$\begin{array}{ccc} \mbox{Introduction} & \mbox{Mass relation in A_4 models.} & \mbox{Mass relation in a T_7 model} & \mbox{Conclusions} \\ \hline 000000 & & \end{array}$

Flavor symmetry and mass relations

Cesar Bonilla

IFIC-CSIC, Universidad de Valencia

June 18, 2014

FLASY2014 Flavor symmetry and mass relations

ъ.

э

Introduction Mass relation in A_4 models. ••••••• Mass relation in a T_7 model

Conclusions

ъ.

Flavor Symmetries

Signatures of flavor models

•Mixing Sum Rules •Mass Sum Rules

 $\}$ Neutral Sector ¹

¹Talk given by Feruglio and Rodejohann.

FLASY2014 Flavor symmetry and mass relations

Introduction Mass relation in A_4 models. ••••••• Mass relation in a T_7 model

Conclusions

Ξ.

Flavor Symmetries

Signatures of flavor models

- •Mixing Sum Rules
- •Mass Sum Rules

 $\left. \right\}$ Neutral Sector ¹

•Mass relations

} Charged Sector

¹Talk given by Feruglio and Rodejohann.

FLASY2014 Flavor symmetry and mass relations

Signatures of flavor models

• mixing sum rules². For instance,

$$s \approx r \cos \delta$$
 (1)

where s and r represent deviations of the TBM in the following parametrization,

$$\sin \theta_{12} = \frac{1}{\sqrt{3}}(1+s), \quad \sin \theta_{23} = \frac{1}{\sqrt{2}}(1+a)$$

and $\sin \theta_{13} = \frac{r}{\sqrt{2}}$

 $^{^2 {\}rm King}$ JHEP0508:105,2005. For details see King et al. New J.Phys. 16 (2014) 045018 and references therein.

Introduction Mass relation in A_4 models. 000000

Mass relation in a T_7 model

Conclusions

Flavor Symmetries

Signatures of flavor models

• neutrino mass sume rules ³.

 \implies lower bounds for the effective mass $|m_{ee}|$ in $\nu 0\beta\beta$ For example,

$$3m_2 + 3m_3 = m_1$$
 (NH) (2)

³For the first time, Altarelli and Meloni, J.Phys.G36:085005,2009. Barry and Rodejohann, Phys.Rev.D81:093002,2010. Dorame et al., Nucl.Phys. B861 (2012) 259-270. King, Merle and Stuart, JHEP 1312 (2013) 005.

.

Flavor Symmetries

Neutrino mass sum rule, ⁴

$$3m_2 + 3m_3 = m_1 \tag{3}$$

Figure: Effective $0\nu\beta\beta$ mass parameter $\langle |m_{ee}| \rangle$ as a function of the lightest neutrino mass. The yellow band corresponds to the model which predicts the sum mass rule $3m_2 + 3m_3 = m_1$ for the case of NH.

 $^{^4}$ The figure was taken from Dorame et al., Nucl.Phys. B861 (2012) (259-270) \mapsto (\equiv) (\sim) (

Introduction Mass relation in A_4 models. 00000

Mass relation in a T_7 model

Conclusions

Flavor Symmetries

Signatures of flavor models

• mass relation in a GUT-less framework

$$\frac{m_{\tau}}{\sqrt{m_e m_{\mu}}} \approx \frac{m_b}{\sqrt{m_s m_d}} \left(=\frac{m_t}{\sqrt{m_u m_c}}\right)^5.$$
(4)

⁵This part predicted by Wilczek and Zee in a model with SU(2) as flavor symmetry. \square

Flavor Symmetries

Mass relation in the charge sector⁶

• mass relation in <u>a GUT-less framework</u>

Figure: The shaded band gives our prediction for the down-strange quark masses at the M_z scale, vertical and horizontal lines are the 1σ experimental range.

⁶Morisi et al., Phys.Rev.D84:036003,2011. Morisi et. al., Phys.Rev. D88 (2013) 036001. King et. al., Phys.Lett. B 724 (2013) 68-72.

Mass relation in A_4 models.

э

Mass relation between quarks and leptons⁸

Susy scenario and the matter content,

	Ĺ	\hat{E}^c	\hat{Q}	\hat{U}^c	\hat{D}^c	\hat{H}^u	\hat{H}^d
$SU(2)_L$	2	1	2	1	1	2	2
A_4	3	3	3	3	3	3	3

Table: Matter assignments of the model.

 $\bullet {\rm The}$ Yukawa Lagrangian is given by

$$L_{\rm Yuk} = y_{ijk}^l \hat{L}_i \hat{H}_j^d \hat{E}_k^c + y_{ijk}^d \hat{Q}_i \hat{H}_j^d \hat{D}_k^c + y_{ijk}^u \hat{Q}_i \hat{H}_j^u \hat{U}_k^c , \qquad (5)$$

•The neutrino masses are generated via the **dimension five** operator ⁷

$$\mathcal{L}_{5d} = \frac{f_{ijlm}}{\Lambda} \hat{L}_i \hat{L}_j \hat{H}_j^u \hat{H}_m^u.$$
(6)

⁸Morisi et al., Phys.Rev.D84:036003,2011

 $^{^7{\}rm The}$ analysis only for the lepton sector in a non-susy A_4 model was done in S.Morisi and E. Peinado, Phys.Rev.D80:113011,2009

Mass relation in A_4 models. Mass relation in a T_7 model Conclusions

<u>How to obtain the mass relation</u>

The mass matrices for down-type charged fermions are given by,

$$M_f = \begin{pmatrix} 0 & y_1^f v_3 & y_2^f v_2 \\ y_2^f v_3 & 0 & y_1^f v_1 \\ y_1^f v_2 & y_2^f v_1 & 0 \end{pmatrix}$$
(7)

where $f = \ell, d$ and v_i are the Higgs scalar vevs.

э.

Mass relation between quarks and leptons⁹

The charged lepton mass matrix can be rewritten as,

$$M_f = \begin{pmatrix} 0 & a^f \alpha^f & b^f \\ b^f \alpha^f & 0 & a^f r^f \\ a^f & b^f r^f & 0 \end{pmatrix}$$
(8)

where
$$\langle H^{0u,d} \rangle \sim (1,0,0) \Rightarrow A_4 \text{ softly broken} \Rightarrow \langle H^{0u,d} \rangle = (v_1^{u,d}, \epsilon_2^{u,d}, \epsilon_3^{u,d})$$

and $v_1^{u,d} >> \epsilon_{2,3}^{u,d}$.
Given that,

$$\left(\alpha^f = \frac{v_3}{v_2}, \, r^f = \frac{v_1}{v_2}\right) \Longrightarrow \left(r^f \gg a^f\right)$$

⁹Morisi et al., Phys.Rev.D84:036003,2011

ъ.

Mass relation in A_4 models.

Mass relation in a T_7 model Conclusions

Mass relation between quarks and leptons

Using the invariants of $M_f M_f^{\dagger}$ one obtains,

$$\underbrace{\frac{r^f}{\sqrt{\alpha^f}} \approx \frac{m_3^f}{\sqrt{m_1^f m_2^f}}}.$$

where,

$$r^{\ell} = r^d$$
 and $\alpha^{\ell} = \alpha^d$

and then

$$rac{m_{ au}}{\sqrt{m_e m_{\mu}}} pprox rac{m_b}{\sqrt{m_s m_d}}.$$

This was obtained in a **GUT-less** framework.

æ

Introduction	Mass relation in A_4 models.	Mass relation in a T_7 model	Conclusions

FLASY2014 Flavor symmetry and mass relations

< (T) >

· * 문 > · * 문 >

Introduction 000000	Mass relation in A_4 models.	Mass relation in a T_7 model	Conclusions

• Neutrinos get their masses through dimension five operators.

ъ.

∃ ► < ∃ ►</p>

Introduction 000000	Mass relation in A_4 models.	Mass relation in a T_7 model	Conclusions

- Neutrinos get their masses through dimension five operators.
- There is a **mass relation** between down-type quarks and charged leptons.

3 x 3

Introduction	Mass relation in A_4 models.	Mass relation in a T_7 model	Conclusions
000000			

- Neutrinos get their masses through dimension five operators.
- There is a **mass relation** between down-type quarks and charged leptons.
- The model predics λ_C , or

$$|V_{CKM}| \sim \begin{pmatrix} 1 & \lambda_C & 0\\ \lambda_C & 1 & 0\\ 0 & 0 & 1 \end{pmatrix}$$

3 **)** } 3

Introduction 000000	Mass relation in A_4 models.	Mass relation in a T_7 model	Conclusions

- Neutrinos get their masses through dimension five operators.
- There is a **mass relation** between down-type quarks and charged leptons.
- The model predics λ_C .
- V_{ub} and V_{cb} are well fitted when either,

э

 $^{^{10}{\}rm Morisi}$ et. al., Phys.Rev. D88 (2013) 036001.

¹¹King et. al., Phys.Lett. B 724 (2013) 68-72.

Introduction 000000	Mass relation in A_4 models.	Mass relation in a T_7 model	Conclusions

- Neutrinos get their masses through dimension five operators.
- There is a **mass relation** between down-type quarks and charged leptons.
- The model predics λ_C .
- V_{ub} and V_{cb} are well fitted when either,
 - colored vector-like SU(2) singlets are added ¹⁰ or

э

¹⁰Morisi et. al., Phys.Rev. D88 (2013) 036001.

¹¹King et. al., Phys.Lett. B 724 (2013) 68-72.

Introduction 000000	Mass relation in A_4 models.	Mass relation in a T_7 model	Conclusions

- Neutrinos get their masses through dimension five operators.
- There is a **mass relation** between down-type quarks and charged leptons.
- The model predics λ_C .
- V_{ub} and V_{cb} are well fitted when either,
 - colored vector-like SU(2) singlets are added ¹⁰ or
 - the RH up-type quarks transform as singlets under A_4^{11} .

¹⁰Morisi et. al., Phys.Rev. D88 (2013) 036001.

¹¹King et. al., Phys.Lett. B 724 (2013) 68-72.

Mass relation in A_4 models.

Mass relation in a T_7 model

Conclusions

$\overline{\text{CKM}}$ and $\overline{\text{mass}}$ relation¹²

	L	l_R	Q	d_R	u_{R_1}	u_{R_2}	u_{R_3}	H	φ_u	φ_d	φ_{ν}	ξ_{ν}
A_4	3	3	3	3	1	1"	1'	1	3	3	3	1
Z_2^u	+	+	+	+	_	—	—	+	_	+	+	+
Z_2^d	+	-	+	-	+	+	+	+	+	—	+	+
Z_3^{ν}	ω	ω^2	1	1	1	1	1	1	1	1	ω	ω

Table: Matter content of the model.

¹²King et. al., Phys.Lett. B 724 (2013) 68-72.

< 口 > < 同 >

CKM and mass relation

• The Yukawa Lagrangian for the **charged sector** is made of **dimension-five operators**.

$$\mathcal{L} = \frac{y_{\alpha\alpha'}^d}{M} (Q \, d_R)_{\alpha} H \varphi_{d_{\alpha'}} + \frac{y_{\alpha\alpha'}^l}{M} (L \, l_R)_{\alpha} H \varphi_{d_{\alpha'}} + + \frac{y_{\beta}^u}{M} (Q \, \varphi_u)_{\beta} \tilde{H} u_{R\beta'} + H.c.,$$

where $\tilde{H} = i\sigma_2 H^*$.

• The neutrino sector is given by dimension-six operators.

$$\mathcal{L} \supset \frac{y_{\phi}^{\nu}}{\Lambda^2} LLHH\phi_{\nu} + \frac{y_{\xi}^{\nu}}{\Lambda^2} LLHH\xi_{\nu} \tag{9}$$

Mass relation in A_4 models.

Mass relation in a T_7 model

Conclusions

CKM and mass relation

After EWSB,

$$M_f = \begin{pmatrix} 0 & y_1^f v_3 & y_2^f v_2 \\ y_2^f v_3 & 0 & y_1^f v_1 \\ y_1^f v_2 & y_2^f v_1 & 0 \end{pmatrix} o$$
mass relation is **PRESERVED**.

where $f = \ell, d$ and the mass matrix for the up-type quarks is given by,

$$M_{u} = \begin{pmatrix} v_{1}^{u} & 0 & 0\\ 0 & v_{2}^{u} & 0\\ 0 & 0 & v_{3}^{u} \end{pmatrix} \begin{pmatrix} 1 & 1 & 1\\ 1 & \omega & \omega^{2}\\ 1 & \omega^{2} & \omega \end{pmatrix} \begin{pmatrix} y_{1}^{u} & 0 & 0\\ 0 & y_{1''}^{u} & 0\\ 0 & 0 & y_{1'}^{u} \end{pmatrix}, \quad (10)$$

where $v_3^u \gg v_{1,2}^u$.

(B)

Mass relation in A_4 models.

Mass relation in a T_7 model

Conclusions

Ξ.

CKM and mass relation

Figure: Correlations between the atmospheric angle, and the reactor angle (left panel) and the lightest neutrino mass (right panel). Straight bands are the allowed 1 σ bands of the oscillation angles in, Tortola et al. (2012).

Mass relation in A_4 models.

Mass relation in a T_7 model

Conclusions

ъ.

э

CKM and mass relation

FLASY2014 Flavor symmetry and mass relations

• Can we obtain the mass relation we just mentioned from another group?

¹³(Part of a work in progress)

문 🛌 🖻

- Can we obtain the mass relation we just mentioned from another group?
- Are there other mass relations in the charged sector? 13

¹³(Part of a work in progress)

э.

A =
 A =
 A
 A =
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

• Can we obtain the mass relation we just mentioned from another group? We can with T_7^{14} .

¹⁴Some works with T₇, Luhn et al. Phys.Lett. B652 (2007) 27-33, Cao et al. Phys.Rev.Lett. 106 (2011) 131801.

$$T_7 \operatorname{group}^{13}$$

 T_7 is a SU(3) subgroup with 21 elements. It contains three singlets ($\mathbf{1}_i$ with i = 1, 2, 3) and two triplets ($\mathbf{3}$ and $\overline{\mathbf{3}}$). Multiplication rules:

•
$$3 \times \bar{3} = \sum_{i} 1_{i} + 3 + \bar{3}$$

• $3 \times 3 = 3 + \bar{3} + \bar{3}$
• $\bar{3} \times \bar{3} = \bar{3} + 3 + 3$

¹⁵Ishimori et al.

э.

Introduction	Mass relation in A_4 models.	Mass relation in a T_7 model	Conclusions

The model

	\overline{L}	ℓ_R	N_R	N_{R_4}	\overline{Q}	d_R	u_{R_i}	H	φ_{ν}	φ_u	$arphi_d$	$\xi_{ u}$
T_7	3	3	3	1	3	3	1_i	1	3	Ī	3	1
\mathbb{Z}_7	a^3	a^3	a^5	a^2	a^3	a^3	a^2	1	a^4	a^2	a^1	a^3

Table: Matter assignments of the model where $a^7 = 1$.

•The Yukawa Lagrangian for the charged sector is given by,

$$\mathcal{L} = \frac{Y^{\ell}}{M} \overline{L} \ell_R H_d + \frac{Y^d}{M} \overline{Q} d_R H_d + \frac{Y^u}{M} \overline{Q} u_R H_u + h.c.$$
(11)

where $H_d = H\varphi_d$, $H_u = \tilde{H}\varphi_u$ and $\tilde{H} = i\sigma_2 H^*$. •The Lagrangian for the neutrino sector is given by,

$$\mathcal{L}_{\nu} = \frac{y^{\nu}}{\Lambda} \bar{L} N_R \tilde{H}_d + \frac{\zeta}{\Lambda} \bar{L} N_{R_4} H_u + \beta \bar{N}_R^c N_R \varphi_{\nu} + \zeta_2 \bar{N}_{R_4}^c N_{R_4} \xi_{\nu} + h.c.$$
(12)
where, $\tilde{H}_d = \tilde{H} \overline{\varphi}_d.$

After EWSB,

$$M_f = \begin{pmatrix} 0 & y_1^f v_3 & y_2^f v_2 \\ y_2^f v_3 & 0 & y_1^f v_1 \\ y_1^f v_2 & y_2^f v_1 & 0 \end{pmatrix} \to \text{mass relation is PRESERVED.}$$

where $f = \ell, d$ and the mass matrix for the up-type quarks is given by,

$$M_{u} = \begin{pmatrix} v_{1}^{u} & 0 & 0\\ 0 & v_{2}^{u} & 0\\ 0 & 0 & v_{3}^{u} \end{pmatrix} \begin{pmatrix} 1 & 1 & 1\\ 1 & \omega & \omega^{2}\\ 1 & \omega^{2} & \omega \end{pmatrix} \begin{pmatrix} y_{1}^{u} & 0 & 0\\ 0 & y_{1''}^{u} & 0\\ 0 & 0 & y_{1'}^{u} \end{pmatrix}, \quad (13)$$

where $v_3^u \gg v_{1,2}^u$. •The neutrino masses come from the **Type-I seesaw**.

(B)

Phenomenology (PRELIMINARY RESULTS)¹⁶

Figure: Correlation between the atmospheric angle and the sum of the neutrino masses. The black dashed vertical line is the cosmological constraint, the orange dot-dashed vertical line is the future sensitivity of KATRIN. The panel covers the 3σ range allowed for θ_{23} , Forero et al.2014.

¹⁶Work in progress with Morisi, Peinado and Valle.

Phenomenology (PRELIMINARY RESULTS)

Figure: (Left panel). Correlation between the atmospheric and solar angle. (Right panel) Correlation between the solar angle and the sum of the neutrino masses. The panels cover the 3σ range allowed for θ_{12} and θ_{23} in Forero et al.2014.

• Mass relations in the charge sector at the electroweak scale.

4 A I

Ξ.

- Mass relations in the charge sector at the electroweak scale.
- Our model, in this preliminary stage, only works for NH.

æ –

- Mass relations in the charge sector at the electroweak scale.
- Our model, in this preliminary stage, only works for NH.
- The phenomenology depends on the model.

÷.

- Mass relations in the charge sector at the electroweak scale.
- Our model, in this preliminary stage, only works for NH.
- The phenomenology depends on the model.
- Thank you.

÷.