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‘ The SM fermions gauge invariant kinetic term: I

Only five [); for 15 fermions.

Z Vi DiVsl  Fermions replicate in triplets.

f:Q7€7u7d76

Formally: G = U(3)” invariance

Is this fact illusory, accidental, or fundamental ?

ILLUSORY:

In a complete theory all fermions are distinguished:
15 different [0,; or different global QN (FN-models).

FUNDAMENTAL:| ¥ (e 3-dimensional irreps of G: [G, Gsn] =0

No multiplet structure in the spectrum: = SSB
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‘ Scalar field invariants and T,A,D parametrization I

Singular value decomposition for the non-Abelian fields:
Yu:ViXuUu, Yd:V;XdZ/{d.

V, U unitary field matrices, y = diag (u1, ug, ug); u; > 0.

Gr transformations: Y — VoV, Vi, YY1 = V(Y YH]

SU(N) invariants: Renormalizable Non-ren D >4

T=Tr(YYT) =Y u? (T7) N =t [(ny)m}”
A=Tr[Adj (YYD)] =15, wda? | [An=A[(vYT)m]"
D= Det(Y) =[], u;=c"D; (DY) | |Dp=D[Y"Y!"]

0 = ArgDet (ViU/). Therefore: L(Y) = L[T(X), A(X),D(X)]
(Characteristic eqn.: P(¢) =det (I —YYT) =¢3 -T2+ A — D* =0)
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5 2
V=LV =+x [T—m—] +MA+ AD+ Db

2
2 11 cos 6 - D
<T> m2 max A : <X>S:(u7 U, U) max ) : <X>S:(u7 “ U)
P A=0: 00=(0,0,u) | D=0: (X)=(0,u,u)

S

(1): Aa < 0: = Apax, Dmax, (0) =7, (X)s SU@B)xSU(3)—SU(3)

5 FA2) : Doy, 0) =7, (X)s
(2): Mg > 0: =

2

L < F(%): [A=D=0] ({(6) =7), ()

V" admits hierarchical vacua (x),=(0,0,u)! |[sU@)xSUE)—sU@)xsU@)xU(1)]
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Georgi & Pais theorem (PRD16 (1977) 3520): A reduction of the tree level vacuum
symmetry via loop corrections can only occur if there are additional (non-NGB)
massless scalars in the tree approximation.

Intuitively: Gr(8+8) — H,(3+3+1): 9 broken generators (NGB) + 9 massive.
Little group of ( X).~ (', e, 1)is H.=U(1)xU(1): 7 massive — massless NGB.

Examples of theories with additional massless scalars:
Vew = Ao* (all states are massless at tree level)
Va,up=0 = (T —v2)? accidental SO(18) broken to SO(17): 17 NGB, 1 massive
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‘Other Impediments to reproduce the hierarchy I

In Ref.[2] [J.R. Espinosa, C.S. Fong, EN] It was shown that:

— Stepwise breaking cannot be triggered by perturbations from opts. of
higher dimension either (unless there are additional massless states in the ren. approx.)

— Non-perturbative effects can at most yield as smallest little group

0 0 0
H.=SU(2)xU(1) < (Y)=(a,a,b) unless Ir=9-=0—(

— A hierarchy (X).=(€¢,¢,1) can be obtained by adding two multiplets in
the fundamental of the SU(3)o x SU(3), factors: Zo=(3,1), Z,=(1,3).

CONCLUSION: Gr — H. breaking should occur already at the tree level!
[V (Y) potential is too simple. We need additional scalar reps.]

[Previous theorems only apply for the irreducible SU(3) x SU(3) representation Y]
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‘ Another Problem: How to generate quark mixings ? I

Only one term is relevant in coupling the u and d sectors

V5 At Tog| With Toy=Tr(Y, Y YY) =T (% 4 x@)

and |7 =V, | aunitary matrix of fields with vev: | (7)) = V..,

However, with only two “directions” Y;, and Y, in SU(3)¢ flavour space there is
just one relative “angle”. The potential V (Y, Yy) is minimized for X, 4 alignment

(Auq < 0) or anti-alignment (A4 > 0). All mixings then vanish, and | V., o<
[A. Anselm & Z. Berezhiani, NP B484, 97 (1977)]

CONCLUSION: We need at least four “directions” in SU(3)¢ flavour space to
get three relative “angles”. [We need additional scalar reps.]
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‘Generating hierarchy and mixings from SFSB I

No type of perturbative effect can further break the little groups H left
unbroken at tree level. Mixings require at least two other SU(3), fields.

Ref [3] [c.s.Fong, EN] program: Search for V' (Y, 4,{Z}) that can break at the tree
level Gr = SU(3)g xSU(3), xSU(3)4 generating hierarchies, mixings, and CP.

Simplest choice: fundamental reps. Z, ,=(3,1,1), Z,=(1,3,1), Z;=(1,1,3)

1. Classify the dynamical properties of the invariants w. respect to minimization:

— Flavour irrelevant: carry larger symmetries: T'~[SO(18):(x)n—( X):], | Z|?~[50(6)]
— Attractive/repulsive: Hermitian monomials: o|Y Z|?: a < 0(> 0) Y-Z (anti)alignment,

— Always attractive: non-Hermitian monomials: Zg?YuZu + H.c. = Q\ZgYuZd COS ¢

2. Divide V(Y,, Z)=Vz+V4r+V4 and study Vr and
V> gDy +vigZhYaZy ) + Hee.

If 11y, viq <v,=(T") strong hierarchies can arise dinamically [with no hierarchical parameters].

3.CP-violation: V4 contains four physical complex phases. At the minimum, they
induce one CP phase in (V) = Vox .
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Conclusions I

. Assume that the SM fermions belong triplets of a fundamental flavour
symmetry Gr=SU(3)x SU(3) x... spont. broken by “Yukawa fields”.

. The general renormalizable potential for Y, ; admits hierarchical vacua
(X) ~ (0,0,1). The 0's cannot be lifted by any type of perturbative effect.

. Adding one L-multiplet Zg = (3,1, 1) and auxiliary R-multiplets Z,, 4
allows for (X, ;) ~ (¢, ¢, 1). This yields only one mixing angle and a
CP-conserving ground state.

. Adding two L-multiplets Zg),, Zg, allows for three nontrivial mixings and a
CP vacuum. The observed hierarchies and Vs can be reproduced.

. Hierarchical suppressions are dynamical (as opposite to parametric): they
do not require small numbers in V (Y, {Z})

. [The MFV hypothesis can be automatically realized.]
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‘One numerical example I

With these inputs:

g =V1g =g = ©v/10,  m2, = 0.1507%
Yud =  0.81, me = 0.1, A2 = 1.27,
P~y = 0.98m, O, = 0.927, Gy, = 0.957.

and all other parameters set to 1 (or to —1), we obtain:

Y,| = wdiag(0.0003,0.009,1.4),
Yy = wvdiag(0.0007,0.02,1.2),

0.974 0.223 0.027
K = Vogm =] 0224 0974 0.042 |,

0.017 0.046 0.999
J = Im (K KmK,Kyj) =29 x107°. (1)
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0.017 0.046 0.999
J = Im (K KmK,Kyj) =29 x107°. (5)
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