 2$)

Conclusion

- We have modified the original A₄ symmetry model of AF by extending the flavon sector with additional scalar singlet.
- Modified neutrino mass matrix (through Type-I seesaw) generates adequate θ₁₃; other mixing angles are in desired range
- A new sum rule for the model is obtained.
- Correlation among entries in mass parameters and Majorana phases are studied.
- Able to generate required matter-antimatter asymmetry of the universe, where Majorana phases play important role.
- The vacuum alignment of the flavon vevs are studied.