FLASY 2014

Fourth workshop on flavour symmetries
University of Sussex, 17-21 June 2014

Quark Yukawa pattern from spontaneous breaking of $\mathrm{SU}(3)^{3}$

Enrico Nardi
INFN - Laboratori Nazionali di Frascati, Italy

The SM fermions gauge invariant kinetic term:

$$
\sum_{f=Q, \ell, u, d, e} \bar{\Psi}_{f} \not D_{f} \Psi_{f}
$$

Only five $\not D_{f}$ for 15 fermions. Fermions replicate in triplets.
Formally: $\mathcal{G}=U(3)^{5}$ invariance
Is this fact illusory, accidental, or fundamental?

The SM fermions gauge invariant kinetic term:

Only five D_{f} for 15 fermions. Fermions replicate in triplets.
Formally: $\mathcal{G}=U(3)^{5}$ invariance

Is this fact illusory, accidental, or fundamental ?

ILLUSORY. In a complete theory all fermions are distinguished: 15 different $\prod_{f_{i}}$; or different global QN (FN-models).

The SM fermions gauge invariant kinetic term:

$$
\sum_{f=Q, \ell, u, d, e} \bar{\Psi}_{f} D_{f} \Psi_{f}
$$

Only five D_{f} for 15 fermions. Fermions replicate in triplets.
Formally: $\mathcal{G}=U(3)^{5}$ invariance

Is this fact illusory, accidental, or fundamental?

ILLUSORY: In a complete theory all fermions are distinguished: 15 different $\rrbracket_{f_{i}}$; or different global QN (FN-models).

FUNDAMENTAL: $\Psi_{f} \in 3$-dimensional irreps of $\mathcal{G}:\left[\mathcal{G}, G_{S M}\right]=0$

The SM fermions gauge invariant kinetic term:

$$
\sum_{f=Q, \ell, u, d, e} \bar{\Psi}_{f} D_{f} \Psi_{f}
$$

Only five D_{f} for 15 fermions. Fermions replicate in triplets.
Formally: $\mathcal{G}=U(3)^{5}$ invariance

Is this fact illusory, accidental, or fundamental?

ILLUSORY: ${ }^{\text {In a complete theory all fermions are distinguished: }}$ 15 different $\rrbracket_{f_{i}}$; or different global QN (FN-models).

FUNDAMENTAL: $\Psi_{f} \in 3$-dimensional irreps of $\mathcal{G}:\left[\mathcal{G}, G_{S M}\right]=0$

No multiplet structure in the spectrum: $\Rightarrow S S B$

Restricting to quarks and the broken subgroup $S U(3)^{3}$

$$
\begin{gathered}
\mathcal{G}_{\mathcal{F}}=S U(3)_{Q} \times S U(3)_{u} \times S U(3)_{d} \\
Q=(3,1,1), \quad u=(1,3,1), \quad d=(1,1,3)
\end{gathered}
$$

Restricting to quarks and the broken subgroup $S U(3)^{3}$

$$
\mathcal{G}_{\mathcal{F}}=S U(3)_{Q} \times S U(3)_{u} \times S U(3)_{d}
$$

$$
Q=(3,1,1), \quad u=(1,3,1), \quad d=(1,1,3)
$$

Symmt. breaking ansatz: Interpret the SM explicit breaking as spontaneous, driven by a set of scalar "Yukawa fields" :

$$
Y_{u}=(3, \overline{3}, 1), \quad Y_{d}=(3,1, \overline{3}),
$$

Restricting to quarks and the broken subgroup $S U(3)^{3}$

$$
\begin{gathered}
\mathcal{G}_{\mathcal{F}}=S U(3)_{Q} \times S U(3)_{u} \times S U(3)_{d} \\
Q=(3,1,1), \quad u=(1,3,1), \quad d=(1,1,3)
\end{gathered}
$$

Symmt. breaking ansatz: Interpret the SM explicit breaking as spontaneous, driven by a set of scalar "Yukawa fields" :

$$
Y_{u}=(3, \overline{3}, 1), \quad Y_{d}=(3,1, \overline{3}),
$$

This ensures $\mathcal{G}_{\mathcal{F}}$-invariance of the effective Lagrangian:

$$
-\mathcal{L}_{Y}=\frac{1}{\Lambda} \bar{Q} Y_{u} u H+\frac{1}{\Lambda} \bar{Q} Y_{d} d \tilde{H}
$$

Restricting to quarks and the broken subgroup $S U(3)^{3}$

$$
\mathcal{G}_{\mathcal{F}}=S U(3)_{Q} \times S U(3)_{u} \times S U(3)_{d}
$$

$Q=(3,1,1), \quad u=(1,3,1), \quad d=(1,1,3)$
Symmt. breaking ansatz: Interpret the SM explicit breaking as spontaneous, driven by a set of scalar "Yukawa fields" :

$$
Y_{u}=(3, \overline{3}, 1), \quad Y_{d}=(3,1, \overline{3}),
$$

This ensures $\mathcal{G}_{\mathcal{F}}$-invariance of the effective Lagrangian:

$$
-\mathcal{L}_{Y}=\frac{1}{\Lambda} \bar{Q} Y_{u} u H+\frac{1}{\Lambda} \bar{Q} Y_{d} d \tilde{H}
$$

N. Cabibbo and L. Maiani, in Evolution of particle physics, Academic Press (1970), 50, App. I; A. Anselm and Z. Berezhiani, Nucl. Phys. B 484, 97 (1997); Z. Berezhiani and A. Rossi, Nucl. Phys. Proc. Suppl. 101, 410 (2001); Y. Koide, Phys. Rev. D78 093006 (2008), ibd. D79, 033009 (2009); T. Feldmann, M. Jung, T. Mannel, Phys. Rev. D80, 033003 (2009); R. Alonso, M. B. Gavela, L. Merlo, S. Rigolin, JHEP 07 (2011) 02;
[1] E. Nardi, Phys.Rev. D84, 036008 (2011); [2] J. R. Espinosa, C. S. Fong, E. Nardi, JHEP 1302, 137 (2013); [3] C.S. Fong and E.Nardi, Phys.Rev. D89, 036008 (2014).

Scalar field invariants and T,A,D parametrization

Singular value decomposition for the non-Abelian fields:

$$
Y_{u}=\mathcal{V}_{u}^{\dagger} \chi_{u} \mathcal{U}_{u}, \quad Y_{d}=\mathcal{V}_{d}^{\dagger} \chi_{d} \mathcal{U}_{d}
$$

\mathcal{V}, \mathcal{U} unitary field matrices, $\chi=\operatorname{diag}\left(u_{1}, u_{2}, u_{3}\right) ; u_{i} \geq 0$.
$\underline{\mathcal{G}_{\mathcal{F}}}$ transformations: $Y \rightarrow V_{Q} Y_{q} V_{q}^{\dagger}, \quad Y Y^{\dagger} \rightarrow V_{Q}\left(Y Y^{\dagger}\right) V_{Q}^{\dagger}$

Scalar field invariants and T,A,D parametrization

Singular value decomposition for the non-Abelian fields:

$$
Y_{u}=\mathcal{V}_{u}^{\dagger} \chi_{u} \mathcal{U}_{u}, \quad Y_{d}=\mathcal{V}_{d}^{\dagger} \chi_{d} \mathcal{U}_{d}
$$

\mathcal{V}, \mathcal{U} unitary field matrices, $\chi=\operatorname{diag}\left(u_{1}, u_{2}, u_{3}\right) ; u_{i} \geq 0$.
眐 transformations: $Y \rightarrow V_{Q} Y_{q} V_{q}^{\dagger}, \quad Y Y^{\dagger} \rightarrow V_{Q}\left(Y Y^{\dagger}\right) V_{Q}^{\dagger}$
$\operatorname{SU}(N)$ invariants: Renormalizable Non-ren $D>4$

$$
\begin{aligned}
& T=\operatorname{Tr}\left(Y Y^{\dagger}\right)=\sum_{i} u_{i}^{2} ; \quad\left(T^{2}\right) \\
& A=\operatorname{Tr}\left[\operatorname{Adj}\left(Y Y^{\dagger}\right)\right]=\frac{1}{2} \sum_{i \neq j} u_{i}^{2} u_{j}^{2} \\
& \mathcal{D}=\operatorname{Det}(Y)=e^{i \delta} \prod_{i} u_{i} \equiv e^{i \delta} D ;\left(\mathcal{D}^{*}\right)
\end{aligned}
$$

$$
\begin{aligned}
& T_{m}^{n}=T\left[\left(Y Y^{\dagger}\right)^{m}\right]^{n} \\
& A_{m}^{n}=A\left[\left(Y Y^{\dagger}\right)^{m}\right]^{n} \\
& \mathcal{D}_{m}^{n}=\mathcal{D}\left[Y^{n} Y^{\dagger}{ }^{m}\right]
\end{aligned}
$$

$\delta=\operatorname{Arg} \operatorname{Det}\left(\mathcal{V}^{\dagger} \mathcal{U}\right)$. Therefore: $\mathcal{L}(Y)=\mathcal{L}[T(\chi), A(\chi), \mathcal{D}(\chi)]$

Scalar field invariants and T,A,D parametrization

Singular value decomposition for the non-Abelian fields:

$$
Y_{u}=\mathcal{V}_{u}^{\dagger} \chi_{u} \mathcal{U}_{u}, \quad Y_{d}=\mathcal{V}_{d}^{\dagger} \chi_{d} \mathcal{U}_{d}
$$

\mathcal{V}, \mathcal{U} unitary field matrices, $\chi=\operatorname{diag}\left(u_{1}, u_{2}, u_{3}\right) ; u_{i} \geq 0$. G्G transformations: $Y \rightarrow V_{Q} Y_{q} V_{q}^{\dagger}, \quad Y Y^{\dagger} \rightarrow V_{Q}\left(Y Y^{\dagger}\right) V_{Q}^{\dagger}$ $\operatorname{SU}(N)$ invariants: Renormalizable Non-ren $D>4$

$$
\begin{aligned}
& T=\operatorname{Tr}\left(Y Y^{\dagger}\right)=\sum_{i} u_{i}^{2} ; \quad\left(T^{2}\right) \\
& A=\operatorname{Tr}\left[\operatorname{Adj}\left(Y Y^{\dagger}\right)\right]=\frac{1}{2} \sum_{i \neq j} u_{i}^{2} u_{j}^{2} \\
& \mathcal{D}=\operatorname{Det}(Y)=e^{i \delta} \prod_{i} u_{i} \equiv e^{i \delta} D ;\left(\mathcal{D}^{*}\right)
\end{aligned}
$$

$$
\begin{aligned}
& T_{m}^{n}=T\left[\left(Y Y^{\dagger}\right)^{m}\right]^{n} \\
& A_{m}^{n}=A\left[\left(Y Y^{\dagger}\right)^{m}\right]^{n} \\
& \mathcal{D}_{m}^{n}=\mathcal{D}\left[Y^{n} Y^{\dagger}{ }^{m}\right]
\end{aligned}
$$

$\delta=\operatorname{Arg} \operatorname{Det}\left(\mathcal{V}^{\dagger} \mathcal{U}\right)$. Therefore: $\mathcal{L}(Y)=\mathcal{L}[T(\chi), A(\chi), \mathcal{D}(\chi)]$ (Characteristic eqn.: $\left.\mathcal{P}(\xi)=\operatorname{det}\left(\xi I-Y Y^{\dagger}\right)=\xi^{3}-T \xi^{2}+A \xi-D^{2}=0\right)$

Scalar potential and classification of the vacua

$$
\begin{aligned}
& V=\frac{1}{\Lambda^{4}} \hat{V}=+\lambda\left[T-\frac{m^{2}}{2 \lambda}\right]^{2}+\lambda_{A} A+\underbrace{\tilde{\mu} \mathcal{D}+\tilde{\mu}^{*} \mathcal{D}^{\dagger}}_{2 \mu \cos \tilde{\delta} \cdot D} \\
& \langle T\rangle=\frac{m^{2}}{2 \lambda} ;\left\{\begin{array}{l}
\max \mathrm{A}:\langle\chi\rangle_{s}=(u, u, u) \\
A=0:\langle\chi\rangle_{h}=(0,0, u)
\end{array} ;\left\{\begin{array}{l}
\max D:\langle\chi\rangle_{s}=(u, u, u) \\
D=0:\langle\chi\rangle^{\prime}=\left(0, u^{\prime}, u^{\prime}\right)
\end{array}\right.\right.
\end{aligned}
$$

Scalar potential and classification of the vacua

$$
\begin{aligned}
& V=\frac{1}{\Lambda^{4}} \hat{V}=+\lambda\left[T-\frac{m^{2}}{2 \lambda}\right]^{2}+\lambda_{A} A+\underbrace{\tilde{\mu} \mathcal{D}+\tilde{\mu}^{*} \mathcal{D}^{\dagger}}_{2 \mu \cos \tilde{\delta} \cdot D} \\
& \langle T\rangle=\frac{m^{2}}{2 \lambda} ;\left\{\begin{array}{l}
\max \mathrm{A}:\langle\chi\rangle_{s}=(u, u, u) \\
A=0:\langle\chi\rangle_{h}=(0,0, u)
\end{array} ;\left\{\begin{array}{l}
\max D:\langle\chi\rangle_{s}=(u, u, u) \\
D=0:\langle\chi\rangle^{\prime}=\left(0, u^{\prime}, u^{\prime}\right)
\end{array}\right.\right.
\end{aligned}
$$

(1): $\lambda_{A}<0: \Rightarrow A_{\max }, D_{\max },\langle\tilde{\delta}\rangle=\pi,\langle\chi\rangle_{s} \quad \underline{S U(3) \times S U(3) \rightarrow S U(3)}$
(2): $\lambda_{A}>0: \Rightarrow \begin{cases}\frac{\mu^{2}}{m^{2}}>\mathcal{F}\left(\frac{\lambda_{A}}{\lambda}\right): & D_{\max },\langle\tilde{\delta}\rangle=\pi,\langle\chi\rangle_{S} \\ \frac{\mu^{2}}{m^{2}}<\mathcal{F}\left(\frac{\lambda_{A}}{\lambda}\right): & A=D=0 \quad(\langle\delta\rangle=?),\langle\chi\rangle_{h}\end{cases}$

Scalar potential and classification of the vacua

$$
\begin{aligned}
& V=\frac{1}{\Lambda^{4}} \hat{V}=+\lambda\left[T-\frac{m^{2}}{2 \lambda}\right]^{2}+\lambda_{A} A+\underbrace{\tilde{\mu} \mathcal{D}+\tilde{\mu}^{*} \mathcal{D}^{\dagger}}_{2 \mu \cos \tilde{\delta} \cdot D} \\
& \langle T\rangle=\frac{m^{2}}{2 \lambda} ;\left\{\begin{array}{l}
\max \mathrm{A}:\langle\chi\rangle_{s}=(u, u, u) \\
A=0:\langle\chi\rangle_{h}=(0,0, u)
\end{array} ;\left\{\begin{array}{l}
\max D:\langle\chi\rangle_{s}=(u, u, u) \\
D=0:\langle\chi\rangle^{\prime}=\left(0, u^{\prime}, u^{\prime}\right)
\end{array}\right.\right.
\end{aligned}
$$

(1): $\lambda_{A}<0: \Rightarrow A_{\max }, D_{\max },\langle\tilde{\delta}\rangle=\pi,\langle\chi\rangle_{s} \quad \underline{S U(3) \times S U(3) \rightarrow S U(3)}$
(2): $\lambda_{A}>0: \Rightarrow \begin{cases}\frac{\mu^{2}}{m^{2}}>\mathcal{F}\left(\frac{\lambda_{A}}{\lambda}\right): & D_{\max },\langle\tilde{\delta}\rangle=\pi,\langle\chi\rangle_{s} \\ \frac{\mu^{2}}{m^{2}}<\mathcal{F}\left(\frac{\lambda_{A}}{\lambda}\right): & A=D=0 \quad(\langle\delta\rangle=?),\langle\chi\rangle_{h}\end{cases}$
V admits hierarchical vacua $\langle\chi\rangle_{h}=(0,0, u)![S U(3) \times S U(3) \rightarrow S U(2) \times S U(2) \times U(1)]$

Can the vanishing entries be lifted $(0,0,1) \rightarrow\left(\epsilon^{\prime}, \epsilon, 1\right)$?

Ref.[1]: $V \rightarrow V^{e f f}=V_{0}+V_{1}$; if $\quad V_{1} \supset \alpha \cdot A \log A ; \beta \cdot D \log D$ then:
$\left.\begin{array}{l}\langle A\rangle=0 \rightarrow\langle A\rangle=e^{-\frac{1}{\alpha}} \equiv \epsilon_{A} \\ \langle D\rangle=0 \rightarrow\langle D\rangle=e^{-\frac{1}{\beta}} \equiv \epsilon_{D}\end{array}\right\}$ and $\langle\chi\rangle_{h}=(0,0,1) \rightarrow\langle\chi\rangle_{\epsilon}=\left(\frac{\epsilon_{D}^{2}}{\epsilon_{A}}, \epsilon_{A}, 1\right)$

Can the vanishing entries be lifted $(0,0,1) \rightarrow\left(\epsilon^{\prime}, \epsilon, 1\right)$?

Ref.[1]: $V \rightarrow V^{\text {eff }}=V_{0}+V_{1}$; if $V_{1} \supset \alpha \cdot A \log A ; \beta \cdot D \log D$ then:
$\left.\begin{array}{l}\langle A\rangle=0 \rightarrow\langle A\rangle=e^{-\frac{1}{\alpha}} \equiv \epsilon_{A} \\ \langle D\rangle=0 \rightarrow\langle D\rangle=e^{-\frac{1}{\beta}} \equiv \epsilon_{D}\end{array}\right\}$ and $\langle\chi\rangle_{h}=(0,0,1) \rightarrow\langle\chi\rangle_{\epsilon}=\left(\frac{\epsilon_{D}^{2}}{\epsilon_{A}}, \epsilon_{A}, 1\right)$
In ref.[2] we computed V_{1} : both $(0,0,1)$ and $(1,1,1)$ remain unperturbed! [No further breaking of little groups $H_{h, s}: S U(2) \times S U(2) \times U(1) \& S U(3)$ occurs]

Can the vanishing entries be lifted $(0,0,1) \rightarrow\left(\epsilon^{\prime}, \epsilon, 1\right)$?

Ref.[1]: $V \rightarrow V^{\text {eff }}=V_{0}+V_{1}$; if $V_{1} \supset \alpha \cdot A \log A ; \beta \cdot D \log D$ then:

$$
\left.\begin{array}{l}
\langle A\rangle=0 \rightarrow\langle A\rangle=e^{-\frac{1}{\alpha}} \equiv \epsilon_{A} \\
\langle D\rangle=0 \rightarrow\langle D\rangle=e^{-\frac{1}{\beta}} \equiv \epsilon_{D}
\end{array}\right\} \text { and }\langle\chi\rangle_{h}=(0,0,1) \rightarrow\langle\chi\rangle_{\epsilon}=\left(\frac{\epsilon_{D}^{2}}{\epsilon_{A}}, \epsilon_{A}, 1\right)
$$

In ref.[2] we computed V_{1} : both $(0,0,1)$ and $(1,1,1)$ remain unperturbed! [No further breaking of little groups $H_{h, s}$: $S U(2) \times S U(2) \times U(1) \& S U(3)$ occurs]

Georgi \& Pais theorem (PRD16 (1977) 3520): A reduction of the tree level vacuum symmetry via loop corrections can only occur if there are additional (non-NGB) massless scalars in the tree approximation.
Intuitively: $\mathcal{G}_{\mathcal{F}}(8+8) \rightarrow H_{h}(3+3+1): 9$ broken generators (NGB) +9 massive. Little group of $\langle\chi\rangle_{\epsilon} \sim\left(\epsilon^{\prime}, \epsilon, 1\right)$ is $H_{\epsilon}=U(1) \times U(1): 7$ massive \rightarrow massless NGB.

Can the vanishing entries be lifted $(0,0,1) \rightarrow\left(\epsilon^{\prime}, \epsilon, 1\right)$?

Ref.[1]: $V \rightarrow V^{\text {eff }}=V_{0}+V_{1}$; if $V_{1} \supset \alpha \cdot A \log A ; \beta \cdot D \log D$ then:

$$
\left.\begin{array}{l}
\langle A\rangle=0 \rightarrow\langle A\rangle=e^{-\frac{1}{\alpha}} \equiv \epsilon_{A} \\
\langle D\rangle=0 \rightarrow\langle D\rangle=e^{-\frac{1}{\beta}} \equiv \epsilon_{D}
\end{array}\right\} \text { and }\langle\chi\rangle_{h}=(0,0,1) \rightarrow\langle\chi\rangle_{\epsilon}=\left(\frac{\epsilon_{D}^{2}}{\epsilon_{A}}, \epsilon_{A}, 1\right)
$$

In ref.[2] we computed V_{1} : both $(0,0,1)$ and $(1,1,1)$ remain unperturbed! [No further breaking of little groups $H_{h, s}: S U(2) \times S U(2) \times U(1) \& S U(3)$ occurs]

Georgi \& Pais theorem (PRD16 (1977) 3520): A reduction of the tree level vacuum symmetry via loop corrections can only occur if there are additional (non-NGB) massless scalars in the tree approximation.
Intuitively: $\mathcal{G}_{\mathcal{F}}(8+8) \rightarrow H_{h}(3+3+1)$: 9 broken generators (NGB) +9 massive. Little group of $\langle\chi\rangle_{\epsilon} \sim\left(\epsilon^{\prime}, \epsilon, 1\right)$ is $H_{\epsilon}=U(1) \times U(1): 7$ massive \rightarrow massless NGB.
Examples of theories with additional massless scalars:
$V_{C W}=\lambda \phi^{4}$ (all states are massless at tree level)
$V_{\lambda_{A}, \mu_{D}=0}=\left(T-v_{T}^{2}\right)^{2}$ accidental $S O(18)$ broken to $S O(17)$: 17 NGB, 1 massive

Other impediments to reproduce the hierarchy

Other impediments to reproduce the hierarchy

In Ref.[2] [J.R. Espinosa, C.S. Fong, EN] it was shown that:

- Stepwise breaking cannot be triggered by perturbations from opts. of higher dimension either (unless there are additional massless states in the ren. approx.)

Other impediments to reproduce the hierarchy

In Ref.[2] [J.R. Espinosa, C.S. Fong, EN] it was shown that:

- Stepwise breaking cannot be triggered by perturbations from opts. of higher dimension either (unless there are additional massless states in the ren. approx.)
- Non-perturbative effects can at most yield as smallest little group

$$
H_{\epsilon}=S U(2) \times U(1) \Leftrightarrow\langle Y\rangle=(a, a, b) \quad \text { unless } \quad \frac{\partial V}{\partial T}=\frac{\partial V}{\partial A}=\frac{\partial V}{\partial D}=0
$$

Other impediments to reproduce the hierarchy

In Ref.[2] [J.R. Espinosa, C.S. Fong, EN] it was shown that:

- Stepwise breaking cannot be triggered by perturbations from opts. of higher dimension either (unless there are additional massless states in the ren. approx.)
- Non-perturbative effects can at most yield as smallest little group

$$
H_{\epsilon}=S U(2) \times U(1) \Leftrightarrow\langle Y\rangle=(a, a, b) \quad \text { unless } \quad \frac{\partial V}{\partial T}=\frac{\partial V}{\partial A}=\frac{\partial V}{\partial D}=0
$$

- A hierarchy $\langle\chi\rangle_{\epsilon}=\left(\epsilon^{\prime}, \epsilon, 1\right)$ can be obtained by adding two multiplets in the fundamental of the $S U(3)_{Q} \times S U(3)_{u}$ factors: $Z_{Q}=(3,1), Z_{u}=(1,3)$.

Other impediments to reproduce the hierarchy

In Ref.[2] [J.R. Espinosa, C.S. Fong, EN] it was shown that:

- Stepwise breaking cannot be triggered by perturbations from opts. of higher dimension either (unless there are additional massless states in the ren. approx.)
- Non-perturbative effects can at most yield as smallest little group

$$
H_{\epsilon}=S U(2) \times U(1) \Leftrightarrow\langle Y\rangle=(a, a, b) \quad \text { unless } \quad \frac{\partial V}{\partial T}=\frac{\partial V}{\partial A}=\frac{\partial V}{\partial D}=0
$$

- A hierarchy $\langle\chi\rangle_{\epsilon}=\left(\epsilon^{\prime}, \epsilon, 1\right)$ can be obtained by adding two multiplets in the fundamental of the $S U(3)_{Q} \times S U(3)_{u}$ factors: $Z_{Q}=(3,1), Z_{u}=(1,3)$.

CONCLUSION: $\mathcal{G}_{\mathcal{F}} \rightarrow H_{\epsilon}$ breaking should occur already at the tree level! [$V(Y)$ potential is too simple. We need additional scalar reps.]
[Previous theorems only apply for the irreducible $S U(3) \times S U(3)$ representation Y]

Another Problem: How to generate quark mixings ?

Another Problem: How to generate quark mixings?

Only one term is relevant in coupling the u and d sectors $V \supset \lambda_{u d} T_{u d}$ with $T_{u d}=\operatorname{Tr}\left(Y_{u} Y_{u}^{\dagger} Y_{d} Y_{d}^{\dagger}\right)=\operatorname{Tr}\left(\mathscr{V}^{\dagger} \chi_{u}^{2} \mathscr{V} \chi_{d}^{2}\right)$ and $\mathscr{V}=\mathcal{V}_{u} \nu_{d}^{\dagger}$ a unitary matrix of fields with vev: $\langle\mathscr{V}\rangle=V_{C K M}$

Another Problem: How to generate quark mixings?

Only one term is relevant in coupling the u and d sectors $V \supset \lambda_{u d} T_{u d}$ with $T_{u d}=\operatorname{Tr}\left(Y_{u} Y_{u}^{\dagger} Y_{d} Y_{d}^{\dagger}\right)=\operatorname{Tr}\left(\mathscr{V}^{\dagger} \chi_{u}^{2} \mathscr{V} \chi_{d}^{2}\right)$ and $\mathscr{V}=\mathcal{V}_{u} \nu_{d}^{\dagger}$ a unitary matrix of fields with vev: $\langle\mathscr{V}\rangle=V_{C K M}$

However, with only two "directions" Y_{u} and Y_{d} in $S U(3)_{Q}$ flavour space there is just one relative "angle". The potential $V\left(Y_{u}, Y_{d}\right)$ is minimized for $\chi_{u, d}$ alignment $\left(\lambda_{u d}<0\right)$ or anti-alignment $\left(\lambda_{u d}>0\right)$. All mixings then vanish, and $V_{C K M} \propto I$ [A. Anselm \& Z. Berezhiani, NP B484, 97 (1977)]

Another Problem: How to generate quark mixings?

Only one term is relevant in coupling the u and d sectors $V \supset \lambda_{u d} T_{u d}$ with $T_{u d}=\operatorname{Tr}\left(Y_{u} Y_{u}^{\dagger} Y_{d} Y_{d}^{\dagger}\right)=\operatorname{Tr}\left(\mathscr{V}^{\dagger} \chi_{u}^{2} \mathscr{V} \chi_{d}^{2}\right)$ and $\mathscr{V}=\mathcal{V}_{u} \nu_{d}^{\dagger}$ a unitary matrix of fields with vev: $\langle\mathscr{V}\rangle=V_{C K M}$

However, with only two "directions" Y_{u} and Y_{d} in $S U(3)_{Q}$ flavour space there is just one relative "angle". The potential $V\left(Y_{u}, Y_{d}\right)$ is minimized for $\chi_{u, d}$ alignment $\left(\lambda_{u d}<0\right)$ or anti-alignment $\left(\lambda_{u d}>0\right)$. All mixings then vanish, and $V_{C K M} \propto I$ [A. Anselm \& Z. Berezhiani, NP B484, 97 (1977)]

CONCLUSION: We need at least four "directions" in $S U(3)_{Q}$ flavour space to get three relative "angles". [We need additional scalar reps.]

Generating hierarchy and mixings from SFSB

No type of perturbative effect can further break the little groups H left unbroken at tree level. Mixings require at least two other $S U(3)_{Q}$ fields.

Generating hierarchy and mixings from SFSB

No type of perturbative effect can further break the little groups H left unbroken at tree level. Mixings require at least two other $S U(3)_{Q}$ fields.

Ref [3] [c.s.Fong, En] program: Search for $V\left(Y_{u, d},\{Z\}\right)$ that can break at the tree level $\mathcal{G}_{\mathcal{F}}=S U(3)_{Q} \times S U(3)_{u} \times S U(3)_{d}$ generating hierarchies, mixings, and CP.
Simplest choice: fundamental reps. $Z_{Q_{1,2}}=(\mathbf{3}, \mathbf{1}, \mathbf{1}), Z_{u}=(\mathbf{1}, \mathbf{3}, \mathbf{1}), Z_{d}=(\mathbf{1}, \mathbf{1}, \mathbf{3})$

Generating hierarchy and mixings from SFSB

No type of perturbative effect can further break the little groups H left unbroken at tree level. Mixings require at least two other $S U(3)_{Q}$ fields.

Ref [3] [c.s.Fong, EN] program: Search for $V\left(Y_{u, d},\{Z\}\right)$ that can break at the tree level $\mathcal{G}_{\mathcal{F}}=S U(3)_{Q} \times S U(3)_{u} \times S U(3)_{d}$ generating hierarchies, mixings, and CP.
Simplest choice: fundamental reps. $Z_{Q_{1,2}}=(\mathbf{3}, \mathbf{1}, \mathbf{1}), Z_{u}=(\mathbf{1}, \mathbf{3}, \mathbf{1}), Z_{d}=(\mathbf{1}, \mathbf{1}, \mathbf{3})$

1. Classify the dynamical properties of the invariants w . respect to minimization:

- Flavour irrelevant: carry larger symmetries: $T \sim\left[S O(18):\langle\chi\rangle_{h} \rightarrow\langle\chi\rangle_{s}\right],|Z|^{2} \sim[S O(6)]$
- Attractive/repulsive: Hermitian monomials: $\alpha|Y Z|^{2}: \alpha<0(>0) Y-Z$ (anti)alignment,
- Always attractive: non-Hermitian monomials: $Z_{Q}^{\dagger} Y_{u} Z_{u}+$ H.c. $=2\left|Z_{Q}^{\dagger} Y_{u} Z_{u}\right| \cos \phi$

Generating hierarchy and mixings from SFSB

No type of perturbative effect can further break the little groups H left unbroken at tree level. Mixings require at least two other $S U(3)_{Q}$ fields.

Ref [3] [c.s.Fong, EN] program: Search for $V\left(Y_{u, d},\{Z\}\right)$ that can break at the tree level $\mathcal{G}_{\mathcal{F}}=S U(3)_{Q} \times S U(3)_{u} \times S U(3)_{d}$ generating hierarchies, mixings, and CP.
Simplest choice: fundamental reps. $Z_{Q_{1,2}}=(\mathbf{3}, \mathbf{1}, \mathbf{1}), Z_{u}=(\mathbf{1}, \mathbf{3}, \mathbf{1}), Z_{d}=(\mathbf{1}, \mathbf{1}, \mathbf{3})$

1. Classify the dynamical properties of the invariants w . respect to minimization:

- Flavour irrelevant: carry larger symmetries: $T \sim\left[S O(18):\langle\chi\rangle_{h} \rightarrow\langle\chi\rangle_{s}\right],|Z|^{2} \sim[S O(6)]$
- Attractive/repulsive: Hermitian monomials: $\alpha|Y Z|^{2}: \alpha<0(>0) Y-Z$ (anti)alignment,
- Always attractive: non-Hermitian monomials: $Z_{Q}^{\dagger} Y_{u} Z_{u}+$ H.c. $=2\left|Z_{Q}^{\dagger} Y_{u} Z_{u}\right| \cos \phi$

2. Divide $V\left(Y_{q}, Z\right)=V_{\mathcal{I}}+V_{\mathcal{A R}}+V_{\mathcal{A}}$ and study $V_{\mathcal{A R}}$ and

$$
V_{\mathcal{A}} \supset\left(\mu_{q} \mathcal{D}_{q}+\nu_{i q} Z_{Q i}^{\dagger} Y_{q} Z_{q}\right)+\text { H.c. }
$$

If $\mu_{q}, \nu_{i q}<v_{q}=\langle T\rangle$ strong hierarchies can arise dinamically [with no hierarchical parameters].

Generating hierarchy and mixings from SFSB

No type of perturbative effect can further break the little groups H left unbroken at tree level. Mixings require at least two other $S U(3)_{Q}$ fields.

Ref [3] [c.s.Fong, EN] program: Search for $V\left(Y_{u, d},\{Z\}\right)$ that can break at the tree level $\mathcal{G}_{\mathcal{F}}=S U(3)_{Q} \times S U(3)_{u} \times S U(3)_{d}$ generating hierarchies, mixings, and CP.
Simplest choice: fundamental reps. $Z_{Q_{1,2}}=(3,1,1), Z_{u}=(1,3,1), Z_{d}=(1,1,3)$

1. Classify the dynamical properties of the invariants w . respect to minimization:

- Flavour irrelevant: carry larger symmetries: $T \sim\left[S O(18):\langle\chi\rangle_{h} \rightarrow\langle\chi\rangle_{s}\right],|Z|^{2} \sim[S O(6)]$
- Attractive/repulsive: Hermitian monomials: $\alpha|Y Z|^{2}: \alpha<0(>0) Y-Z$ (anti)alignment,
- Always attractive: non-Hermitian monomials: $Z_{Q}^{\dagger} Y_{u} Z_{u}+$ H.c. $=2\left|Z_{Q}^{\dagger} Y_{u} Z_{u}\right| \cos \phi$

2. Divide $V\left(Y_{q}, Z\right)=V_{\mathcal{I}}+V_{\mathcal{A R}}+V_{\mathcal{A}}$ and study $V_{\mathcal{A R}}$ and

$$
V_{\mathcal{A}} \supset\left(\mu_{q} \mathcal{D}_{q}+\nu_{i q} Z_{Q i}^{\dagger} Y_{q} Z_{q}\right)+\text { H.c. }
$$

If $\mu_{q}, \nu_{i q}<v_{q}=\langle T\rangle$ strong hierarchies can arise dinamically [with no hierarchical parameters].
3.CP-violation: $V_{\mathcal{A}}$ contains four physical complex phases. At the minimum, they induce one CP phase in $\langle\mathcal{V}\rangle=V_{C K M}$.

Conclusions

1. Assume that the SM fermions belong triplets of a fundamental flavour symmetry $\mathcal{G}_{\mathcal{F}}=S U(3) \times S U(3) \times \ldots$ spont. broken by "Yukawa fields".

Conclusions

1. Assume that the SM fermions belong triplets of a fundamental flavour symmetry $\mathcal{G}_{\mathcal{F}}=S U(3) \times S U(3) \times \ldots$ spont. broken by "Yukawa fields".
2. The general renormalizable potential for $Y_{u, d}$ admits hierarchical vacua $\langle\chi\rangle \sim(0,0,1)$. The 0 's cannot be lifted by any type of perturbative effect.

Conclusions

1. Assume that the SM fermions belong triplets of a fundamental flavour symmetry $\mathcal{G}_{\mathcal{F}}=S U(3) \times S U(3) \times \ldots$ spont. broken by "Yukawa fields".
2. The general renormalizable potential for $Y_{u, d}$ admits hierarchical vacua $\langle\chi\rangle \sim(0,0,1)$. The 0 's cannot be lifted by any type of perturbative effect.
3. Adding one L-multiplet $Z_{Q}=(\mathbf{3}, \mathbf{1}, \mathbf{1})$ and auxiliary R-multiplets $Z_{u, d}$ allows for $\left\langle\chi_{u, d}\right\rangle \sim\left(\epsilon^{\prime}, \epsilon, 1\right)$. This yields only one mixing angle and a CP -conserving ground state.

Conclusions

1. Assume that the SM fermions belong triplets of a fundamental flavour symmetry $\mathcal{G}_{\mathcal{F}}=S U(3) \times S U(3) \times \ldots$ spont. broken by "Yukawa fields".
2. The general renormalizable potential for $Y_{u, d}$ admits hierarchical vacua $\langle\chi\rangle \sim(0,0,1)$. The 0 's cannot be lifted by any type of perturbative effect.
3. Adding one L-multiplet $Z_{Q}=(\mathbf{3}, \mathbf{1}, \mathbf{1})$ and auxiliary R-multiplets $Z_{u, d}$ allows for $\left\langle\chi_{u, d}\right\rangle \sim\left(\epsilon^{\prime}, \epsilon, 1\right)$. This yields only one mixing angle and a CP-conserving ground state.
4. Adding two L-multiplets $Z_{Q_{1}}, Z_{Q_{2}}$ allows for three nontrivial mixings and a CP vacuum. The observed hierarchies and $V_{C K M}$ can be reproduced.

Conclusions

1. Assume that the SM fermions belong triplets of a fundamental flavour symmetry $\mathcal{G}_{\mathcal{F}}=S U(3) \times S U(3) \times \ldots$ spont. broken by "Yukawa fields".
2. The general renormalizable potential for $Y_{u, d}$ admits hierarchical vacua $\langle\chi\rangle \sim(0,0,1)$. The 0 's cannot be lifted by any type of perturbative effect.
3. Adding one L-multiplet $Z_{Q}=(\mathbf{3}, \mathbf{1}, \mathbf{1})$ and auxiliary R-multiplets $Z_{u, d}$ allows for $\left\langle\chi_{u, d}\right\rangle \sim\left(\epsilon^{\prime}, \epsilon, 1\right)$. This yields only one mixing angle and a CP -conserving ground state.
4. Adding two L-multiplets $Z_{Q_{1}}, Z_{Q_{2}}$ allows for three nontrivial mixings and a CP vacuum. The observed hierarchies and $V_{C K M}$ can be reproduced.
5. Hierarchical suppressions are dynamical (as opposite to parametric): they do not require small numbers in $V\left(Y_{q},\{Z\}\right)$

Conclusions

1. Assume that the SM fermions belong triplets of a fundamental flavour symmetry $\mathcal{G}_{\mathcal{F}}=S U(3) \times S U(3) \times \ldots$ spont. broken by "Yukawa fields".
2. The general renormalizable potential for $Y_{u, d}$ admits hierarchical vacua $\langle\chi\rangle \sim(0,0,1)$. The 0 's cannot be lifted by any type of perturbative effect.
3. Adding one L-multiplet $Z_{Q}=(\mathbf{3}, \mathbf{1}, \mathbf{1})$ and auxiliary R-multiplets $Z_{u, d}$ allows for $\left\langle\chi_{u, d}\right\rangle \sim\left(\epsilon^{\prime}, \epsilon, 1\right)$. This yields only one mixing angle and a CP -conserving ground state.
4. Adding two L-multiplets $Z_{Q_{1}}, Z_{Q_{2}}$ allows for three nontrivial mixings and a CP vacuum. The observed hierarchies and $V_{C K M}$ can be reproduced.
5. Hierarchical suppressions are dynamical (as opposite to parametric): they do not require small numbers in $V\left(Y_{q},\{Z\}\right)$
6. [The MFV hypothesis can be automatically realized.]

One numerical example

With these inputs:

$$
\begin{aligned}
\mu_{q}=\nu_{1 q}=\nu_{2 q} & =v / 10, & & m_{12}^{2}=0.15 v^{2}, & & \\
\gamma_{u d} & =0.81, & & \eta_{12}=0.1, & & \lambda_{12}=1.27 \\
\phi_{\gamma_{u d}} & =0.98 \pi, & & \phi_{\eta_{12}}=0.92 \pi, & & \phi_{\nu_{2 q}}=0.95 \pi
\end{aligned}
$$

and all other parameters set to 1 (or to -1), we obtain:

$$
\begin{align*}
\left|\hat{Y}_{u}\right| & =v \operatorname{diag}(0.0003,0.009,1.4) \\
\left|\hat{Y}_{d}\right| & =v \operatorname{diag}(0.0007,0.02,1.2) \\
K & =V_{C K M}=\left(\begin{array}{ccc}
0.974 & 0.223 & 0.027 \\
0.224 & 0.974 & 0.042 \\
0.017 & 0.046 & 0.999
\end{array}\right) \\
J & =\operatorname{Im}\left(K_{j k} K_{l m} K_{j m}^{*} K_{k l}^{*}\right)=2.9 \times 10^{-5} \tag{1}
\end{align*}
$$

One numerical example

With these inputs:

$$
\begin{aligned}
\mu_{q}=\nu_{1 q}=\nu_{2 q} & =v / 10, & & m_{12}^{2}=0.15 v^{2}, & & \\
\gamma_{u d} & =0.81, & & \eta_{12}=0.1, & & \lambda_{12}=1.27 \\
\phi_{\gamma_{u d}} & =0.98 \pi, & & \phi_{\eta_{12}}=0.92 \pi, & & \phi_{\nu_{2 q}}=0.95 \pi
\end{aligned}
$$

and all other parameters set to 1 (or to -1), we obtain:

$$
\begin{align*}
\left|\hat{Y}_{u}\right| & =v \operatorname{diag}(0.0003,0.009,1.4) \\
\left|\hat{Y}_{d}\right| & =v \operatorname{diag}(0.0007,0.02,1.2) \\
K & =V_{C K M}=\left(\begin{array}{ccc}
0.974 & 0.223 & 0.027 \\
0.224 & 0.974 & 0.042 \\
0.017 & 0.046 & 0.999
\end{array}\right) \\
J & =\operatorname{Im}\left(K_{j k} K_{l m} K_{j m}^{*} K_{k l}^{*}\right)=2.9 \times 10^{-5} \tag{2}
\end{align*}
$$

One numerical example

With these inputs:

$$
\begin{aligned}
\mu_{q}=\nu_{1 q}=\nu_{2 q} & =v / 10, & & m_{12}^{2}=0.15 v^{2}, & & \\
\gamma_{u d} & =0.81, & & \eta_{12}=0.1, & & \lambda_{12}=1.27 \\
\phi_{\gamma_{u d}} & =0.98 \pi, & & \phi_{\eta_{12}}=0.92 \pi, & & \phi_{\nu_{2 q}}=0.95 \pi
\end{aligned}
$$

and all other parameters set to 1 (or to -1), we obtain:

$$
\begin{align*}
\left|\hat{Y}_{u}\right| & =v \operatorname{diag}(0.0003,0.009,1.4) \\
\left|\hat{Y}_{d}\right| & =v \operatorname{diag}(0.0007,0.02,1.2) \\
K & =V_{C K M}=\left(\begin{array}{ccc}
0.974 & 0.223 & 0.027 \\
0.224 & 0.974 & 0.042 \\
0.017 & 0.046 & 0.999
\end{array}\right) \\
J & =\operatorname{Im}\left(K_{j k} K_{l m} K_{j m}^{*} K_{k l}^{*}\right)=2.9 \times 10^{-5} \tag{3}
\end{align*}
$$

One numerical example

With these inputs:

$$
\begin{aligned}
\mu_{q}=\nu_{1 q}=\nu_{2 q} & =v / 10, & & m_{12}^{2}=0.15 v^{2}, & & \lambda_{12}=1.27 \\
\gamma_{u d} & =0.81, & & \eta_{12}=0.1, & & \phi_{\nu_{2 q}}=0.95 \pi \\
\phi_{\gamma_{u d}} & =0.98 \pi, & & \phi_{\eta_{12}}=0.92 \pi, & & { }_{l},
\end{aligned}
$$

and all other parameters set to 1 (or to -1), we obtain:

$$
\begin{align*}
\left|\hat{Y}_{u}\right| & =v \operatorname{diag}(0.0003,0.009,1.4) \\
\left|\hat{Y}_{d}\right| & =v \operatorname{diag}(0.0007,0.02,1.2) \\
K & =V_{C K M}=\left(\begin{array}{ccc}
0.974 & 0.223 & 0.027 \\
0.224 & 0.974 & 0.042 \\
0.017 & 0.046 & 0.999
\end{array}\right) \\
J & =\operatorname{Im}\left(K_{j k} K_{l m} K_{j m}^{*} K_{k l}^{*}\right)=2.9 \times 10^{-5} \tag{4}
\end{align*}
$$

One numerical example

With these inputs:

$$
\begin{aligned}
\mu_{q}=\nu_{1 q}=\nu_{2 q} & =v / 10, & & m_{12}^{2}=0.15 v^{2}, & & \lambda_{12}=1.27 \\
\gamma_{u d} & =0.81, & & \eta_{12}=0.1, & & \phi_{\nu_{2 q}}=0.95 \pi \\
\phi_{\gamma_{u d}} & =0.98 \pi, & & \phi_{\eta_{12}}=0.92 \pi, & & { }_{l},
\end{aligned}
$$

and all other parameters set to 1 (or to -1), we obtain:

$$
\begin{align*}
\left|\hat{Y}_{u}\right| & =v \operatorname{diag}(0.0003,0.009,1.4) \\
\left|\hat{Y}_{d}\right| & =v \operatorname{diag}(0.0007,0.02,1.2) \\
K & =V_{C K M}=\left(\begin{array}{ccc}
0.974 & 0.223 & 0.027 \\
0.224 & 0.974 & 0.042 \\
0.017 & 0.046 & 0.999
\end{array}\right) \\
J & =\operatorname{Im}\left(K_{j k} K_{l m} K_{j m}^{*} K_{k l}^{*}\right)=2.9 \times 10^{-5} \tag{5}
\end{align*}
$$

One numerical example

With these inputs:

$$
\begin{array}{rlrll}
\mu_{q}=\nu_{1 q}=\nu_{2 q} & =v / 10, & & m_{12}^{2}=0.15 v^{2}, & \\
\gamma_{u d} & =0.81, & & \eta_{12}=0.1, & \\
\phi_{\gamma_{u d}} & =0.98 \pi, & & \phi_{\eta_{12}}=0.92 \pi, & \\
\phi_{\nu_{2 q}}=0.95 \pi
\end{array}
$$

and all other parameters set to 1 (or to -1), we obtain:

$$
\begin{align*}
\left|\hat{Y}_{u}\right| & =v \operatorname{diag}(0.0003,0.009,1.4) \\
\left|\hat{Y}_{d}\right| & =v \operatorname{diag}(0.0007,0.02,1.2) \\
K & =V_{C K M}=\left(\begin{array}{ccc}
0.974 & 0.223 & 0.027 \\
0.224 & 0.974 & 0.042 \\
0.017 & 0.046 & 0.999
\end{array}\right) \\
J & =\operatorname{Im}\left(K_{j k} K_{l m} K_{j m}^{*} K_{k l}^{*}\right)=2.9 \times 10^{-5} \tag{6}
\end{align*}
$$

