FLASY 2014: Summary Talk

Stefan Antusch

University of Basel Department of Physics

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Flasy2014, University of Sussex, UK

June 21, 2014

An ongoing very exciting match ...

Many great players (topics) ...

Neutrino Physics

Flavour Phenomenology

GUTs

Dark Matter, Leptogenesis Inflation

Colliders, TeV physics

Flavour model building

...

Aim of the "FLASY Championship"

→ Towards a more fundamental theory (& symmetries) beyond the SM

Many interesting talks

Neutrino Physics

Rodejohann, No, Hartnell, Weber, Lindner, Tanimoto, Merle, Emanuel-Costa, Ludl, Fujimoto, Rojas, Moumni

Flavour Phenomenology

Voena, Khalil, Crivellin, Yamaguchi, Ziegler, Rohrwild, Vincente Montesinos, Martin Camalich, Hiller, Fleischer, Spradlin, Kubo, Schacht, Lenz, Zwicky, van Dyk, Czerwinski, Paradisi, Brod, Stamou, Yamamoto

Dark Matter, Leptogenesis,

Inflation Morisi, Monroe, Aoki, Watanabe, Peinado, Haba, Schumacher, Takahashi, Sil

My appologies that I will only be able to discuss a selection of aspects ... **Colliders, TeV physics** Schmidt, Deppisch, Redi, Romao

Models of Flavour

Feruglio, Nardi, Ko, Mondragon, Ivanov, Serodio, Solaguren-Beascoa, Neder, Bonilla, Trautner, de Medeiros Varzielas, Holthausen, Ding, Luhn, Malinsky

GUTs

Shafi, Spinrath, Maurer, Gonzales-Cannales, Muramatsu

> <u>Many Thanks</u> to all speakers!

Present status: Fermion masses

 \rightarrow tiny masses, scheme unknown

Mixing parameters

Conventional (PDG) parameterization for the mixing matrices U_{CKM} and U_{PMNS} :

Present status: Mixing parameters

Issues in the SM

Colliders, TeV physics

LHC results...

11

LHC results...

125 GeV palm tree

→ from talk by Avelino Vincente 125 GeV palm tree But the 'plam tree' is of course a great discovery and a crucial piece of information!

The SM is perturbative at least till the Planck scale.

\rightarrow talk by J. Kubo

Is the Higgs Potential at M_{Planck} flat?

Buttazzo, Degrassi, Giardino, Giudice, Sala, Salvio, Strumia

→ talk by M. Lindner

. . .

What about the hierarchy problem?

- → GR is different: Non-renormalizable!
- → requires new concepts beyond QFT/gauge theories: ... ?
- \rightarrow BAD: We have no facts which concepts are realized by nature

Supersymmetry?

 \rightarrow assumed/discussed in many talks

Conformally invariant extension of the SM?

→ talks by Manfred Lindner and Jisuke Kubo

LHC: Higgs discovery, SUSY searches, flavour observables, no signals beyond SM

	LAS SUSY Search	ATI	ATLAS Preliminary					
Statt	Model	e , μ, τ, γ	Jets	$\mathbf{E}_{\mathrm{T}}^{\mathrm{miss}}$	∫ <i>Ldt</i> [fb ⁻¹]	Mass limit	$\int Ldt = (4.4 - 20.7) \text{ft}$	o ≰s = 7, 8 Te Reference
Inclusive searches	$ \begin{array}{c} \text{MSUGRA/CMSSM} \\ \text{MSUGRA/CMSSM} \\ \text{MSUGRA/CMSSM} \\ \overline{qq}, \widetilde{q} \rightarrow q \overline{\chi}_{1}^{0} \\ \overline{gg}, \widetilde{g} \rightarrow q \overline{q}_{\chi}^{0} \\ \overline{gg}, \widetilde{g} \rightarrow q \overline{q}_{\chi}^{0} \\ \overline{gg} \rightarrow q \overline{q}_{\chi}^{0} \\ \overline{gg} \rightarrow q \overline{q}_{\chi}^{0} \\ \overline{gg} \rightarrow q \overline{q}_{\chi}^{0} \\ \text{GMSB} (I, \text{LSP}) \\ \text{GMSB} (I, \text{NLSP}) \\ \text{GGM (bino NLSP)} \\ \text{GGM (vino NLSP)} \\ \text{GGM (ning sino-bino NLSP)} \\ \text{GGM (ning sino NLSP)} \\ \text{GRAVIDIO LSP} \\ \text{Gravitino LSP} \\ \end{array} $	$\begin{matrix} 0 \\ 1 e, \mu \\ 0 \\ 0 \\ 1 e, \mu \end{matrix} \\ 2 e, \mu \cr 1 - 2 \tau \\ 2 \varphi, \mu \cr 1 - 2 \tau \\ 2 \gamma \cr 1 e, \mu + \gamma \cr \gamma \cr 2 e, \mu \cr (Z) \\ 0 \end{matrix} \\ \end{matrix}$	2-6 jets 4 jets 7-10 jets 2-6 jets 2-6 jets 2-4 jets 3 jets 2-4 jets 0-2 jets 0 0 1 b 0-3 jets mono-jet	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.3 5.8 20.3 20.3 20.3 4.7 20.7 4.7 20.7 4.8 4.8 4.8 5.8 10.5	G. G 1.24 TeV G. G 1.1 TeV G 740 GeV G 740 GeV G 1.1 TeV G 1.07 TeV G 619 GeV G 900 GeV G 690 GeV F ^{1/2} scale 645 GeV	1.8 TeV $m(\tilde{g})=m(\tilde{g})$ $m(\tilde{g})=m(\tilde{g})$ $ary m(\tilde{q})$ $m(\tilde{\chi}_{1}^{0}) = 0 \text{ GeV}$ $m(\tilde{\chi}_{1}^{0}) = 0 \text{ GeV}$ $m(\tilde{\chi}_{1}^{0}) < 50 \text{ GeV}$, $m(\tilde{\chi}^{-1}) = 0.5(m(\tilde{\chi}_{1}^{0})+m(\tilde{g}))$ $m(\tilde{\chi}_{1}^{0}) < 50 \text{ GeV}$ 1.1 $m(\tilde{\chi}_{1}^{0}) > 50 \text{ GeV}$ $m(\tilde{\chi}_{1}^{0}) > 50 \text{ GeV}$ $m(\tilde{\chi}_{1}^{0}) > 50 \text{ GeV}$ $m(\tilde{\chi}_{1}^{0}) > 200 \text{ GeV}$ $m(\tilde{\chi}_{1}^{0}) > 200 \text{ GeV}$ $m(\tilde{\chi}_{1}^{0}) > 10 \text{ GeV}$ $m(\tilde{\chi}_{1}^{0}) > 10 \text{ GeV}$	ATLAS-CONF-2013-047 ATLAS-CONF-2013-047 ATLAS-CONF-2013-054 ATLAS-CONF-2013-047 ATLAS-CONF-2013-047 1208.4688 ATLAS-CONF-2013-007 1208.4688 ATLAS-CONF-2013-026 1209.0753 ATLAS-CONF-2012-144 1211.1167 ATLAS-CONF-2012-152 ATLAS-CONF-2012-152
3 ^u gen. à med.	$ \begin{array}{l} \widetilde{g} \rightarrow b \overline{b} \overline{\lambda}_{1}^{c_{0}} \\ \widetilde{g} \rightarrow t \overline{\lambda}_{2}^{c_{0}} \\ \widetilde{g} \rightarrow t \overline{\lambda}_{2}^{c_{0}} \\ \widetilde{g} \rightarrow t \overline{\lambda}_{2}^{c_{0}} \end{array} $	0 2 e, μ (SS) 0 0	3 b 0-3 b 7-10 jets 3 b	Yes No Yes Yes	12.8 20.7 20.3 12.8	ğ 1.24 TeV ğ 900 GeV ğ 1.14 TeV ğ 1.15 TeV	/ m(χ ₁ ⁰) < 200 GeV m(χ ₁ ⁰) < 500 GeV m(χ ₁ ⁰) <200 GeV m(χ ₁ ⁰) <200 GeV	ATLAS-CONF-2012-145 ATLAS-CONF-2013-007 ATLAS-CONF-2013-054 ATLAS-CONF-2012-145
3 ^{°d} gen. squarks direct production	$ \begin{array}{c} \underbrace{\widetilde{b}}_{i,\overline{b}}, \underbrace{\widetilde{b}}_{i}, \rightarrow \underbrace{\widetilde{b}}_{i}^{\gamma_{i}}, \underbrace{\widetilde{b}}_{i}, \underbrace{b}_{i}, \underbrace{b}, \underbrace{b}_$	0 2 e, µ (SS) 1-2 e, µ 2 e, µ 2 e, µ 0 1 e, µ 0 2 e, µ (Z) 3 e, µ (Z)	2 b 0-3 b 1-2 b 0-2 jets 0-2 jets 2 b 1 b 2 b 1 b 1 b 1 b	Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.1 20.7 4.7 20.3 20.3 20.1 20.7 20.5 20.7 20.7	Display 100-630 GeV b, 430 GeV 1 167 GeV 1, 220 GeV 1, 150-440 GeV 1, 150-580 GeV 1, 200-610 GeV 1, 320-660 GeV 1, 500 GeV 1, 500 GeV 1, 500 GeV	$\begin{split} m(\widetilde{\chi}_1^0) &< 100 \text{ GeV} \\ m(\widetilde{\chi}_1^0) &= 2 m(\widetilde{\chi}_1^0) \\ m(\widetilde{\chi}_1^0) &= 55 \text{ GeV} \\ m(\widetilde{\chi}_1^0) &= m(\widetilde{\chi}_1) - m(W) - 50 \text{ GeV}, m(\widetilde{\chi}_1) \\ m(\widetilde{\chi}_1^0) &= 0 \text{ GeV}, m(\widetilde{\chi}_1) - m(\widetilde{\chi}_1) = 10 \text{ GeV} \\ m(\widetilde{\chi}_1^0) &< 200 \text{ GeV}, m(\widetilde{\chi}_1) - m(\widetilde{\chi}_1) = 5 \text{ GeV} \\ m(\widetilde{\chi}_1^0) &< 200 \text{ GeV}, m(\widetilde{\chi}_1) - m(\widetilde{\chi}_1) = 5 \text{ GeV} \\ m(\widetilde{\chi}_1^0) &= 0 \text{ GeV} \\ m(\widetilde{\chi}_1^0) &= 0 \text{ GeV} \\ m(\widetilde{\chi}_1^0) &= 10 \text{ GeV} \\ m(\widetilde{\chi}_1) &= m(\widetilde{\chi}_1^0) + 180 \text{ GeV} \end{split}$	ATLAS-CONF-2013-053 ATLAS-CONF-2013-007 1208.4305, 1209.2102 ATLAS-CONF-2013-048 ATLAS-CONF-2013-048 ATLAS-CONF-2013-053 ATLAS-CONF-2013-025 ATLAS-CONF-2013-025 ATLAS-CONF-2013-025
EW direct	$ \begin{split} \widetilde{I}_{L,\widetilde{R}\widetilde{L},R}, \widetilde{I} &\rightarrow \widetilde{I}\widetilde{\chi}_{1}^{0} \\ \widetilde{\chi}_{1}^{+}\widetilde{\chi}_{1}, \widetilde{\chi}_{1}^{+} &\rightarrow \widetilde{I}v\left(V\right) \\ \widetilde{\chi}_{1}^{+}\widetilde{\chi}_{1}, \widetilde{\chi}_{1}^{+} &\rightarrow \widetilde{I}v\left(\tau\widetilde{v}\right) \\ \widetilde{\chi}_{1}^{+}\widetilde{\chi}_{2}^{0} &\rightarrow \widetilde{I}_{L}vI_{L}(I_{v}v), \widetilde{I}v\widetilde{I}_{L}(\widetilde{v}v) \\ \widetilde{\chi}_{1}^{+}\widetilde{\chi}_{2}^{0} &\rightarrow W'\widetilde{\chi}_{1}^{0}Z'''\widetilde{\chi}_{1}^{0} \end{split} $	2 e, μ 2 e, μ 2 τ 3 e, μ 3 e, μ	0 0 0 0	Yes Yes Yes Yes Yes	20.3 20.3 20.7 20.7 20.7	μ 85-315 GeV μ̃ [*] 125-450 GeV μ̃ [*] 180-330 GeV μ̃ [*] 180-330 GeV μ̃ [*] 500 GeV μ̃ [*] 315 GeV	$\begin{split} m(\widetilde{\chi}_{1}^{*}) &= 0 \; \text{GeV} \\ m(\widetilde{\chi}_{1}^{*}) &= 0 \; \text{GeV}, \; m(\widetilde{l},\widetilde{\tau}) = 0.5(m(\widetilde{\chi}_{1}^{*})) + m(\widetilde{\chi}_{1}^{*})) \\ m(\widetilde{\chi}_{1}^{*}) &= 0 \; \text{GeV}, \; m(\widetilde{\tau},\widetilde{\tau}) = 0.5(m(\widetilde{\chi}_{1}^{*})) + m(\widetilde{\chi}_{1}^{*})) \\ m(\widetilde{\chi}_{1}^{*}) &= m(\widetilde{\chi}_{2}^{*}) = 0, \; m(\widetilde{\tau},\widetilde{\tau}) = 0.5(m(\widetilde{\chi}_{1}^{*})) + m(\widetilde{\chi}_{1}^{*})) \\ m(\widetilde{\chi}_{1}^{*}) &= m(\widetilde{\chi}_{2}^{*}) = 0, \; m(\widetilde{\tau},\widetilde{\tau}) = 0.5(m(\widetilde{\chi}_{1}^{*})) + m(\widetilde{\chi}_{1}^{*})) \end{split}$	ATLAS-CONF-2013-049 ATLAS-CONF-2013-049 ATLAS-CONF-2013-028 ATLAS-CONF-2013-035 ATLAS-CONF-2013-035
Long-lived particles	$\begin{array}{l} \mbox{Direct $\widetilde{\chi}_1^*\widetilde{\chi}_1^*$ prod., long-lived $\widetilde{\chi}_1^*$ Stable \widetilde{g}, R-hadrons $$ GMSB, stable $\widetilde{\chi}$, low $$ \beta$ GMSB, $\widetilde{\chi}_1^0 \rightarrow \gamma $$ G,long-lived $\widetilde{\chi}_1^0$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$	0 0-2 e, μ 2 e, μ 2 γ 1 e, μ	1 jet 0 0 0 0	Yes Yes Yes Yes Yes	4.7 4.7 4.7 4.7 4.4	次。 220 GeV 9 985 GeV デ 300 GeV 20 GeV 21 70 GeV 7 700 GeV	$\begin{aligned} 1 &< \tau(\widetilde{\chi}^+_1) < 10 \text{ ns} \\ 5 &< \tan \beta < 20 \\ 0.4 &< \tau(\widetilde{\chi}^0_1) < 2 \text{ ns} \\ 1 \text{ mm} < \operatorname{cr} < 1 \text{ m}, \widetilde{g} \text{ decoupled} \end{aligned}$	1210.2852 1211.1597 1211.1597 1304.6310 1210.7451
RPV	$ \begin{array}{l} LFV \ pp \rightarrow \widetilde{v}_{\tau} + X, \ \widetilde{v}_{\tau} \rightarrow e + \mu \\ LFV \ pp \rightarrow \widetilde{v}_{\tau} + X, \ \widetilde{v}_{\tau} \rightarrow e(\mu) + \tau \\ \text{Bilinear } PPV \ CMSSM \\ \widetilde{\chi}_{\tau}^{+}\widetilde{\chi}, \ \widetilde{\chi}_{\tau}^{+} \rightarrow W_{\chi}^{-1}, \ \widetilde{\chi}_{\tau}^{0} \rightarrow e e \nu_{\mu}, e \mu \nu_{e} \\ \widetilde{\chi}_{\tau}^{+}\widetilde{\chi}, \ \widetilde{\chi}_{\tau}^{+} \rightarrow W_{\chi}^{-1}, \ \widetilde{\chi}_{\tau}^{0} \rightarrow e e \nu_{\mu}, e \mu \nu_{\tau} \\ \widetilde{g} \rightarrow q q q \\ \widetilde{g} \rightarrow q q q \\ \widetilde{g} \rightarrow \widetilde{q}, \end{array} $	$\begin{array}{c} 2 \ e, \ \mu \\ 1 \ e, \ \mu + \tau \\ 1 \ e, \ \mu \\ 4 \ e, \ \mu \\ 3 \ e, \ \mu + \tau \\ 0 \\ 2 \ e, \ \mu \left(SS \right) \end{array}$	0 0 7 jets 0 0 6 jets 0-3 b	- Yes Yes Yes - Yes	4.6 4.7 20.7 20.7 4.6 20.7	v. 1. v. 1.1 TeV q. g 1.2 TeV R. 760 GeV R. 350 GeV g 666 GeV g 880 GeV	$ \begin{array}{l} \textbf{.61 TeV} \lambda_{_{131}}^{-}=0.10, \lambda_{_{132}}^{-}=0.05 \\ \lambda_{_{311}}^{-}=0.10, \lambda_{_{1(2)33}}^{-}=0.05 \\ \textbf{m}(\vec{q})=\textbf{m}(\vec{q}), c_{T_{LSP}}^{-}<1 \textbf{m} \\ \textbf{m}(\vec{\chi}_{1}^{+})>300 \text{GeV}, \lambda_{_{121}}>0 \\ \textbf{m}(\vec{\chi}_{1}^{+})>80 \text{GeV}, \lambda_{_{133}}>0 \end{array} $	1212.1272 1212.1272 ATLAS-CONF-2012-140 ATLAS-CONF-2013-036 ATLAS-CONF-2013-036 1210.4813 ATLAS-CONF-2013-007
Other	Scalar gluon WIMP interaction (D5, Dirac χ)	0 0	4 jets mono-jet	- Yes	4.6 10.5	sgluon 100-287 GeV M* scale 704 GeV	incl. limit from 1110.2693 $m(\chi) < 80 \ {\rm GeV}, \ {\rm limit} \ {\rm of} < 687 \ {\rm GeV} \ {\rm for} \ {\rm D8}$	1210.4826 ATLAS-CONF-2012-147
	vs = 7 Te full dat	eV <mark>∦</mark> s= ta parti	8 TeV al data	s = 8 full o	ata	10 ⁻¹ 1	Mass scale [TeV]	

*Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 1 or theoretical signal cross section uncertainty.

But there are still various SUSY scenarios with rather low fine-tuning ...

some time and requires a high luminosity upgrade of the LHC But new physics could also show up in precision flavour physics experiments!

Precision flavour experiments, Flavour phenomenology

But also flavour experiments are facing a 'tough defense'

A lot of discussion on how to interpret the $B \rightarrow K^* I I$ 'anomaly'? New physics?

For example:

- The $B \to K^* \ell \ell$ decay is a very rich probe of $b \to s$ FCNCs
- 2 There is a \sim 4- σ tension between 1 fb⁻¹ data and some SM predictions
 - New physics mechanisms invoquing C₉ can solve the anomaly
- We adopt the R fit philosophy for the treatment of hadronic uncertainties
 - Our predictions reasonably agree with the SM
 - Alternative explanation within the SM in terms of power corrections

 \rightarrow talk by M. Camalich

–Non-resonant decays provide a background to important signal modes $B \to K^*(\to K\pi)\mu\mu$ and $B_s \to \varphi(\to KK)\mu\mu$. We present distributions for low recoil.

 \rightarrow talk by G. Hiller

 large effects in broad charm resonances factorisation fails 350% (nominal correction 50%)

Asking the goal-line technology: Is it a goal (= is it new physics)?

But not only the defense is tough ... also the ball is 'difficult to play' \rightarrow theory calculations

Flasy 2014

Avelino Vicente - FlavorKit: Flavor physics beyond the SM

Neutrino Physics

Many unknowns remain ...

- > What are the values of the Dirac CP phase δ^{PMNS}
- > Is the mass scheme "normal" or "inverse", i.e., what is $sgn(\Delta m_{31}^2)$?
- > What is the deviation of $\theta_{23}^{\text{PMNS}}$ from maximal (i.e. from 45°)
- > What is the absolute neutrino mass scale?
- > Are neutrino masses of Dirac- or Majorana-type?
- If they are Majorana-type, what are the values of the Majorana phases?

Great also for theorists! It means it is still possible to make predictions!

What is the origin of neutrino masses? How to extend the SM?

... most talks were assuming:

At which scale?

(A) At high scale (~ M_{GUT}) (B) At TeV scale (\rightarrow colliders, LHC) (C) At keV scale (\rightarrow warm DM) (D) At eV energies (light sterile v's)

Which mechanism?

Is it a tree-level "Seesaw" mechanism?

... or something else?

What is the origin and nature of the neutrino masses? We have to combine all sources of information ...

Colliders

indirect tests (e.g. LFV, non-unitarity)

0vββ decay, Tritium β decay, cosmology

 \rightarrow talk by J. Hartnell

Neutrino oscillations

 \rightarrow talk by A. Weber

Present and future sensitivities of charged LFV experiments

-			
-	process	current exp.	future exp.
-	K ⁰ mixing	$\epsilon_{ m {\it K}} = (2.228 \pm 0.011) imes 10^{-3}$	_
	D ⁰ mixing	$A_{\Gamma} = (-0.02 \pm 0.16)\%$	\pm 0.007% LHCb \pm 0.06% Belle II
	B _d mixing	$\sin 2eta = 0.68 \pm 0.02$	\pm 0.008 LHCb \pm 0.012 Belle II
	B _s mixing	$\phi_s = 0.01 \pm 0.07$	\pm 0.008 LHCb
-	d _{Hg}	< 3.1 × 10 ⁻²⁹ <i>e</i> cm	_
	d _{Ra}	_	$\lesssim 10^{-29}~m{e}_{ m cm}$
	d_n	< 2.9 × 10 ^{−26} <i>e</i> cm	$\lesssim 10^{-28}~e\!\mathrm{cm}$
	$d_{ ho}$	_	$\lesssim 10^{-29}$ com
	d _e	< 1.05 × 10 ^{−27} <i>e</i> cm YbF	$\lesssim 10^{-30}~e{ m cm}$ YbF, Fr
-	$\mu ightarrow oldsymbol{e} \gamma$	$< 5.4 \times 10^{-13}$ MEG	$\lesssim 6 \times 10^{-14}$ MEG upgrade
	$\mu ightarrow$ 3 $m{e}$	$< 1.0 \times 10^{-12}$ SINDRUM I	$\lesssim 10^{-16}$ Mu3e
	$\mu ightarrow oldsymbol{e}$ in Au	$<$ 7.0 \times 10 ⁻¹³ SINDRUM II	_
-	$\mu ightarrow oldsymbol{e}$ in Al	_	$\lesssim 6 imes 10^{-17}$ Mu2e
_			

Table: Summary of current and selected future expected experimentar initia on Cr violation in meson mixing, EDMs and lepton flavor violating processes.

0vββ decay: Future sensitivities

→ talk by Jeff Hartnell

\rightarrow talk by W. Rodejohann

The usual plot

Ruling out Inverted Hierarchy $|m_{ee}|_{\min}^{\text{IH}} = (1 - |U_{e3}|^2) \sqrt{|\Delta m_A^2|} (1 - 2\sin^2 \theta_{12})$ $= (0.011 \dots 0.022) \text{ eV}$

\rightarrow talks by F. Deppisch, W. Rodejohann

The usual plot

Non-standard contributions to *0vββ decay* possible!

General Effective Operator

LHC can probe non-standard sources of 0vββ decay!

32

LNV at the LHC

 \rightarrow talk by F. Deppisch

Falsifying Leptogenesis at the LHC (FFD, Harz, Hirsch, Phys. Rev. Lett. 112, 221601)

Upper limit on baryon asymmetry

$$\log_{10} \left| \frac{\eta_B}{\eta_B^{\text{obs}}} \right| < 2.4 \frac{M_X}{\text{TeV}} \left(1 - \frac{4}{3} \frac{M_N}{M_X} \right) + \log_{10} \left[|\epsilon| \left(\frac{\sigma_{\text{LHC}}}{\text{fb}} \right)^{-1} \left(\frac{4}{3} \frac{M_N}{M_X} \right)^2 \right]$$

- LNV is observed at LHC
 - \rightarrow High scale Leptogenesis $(M_N > M_X)$ is not viable
 - → Strong limit on CP asymmetry ε for low scale Leptogenesis (M_{EW} < M_N < M_X)

Caveat

- Asymmetry can be present in one lepton generation only
 - Falsification requires observation of LNV in all flavours (or observation of low energy LFV such as $\tau \rightarrow e\gamma$)

University College London

ightarrow talk by F. Deppisch

What is the data on neutrino mixing (and CP violation) telling us about flavour symmetries?

 \rightarrow talk by F. Feruglio

anything special from data, requiring a symmetry?

- ϑ₂₃ maximal ?
- δ_{cP}= -π/2 ?

1

2

3 U_{PMNS} close to TB (BM,...)?

3 examples from a longer list...

Future results will have interesting implications

Remark: We are having such a situation already in the quark sector!

... can be explained by spontaneous CP breaking: arXiv:1103.5930

GUTs

Very predictive framework: (SUSY) Flavour GUTs

 \rightarrow from talk by Thomas Neder

Advantages of SUSY GUT

two unifications

- gauge interactions
- particles (especially matters)

two supports

- gauge coupling unification
- quark and lepton masses and mixings
- unification of gauge interactions
 SM gauge group G_{SM} is unified into grand unification group.

From unification of particles: Predictions for GUT scale Yukawa coupling ratios

Conventional: 3rd family Yukawa unification, GJ factor of 3

$$F_{3}T_{3}\langle \overline{H}_{5} \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} b_{R}^{c} \\ b_{B}^{c} \\ b_{G}^{c} \\ \tau \\ -\nu_{\tau} \end{pmatrix} \begin{pmatrix} 0 & -t_{G}^{c} & t_{B}^{c} & -t_{R} & -b_{R} \\ t_{G}^{c} & 0 & -t_{G}^{c} & -t_{B} & -b_{B} \\ -t_{B}^{c} & t_{R}^{c} & 0 & -t_{G} & -b_{G} \\ t_{R} & t_{B} & t_{G} & 0 & -\tau^{c} \\ b_{R} & b_{B} & b_{G} & \tau^{c} & 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ v \end{pmatrix} = \frac{SSB}{\sqrt{-\frac{v}{c^{2}}}} \left(\bar{b}b + \bar{\tau}\tau \right) \longrightarrow y_{\tau}/y_{b} = 1$$

[Georgi, Glashow '74, see also talk by Q. Shafi]

Using a 45-dim. Higgs gives a ratio of -3

Alternative ratios: from effective operators

 $\sqrt{2}$

Alternative Ratios III

[Antusch, MS '09; MS '10; Antusch, King, MS '13; dim. 6 SU(5) operators Antusch *et al.* '14]

 \rightarrow ratios imply testable constraints on the SUSY spectrum

Challenge for GUTs: Doublet-Triplet splitting (& proton decay)

particles
 SM multiplets
 MSSM multiplets

GUT multiplets

Solution possible and can be combined with predictive GUT flavour models

Family symmetries: Can solve SUSY flavour problem!

Explain flavour structure in the SM, e.g.:

$$M_d \sim \begin{pmatrix} 0 & \varepsilon_1 \varepsilon_2 & \varepsilon_1 \varepsilon_2 \\ \varepsilon_1 \varepsilon_2 & \varepsilon_2^2 & \varepsilon_2^2 \\ \varepsilon_1 \varepsilon_2 & \varepsilon_2^2 & \varepsilon_3^2 \end{pmatrix} v_d$$

Generate flavour stucture of the SUSY particles:

$$\widetilde{M}_{d_R} \sim \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} m_0 + \begin{pmatrix} \varepsilon_1^2 & \varepsilon_1^2 & \varepsilon_1^2 \\ \varepsilon_1^2 & \varepsilon_2^2 & \varepsilon_2^2 \\ \varepsilon_1^2 & \varepsilon_2^2 & \varepsilon_3^2 \end{pmatrix} m_0$$
Family
symmetry!
$$A_d \sim \begin{pmatrix} 0 & \varepsilon_1 \varepsilon_2 & \varepsilon_1 \varepsilon_2 \\ \varepsilon_1 \varepsilon_2 & \varepsilon_2^2 & \varepsilon_2^2 \\ \varepsilon_1 \varepsilon_2 & \varepsilon_2^2 & \varepsilon_3^2 \end{pmatrix} A_0$$
SUSY flavour
structure related to the
one of the SM

sMSSM : (Flavour) Symmetry-based MSSM K. Babu, I. Gogoladze, S. Rizvi, QS.

 Motivation: Realize Supersymmetric Models in which symmetry considerations alone dictate the form of the SUSY breaking Lagrangian.

Suggestive that sfermion masses controlled by same dynamics that render Yukawas small

Realization depends on relation of messenger scales

scale SUSY messengers

 Λ_{S}

scale flavor messengers

 Λ_F

→ talk by Q. Shafi
 (with gravity mediation)

Flavoured gauge mediation: → talk by R. Ziegle

Alternative to GUTs: Multi Higgs Flavour Models ... at TeV energies

 \rightarrow talks by M. Mondragon, I. Ivanov, H. Serodio

Systematic treatment of all possibilities

How generic is residual symmetry?

ightarrow talk by I. Ivanov

Models of Flavour

 \rightarrow from talk by Eduardo Peinado

Most models follow one of the two approaches to flavour model building ...

After θ_{13}^{PMNS} discovery: Consider larger groups (e.g. $\Delta(6n^2)$) \rightarrow talk by Thomas Neder After θ₁₃^{PMNS} discovery:
(i) alternative flavon vev directions
(ii) charged lepton corrections

ightarrow talk by Alma Rojas

Testing classes of lepton flavour models: sumrules!

1) mixing sum rules

2) mass sum rules

Examples for mixing sum rules: Tri-maximal mixing 2

TM2: Including CP phase

$$V_{\nu} = \begin{pmatrix} 2c/\sqrt{6} & 1/\sqrt{3} & 2se^{-i\sigma}/\sqrt{6} \\ -c/\sqrt{6} + se^{i\sigma}/\sqrt{2} & 1/\sqrt{3} & -se^{-i\sigma}/\sqrt{6} - c/\sqrt{2} \\ -c/\sqrt{6} - se^{i\sigma}/\sqrt{2} & 1/\sqrt{3} & -se^{-i\sigma}/\sqrt{6} + c/\sqrt{2} \end{pmatrix}$$

Examples for mixing sum rules: Tri-maximal mixing 1

→ talks by M. Tanimotc

Example: Mixing sum rule if θ_{13}^{PMNS} generated by charged lepton correction θ_{12}^{e}

Example: Mixing sum rule if θ_{13}^{PMNS} generated by charged lepton correction θ_{12}^{e}

See e.g.: arXiv:1107.3728, 1108.0614

Interesting possibility: Is $\theta_{13}^{PMNS} \approx \theta_{C}/\sqrt{2}$ the footprint of a GUT?

Example: Mixing sum rule if θ_{13}^{PMNS} generated by charged lepton correction θ_{12}^{e}

Reconstructing θ_{12}^{v} using the lepton mixing sum rule

Example: mass sum rules

 initial observation: if M_v constains two decisive parameters (typically by two flavon couplings), then it yields a mass sum rule

... different flavour groups in direct models can generate a large number of different sum rules, e.g.:

$$\frac{1}{\tilde{m}_3} + \frac{2i(-1)^{\eta}}{\tilde{m}_2} = \frac{1}{\tilde{m}_1}$$

King, Luhn, Stuart: Nucl. Phys. **B867**, 203 (2013)

model: Δ(96) & seesaw type I

 \rightarrow talks by A. Merle, W. Rodejohann

Example: mass sum rules

model distinction:

ightarrow talks by A. Merle, W. Rodejohann

Combining flavour symmetry and CP symmetry:

Predicting δ^{PMNS} from spontaneous CP breaking

 \rightarrow talks by M. Holthausen, I. de Medeiros Varzielas, G.-J. Ding, A. Trautner, T. Neder

Spontaneous CP violation & flavour models

Generalized CP: Outer automorphisms of G_F

M. Holthausen, M. Lindner M. A. JHEP 1304 (2013) 122 [arXiv:1211.6953]

 \rightarrow talk by Martin Holthausen

Spontaneous CP violation & flavour models

- CP transformations are **outer automorphisms** of G
- Not all outer automorphisms are CP transformations
- Two types of discrete groups:
 - Type I: incompatible with CP X Attention: some (model dependent) fine print!
 - Type II: compatible with CP

 \rightarrow talk by Andreas Trautner

Geometrical CP violation with complete fermion sector

Conclusions

- First time GCPV with viable fermions.
- Precision data restricts viable irrep. choices.
- Additional symmetry safeguards potential.
- Same symmetry alleviates mass hierarchies.
- Constructed compatible lepton models.

 \rightarrow talk by Ivo de Medeiros Varzielas

Cosmology: Dark Matter, Leptogenesis, Inflation

\rightarrow from talk by S. Morisi

Four-leaf clover

→ talks by R. Takahashi, S. Morisi

 \rightarrow talk by A. Sil

 \rightarrow talks on flavour - DM connection by S. Morisi, M. Aoki, A. Watanabe, E. Peinado, N. Haba

Discrete Dark Matter

Hirsch, SM, Peinado, Valle PRD 10' Meloni, SM, Peinado, PLB 11' Boucenna et al, JHEP 11' Meloni, SM, Peinado, PLB 11' Toorop, Bazzocchi, M, NPB 12' Boucenna et al, PRD 12'

The flavor symmetry stabilizes the DM

stabilize the DM (typically imposed by hand)

 \rightarrow talks on DM experiments by J. Monroe

Four-leaf clover

 \rightarrow from talk by S. Moris

We also discussed a lot about the possible implications of the BICEP2 result ...

Constraint on the tensor-to-scalar ratio (BICEP2 result)

→from talk by R. Takahashi

If confirmed ...

BICEP2 (2014)

Important implications (if 'large' r gets confirmed):

Confirmation of "smoking gun of inflation"

• $V_0 \sim M_{GUT} = 2 \times 10^{16} \text{ GeV}$ (looks like pointing at possible connection to particle physics phase transition around M_{GUT})

• Slow-roll inflation: Large r implies large $\Delta \Phi > O(m_{Pl})$: For predictive models with so large $\Delta \Phi$, need to go beyond effective field theory ...

Vacuum energy during inflation can $V_0^{rac{1}{4}} \approx 2.2 imes 10^{16} \, {
m GeV} \, \left(rac{r}{0.2}
ight)^{rac{1}{4}}$ be calculated from r:

Lets us all continue to join forces ...

Special Thanks and Applause to the Organisers!

Looking forward to FLASY 2015 !