Yukawa Unification, Flavour Symmetry & SUSY GUTs

Qaisar Shafi

Bartol Research Institute Department Physics and Astronomy University of Delaware, USA

Collaboration: Adeel Ajaib, K.S. Babu, Howard Baer, Ilia Gogoladze, Bin He, Tong Li, Azar Mustafayev, Fariha Nasir, Nobuchika Okada, Shabbar Raza and C. Salih Un.

FLASY 2014, University of Sussex

< □ > < @ > < 注 > < 注 > ... 注

Outline

- Supersymmetric GUTs & Yukawa Unification $(b \tau \text{ and } t b \tau)$
- Higgs & Sparticle Spectroscopy (including LSP neutralino DM)
- Flavor Symmetry and SUSY GUTs.
- Conclusions

伺い イヨト イヨト

Low Scale (\sim TeV) Supersymmetry (SUSY):

- Arguably the most compelling extension of the Standard Model;
- Resolves the gauge hierarchy problem (more or less);
- Provides cold dark matter candidate (LSP/Neutralino);
- Predicts new particles accessible at the LHC; these enable unification of the SM gauge couplings;

回 と く ヨ と く ヨ と

Grand Unified Theories (GUTs)

- Unification of SM / MSSM gauge couplings;
- Unification of matter/quark-lepton multiplets;
- Electric charge quantization; Magnetic monopoles.
- Seesaw physics / neutrino oscillations;
- Quark-Lepton mass relations;
- New source for baryo-leptogenesis;
- Inflation / Observable gravity waves (Planck)

向下 イヨト イヨト

CMSSM: Limits on sparticle masses from ATLAS

S.F.Brazzale, ICNFP13

æ

イロト イヨト イヨト イヨト

Qaisar Shafi Yukawa Unification, Flavour Symmetry & SUSY GUTs

CMSSM: Limits on sparticle masses from ATLAS

•
$$m_{\tilde{g}} \gtrsim 1.7$$
 TeV for $m_{\tilde{q}} \simeq m_{\tilde{g}}$
• $m_{\tilde{g}} \gtrsim 1.1$ -1.3 TeV for $m_{\tilde{q}} >> m_{\tilde{g}}$,

イロン イヨン イヨン イヨン

æ

SUSY SO(10)

- Fermion families reside in 16_i(*i*=1,2,3);
- predicts 'right handed' neutrino \Rightarrow non-zero neutrino masses through seesaw mechanism.
- Automatic Z_2 'matter' parity if $SO(10) \rightarrow MSSM$ using only tensor repsns. Also means stable cosmic strings (in addition to monopoles)
- Yukawa couplings include

 $16_i 16_j 10$, $16_i 16_j 126$, etc.

• 16_316_310 yields $t - b - \tau$ unification

 $Y_t = Y_b = Y_{\tau} = Y_{\nu} \text{ (not so in non-SUSY SO(10))}$

 In the 'old days' (B. Ananthanarayan, G. Lazarides and Q. Shafi, 1991) it was used to predict the top quark mass

回 と く ヨ と く ヨ と

- Nowadays, one employs $t b \tau$ unification to make predictions, such as sparticle masses, which can be tested at the LHC (Baer et al., Raby et al.,);
- $t b \tau$ Yukawa unification can also be realized in $SU(4)_c \times SU(2)_L \times SU(2)_R$, a maximal subgroup of SO(10);

伺い イヨン イヨン

b- τ Yukawa Unification in CMSSM

Ilia Gogoladze, S. Raza and Q. Shafi, Phys.Lett. B706 (2012) 345-349 .

• SUSY SU(5):
$$\overline{5}_3 \times 10_3 \times \overline{5}_{H_d}$$

 $\uparrow \qquad \uparrow$
 $(L, b^c), (Q, \tau^c) \Longrightarrow y_b = y_\tau$

- SUSY SO(10): $16_3 \times 16_3 \times 10_{u,d}$
 - $\begin{array}{ll} \mbox{Suppose} & 10_u \equiv H_u \\ \mbox{while} & 10_d \equiv H_d \cos \delta + \dots \end{array}$

 \Longrightarrow y_b = y_t

• Quantify $b-\tau$ Yukawa unification(YU) by

$$R_{b\tau} = \frac{\max(y_b, y_\tau)}{\min(y_b, y_\tau)}$$

(4回) (三) (三) (三)

$b-\tau$ YU in CMSSM/mSUGRA

- $m_0, M_{1/2}, A_0, \tan \beta, sign(\mu)$
- $m_0 \equiv$ Universal soft SUSY breaking sfermion mass
- $M_{1/2} \equiv$ Universal SSB gaugino mass
- $A_0 \equiv$ Universal SSB trilinear interaction
- $\tan \beta = \frac{v_u}{v_d}$
- $\mu \equiv SUSY$ bilinear Higgs parameter > 0

・ 同下 ・ 日下 ・ 日下 ・ 日

Constraints

$$\begin{split} &123 \leq m_h \; (\text{lightest Higgs mass}) \leq 127 \; \text{GeV}, \\ &0.8 \times 10^{-9} < BR(B_s \to \mu^+\mu^-) < 6.2 \times 10^{-9}, \\ &0.15 < \frac{BR(B_u \to \tau \nu_\tau) MSSM}{BR(B_u \to \tau \nu_\tau) SM} < 2.03 \; (2\sigma), \\ &2.99 \times 10^{-4} \leq BR(b \to s\gamma) \leq 3.87 \times 10^{-4} \; (2\sigma), \\ &0.091 < \Omega_{\text{CDM}} h^2 < 0.1363 \; (5\sigma), \\ &3.4 \times 10^{-10} \leq \Delta a_\mu \leq 55.6 \times 10^{-10} \; (3\sigma). \end{split}$$

• • = • • = •

We performed random scans using ISAJET7.84 ¹ for the following parameter range

¹F. E. Paige, S. D. Protopopescu, H. Baer and X. Tata, arXiv:0312045 [hep-ph] (⑦ → (≧ → (≧ →) ≧)) (○

b- τ YU and finite threshold corrections ¹

Dominant contributions to the bottom quark mass from the gluino and chargino loop

$$\delta y_b \approx \frac{g_3^2}{12\pi^2} \frac{\mu m_{\widetilde{g}} \tan \beta}{m_1^2} + \frac{y_t^2}{32\pi^2} \frac{\mu A_t \tan \beta}{m_2^2} + \dots$$

where $m_1 pprox (m_{{ ilde b}_1}+m_{{ ilde b}_2})/2$ and $m_2 pprox (m_{{ ilde t}_2}+\mu)/2$

where
$$\lambda_b = y_b$$
 and $\lambda_t = y_t$
¹L. J. Hall, R. Rattazzi and U. Sarid, Phys. Rev.D 50, 7048 (1994)

Yukawa Unification, Flavour Symmetry & SUSY GUTs

Importance of finite SUSY threshold corrections

・ロト ・回ト ・ヨト ・ヨト

æ

Gray points are consistent with REWSB and $\tilde{\chi}_1^0$ LSP. Green points satisfy collider bounds and orange points are for $R \leq 1.2$. The brown points are subset of orange points that satisfy $\tilde{\chi}_1^0$ DM abundance $\Omega h^2 \leq 1$.

イロト イヨト イヨト イヨト

æ

	Point 1	Point 2
m ₁₆	17910	8975
M_1	263	329
tan β	43.2	33.1
A_0 / m_0	-2.35	-2.23
mt	173.3	173.3
μ	12053	6008
$\Delta(g-2)_{\mu}$	0.81×10^{-12}	$0.54 imes 10^{-11}$
m _h	123	124.9
m _H	5138	7049
m _A	5105	7004
$m_{H^{\pm}}$	5140	7050
$m_{\tilde{\chi}^{0}_{1,2}}$	174,374	170, 346
$m_{\tilde{\chi}^0_{3,4}}$	12009, 12009	6032, 6032
$m_{\tilde{\chi}_{1,2}^{\pm}}$	3768, 12026	349, 6047
m _ĝ ,2	1078	1053
m _{ũi P}	17865, 17915	8953, 8980
m _{t_{1,2}}	1462, 6738	<mark>205</mark> , 4705
m _{di R}	17865, 17924	8953, 8985
m _{b1,2}	6853, 9328	4813, 6660
$m_{\tilde{\nu}_1}$	17916	8977
$m_{\tilde{\nu}_3}$	14786	7925
m _{ẽL.R}	17904, 17896	8967, 8969
$m_{\tilde{\tau}_{1,2}}$	10983, 14797	6819, 7956
$\sigma_{SI}(pb)$	0.10×10^{-12}	0.11×10^{-13}
$\sigma_{SD}(pb)$	0.21×10^{-11}	0.40×10^{-10}
$\Omega_{CDM} h^2$	156	0.104
Ŕ	1.00	1.15

$b-\tau$ Yukawa Unification in SU(5)

• Random scans were performed over the parameter space

<i>m</i> ₁₀ :	$0 \ \rightarrow \ 20 \ {\rm TeV}$
m ₅ :	$0 \ \rightarrow \ 20 \ {\rm TeV}$
$M_{1/2}$:	$0 \ \rightarrow \ 2 \ {\rm TeV}$
A_t :	$-60 \rightarrow 60 { m TeV}$
$A_b = A_\tau$:	$-60 \rightarrow 60 { m TeV}$
<i>m_{Hu}</i> :	$0 \ \rightarrow \ 20 \ {\rm TeV}$
m _{Hd} :	$0 \ \rightarrow \ 20 \ {\rm TeV}$
aneta :	1.1~ ightarrow~60
$\mu > 0,$	$m_t = 173.3 (GeV$

)

個 と く ヨ と く ヨ と …

æ

	Point 1	Point 2	Point 3	Point 4
<i>m</i> ₁₀	2604	3849	18380	16800
m	3443	900.1	16450	18960
m _{1/2}	1049	1056	292.6	358.6
$tan \beta$	8.3	4.77	42.4	45
A _t	-5140	-7455	-44840	-39510
$A_b = A_{\tau}$	41070	40830	-8170	23640
m _{Hd}	3424	905	18500	17340
m _{Hu}	1380	4700	14150	10410
sign(µ)	+	+	+	+
m _h	120.9	119.6	125.1	125.2
m _A	929	797	18781	13544
μ	2934	2345	17562	17394
$m_{\tilde{\chi}_{1,2}^0}$	<mark>461</mark> , 882	<mark>467</mark> , 887	179, 362	179, 354
m X0 4	2857, 2859	2291, 2295	16905, 16905	16406, 16406
$m_{\tilde{\chi}^{\pm}_{1}}$	881, 2857	887, 2311	368, 17075	357, 16429
mg	2385	2431	1089	1165
m _{ũl R}	3314, 3211	4336, 4405	18374, 18265	16788, 16608
m _{t1,2}	1211, 1798	1007, 2825	<mark>215</mark> , 10165	3289, 7153
m _{dl.R}	3315, 3984	4337, 2033	18374, 16488	16788, 19095
m _{b1,2}	1375, 2082	489, 2841	10198, 11734	7139, 12709
m _{ẽL,R}	3479, 2719	1321, 3731	16319, 18556	18850, 17052
$m_{\tilde{\tau}_{1,2}}$	876, 2939	803, 341	14263, 14864	11256, 16464
Ωh^2	0.113	0.074	0.11	2269 ≫ 1
$\langle \sigma v \rangle (v \rightarrow 0) [cm^3/s]$	3.886×10^{-27}	9.512×10^{-29}	1.684×10^{-26}	4.385×10^{-31}
$\sigma^{SI}(p) \times 10^{12} \text{ [pb]}$	5.639	9.689	1.640	0.127
R	1.02	1.02	1.02	1.0

くしゃ (四)・(日)・(日)・(日)・

b- τ YU in SU(5) or SO(10) with NUGM

- $m_{16}, m_{10}, M_i, A_0, \tan \beta, sign(\mu)$
- $m_{16} \equiv$ Universal soft SUSY breaking (SSB) sfermion mass
- $m_{10} \equiv$ Universal SSB MSSM Higgs mass. $m_{H_u}^2 = m_{H_d}^2$ at M_{GUT}
- $M_1: M_2: M_3 = 1:3:-2$ at M_{GUT}
- $A_0 \equiv$ Universal SSB trilinear interaction

• $\tan \beta = \frac{v_u}{v_d}$

• $\mu \equiv SUSY$ bilinear Higgs parameter $\mu > 0$

◎ ▶ ★ 臣 ▶ ★ 臣 ▶ ○ 臣 ○ の Q ()

	Point 1	Point 2
m ₁₆	2405	3672
m _{1/2}	2000	1091
tan β	46.3	43.1
A_0/m_{16}	2.81	2.26
<i>m</i> ₁₀	1414	4309
$sign(\mu)$	+	+
m _h	124.6	125
m _A	1179	1023
μ	4298	2754
$m_{\tilde{\chi}^0_{1,2}}$	<mark>946</mark> , 4057	504 , 2607
$m_{\tilde{\chi}_{34}^0}$	4060, 5102	2623, 2806
$m_{\tilde{\chi}_{1,2}^{\pm}}$	4109, 5052	2632, 2779
m _ẽ	8108	4714
m _{ũl R}	8123, 7238	5723, 5371
m _{ĩt1.2}	5505, 6854	2970, 3928
m _{dl.R}	8123, 7228	5723, 5369
m _{b1,2}	5814, 6821	3575, 3921
m _{ẽl,R}	4462, 2505	4210, 3690
$m_{\tilde{\tau}_{1,2}}$	<mark>949</mark> , 4147	2064, 3611
Ωh^2	0.64	0.29
$\sigma^{SI}(p) \times 10^{12} \text{ [pb]}$	3.86	10.91
$\sigma^{SDI}(p) \times 10^{12} \text{ [pb]}$	326.3	2229.9
R	1.04	1.00

b- τ YU in $SU(4) \times SU(2)_L \times SU(2)_R$ (422)

- m_{16} , m_{H_i} , M_i , A_0 , $\tan \beta$, $sign(\mu)$
- $m_{16} \equiv$ Universal soft SUSY breaking (SSB) sfermion mass
- $m_{H_d,H_u} \equiv$ Universal SSB MSSM Higgs masses.
- $M_i \equiv SSB$ gaugino masses.

$$M_1 = \frac{3}{5}M_2 + \frac{2}{5}M_3$$

• $A_0 \equiv$ Universal SSB trilinear interaction

• $\tan \beta = \frac{v_u}{v_d}$

• $\mu \equiv SUSY$ bilinear Higgs parameter $\mu > 0$

We performed random scans for the following parameter range (NUHM2):

御 と く き と く き と

	Point 1	Point 2	Point 3	Point 4	Point 5
<i>m</i> 16	12730	9839	17640	7477	11940
M ₁	1172	1903	1462	1496	1700
M2	1820	2881	2327	2335	2660
M3	550	435.3	165	237	260
m_{H_d}, m_{H_u}	11720, 14690	5967, 7279	12890, 5640	6624, 1513	3111, 5478
tan β	36.3	41.3	52.9	32.4	39.0
A_0/m_0	-2.07	-2.41	-2.62	-2.56	-2.63
mt	173.3	173.3	173.3	173.3	173.3
μ	4957	9186	19086	8552	13149
$\Delta(g-2)_{\mu}$	0.82×10^{-11}	0.72×10^{-11}	0.28×10^{-11}	$0.97 imes 10^{-11}$	0.45×10^{-11}
m _h	126.4	125.9	123.9	125	123.3
m _H	2262	2157	1799	7900	3058
m _A	2247	2144	1788	7849	3039
m _H ±	2264	2160	1802	7901	3061
$m_{\tilde{\chi}^0_{1,2}}$	641,1682	918, 2585	770,2276	715, 2087	837, 2441
$m_{\tilde{\chi}_{34}^0}$	4973, 4974	9137, 9137	18924, 18924	8537, 8537	13101, 13101
$m_{\tilde{\chi}_{1}^{\pm}2}$	1697, 4979	2604, 9133	2281, 18927	2104, 8534	2457, 13090
	1625	1314	879	790	943
m _{ũi R}	12743, 12860	9988, 9900	17708, 17538	7616, 7393	12019, 11977
$m_{\tilde{t}_{1,2}}$	<mark>689</mark> , 6131	1042, 4668	5577, 7056	<mark>781</mark> , 4077	<mark>901</mark> , 5263
m _{ã, p}	12743, 12715	9988, 9853	17708, 17721	7617, 7525	12019, 11933
m _{b1,2}	6234, 8566	4706, 5997	6884, 7646	4125, 5259	5293, 7047
$m_{\tilde{\nu}_1}$	12859	10035	17634	7562	12091
m _{ṽ3}	11262	8267	12950	6496	10076
m _{ẽl R}	12846, 12581	10027, 9814	17630, 17854	7554, 7623	12081, 11906
$m_{\tilde{\tau}_{1,2}}$	9129, 11263	5711, 8239	5525, 12875	5399, 6519	7366, 10045
$\sigma_{SI}(pb)$	0.71×10^{-13}	0.16×10^{-13}	0.70×10^{-14}	0.62×10^{-14}	0.27×10^{-13}
$\sigma_{SD}(pb)$	0.18×10^{-9}	$0.19 imes 10^{-11}$	$0.14 imes 10^{-14}$	0.41×10^{-12}	0.59×10^{-16}
$\Omega_{CDM}h^2$	0.13	0.86	0.45	0.09 🗸 🚽 🚌	→ < 0.123 < = >
D	1.06	1 10	1.04	1.10	1.00

Qaisar Shafi

Yukawa Unification, Flavour Symmetry & SUSY GUTs

き うくぐ

t-b- τ Yukawa Unification in NUHM2

- $m_0, M_{1/2}, A_0, m_{H_u}, m_{H_d} \tan \beta, sign(\mu)$
- $m_0 \equiv$ Universal soft SUSY breaking sfermion mass
- $M_{1/2} \equiv$ Universal SSB gaugino mass
- $A_0 \equiv$ Universal SSB trilinear interaction
- $m_{H_u} \equiv \text{SSB}$ Higgs mass term
- $m_{H_d} \equiv$ SSB Higgs mass term
- $\tan \beta = \frac{v_u}{v_d}$
- $\mu \equiv SUSY$ bilinear Higgs parameter $\mu > 0$

◎ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 ■ ∽ � � �

	Point 1	Point 2	Point 3	Point 4
m ₁₆	29390	25560	17630	25790
$m_{1/2}$	31.49	128	615.9	776
A_0/m_{16}	-2.57	-2.38	-2.06	-2.09
$\tan \beta$	57.3	55.6	51.7	51.2
m _H	27020	29900	23670	34830
m_{H_u}	13230	22390	20590	30160
m _h	125.2	126.8	125.0	124.9
m _H	12268	9053	4867	8070
m _A	12188	8994	4835	8016
$m_{H^{\pm}}$	12268	9054	4868	8071
m _ĝ	750	908	1916	2432
$m_{\tilde{\chi}_{1,2}^0}$	125,308	150,348	337,684	440 ,894
$m_{\tilde{\chi}_{3,4}^0}$	29633, 29633	18942, 18942	4037 ,4037	5660 ,5660
$m_{\tilde{\chi}_{1,2}^{\pm}}$	301 ,29651	350,18932	686 ,4009	897,5619
m _{ũI.R}	29423, 29114	25577,25337	17656 ,17549	25828 ,25667
m _{ĩ1,2}	9748,10952	6548 ,7958	3134 ,5189	4558 ,7601
m _{di R}	29423,29578	25577,25716	17655 ,17744	25828 ,25959
m _{b1,2}	10595 ,11337	7798 ,8339	5314 ,6168	7837,9098
$m_{\tilde{\nu}_1}$	29187	25387	17541	25657
$m_{\tilde{\nu}_3}$	21962	18765	13042	19092
m _{ẽl.R}	29183,29182	25383,25901	17535,17799	25648,26045
$m_{\tilde{\tau}_{1,2}}$	12486 ,21892	9596 ,18727	6687,13047	9892, 19097
$\Omega_{CDM} h^2$	$12482 \gg 1$	$13160 \gg 1$	$784 \gg 1$	$1807 \gg 1$
R _{tb} _t	1.02	1.00	1.07	1.07

Qaisar Shafi Yukawa Unification, Flavour Symmetry & SUSY GUTs

・ロト・(四)・(日)・(日)・(日)・

Higgs Boson Mass from t-b- τ YU (NUHM1 and Non-Universal Gauginos)

- $m_{16}, m_{10}, M_i, A_0, \tan \beta, sign(\mu)$
- $m_{16} \equiv$ Universal soft SUSY breaking (SSB) sfermion mass
- $m_{10} \equiv$ Universal SSB MSSM Higgs mass. $m_{H_u} = m_{H_d}$ at M_{GUT}
- $M_1: M_2: M_3 = 1:3:-2$ at M_{GUT}
- $A_0 \equiv$ Universal SSB trilinear interaction
- $\tan \beta = \frac{v_u}{v_d}$
- $\mu \equiv SUSY$ bilinear Higgs parameter $\mu > 0$

▲冊 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ● の Q @

RG-evolution of Yukawa couplings without and with threshold corrections

$$\delta y_b = \frac{g_3^2}{12\pi^2} \frac{\mu m_{\tilde{g}} \tan \beta}{m_1^2} + \frac{y_t^2}{32\pi^2} \frac{\mu A_t \tan \beta}{m_2^2} + \dots$$

A ■

< ≣⇒

æ

	Point 1	Point 2	Point 3		1
m ₁₆	1022	1153	1964		
M_1	1074	1056	1810		
M_2	3222	3168	5430		
M ₃	-2148	-2112	-3620		
m ₁₀	283	1153	219		
aneta	46.1	46.8	47		
A_0 / m_0	1.94	1.68	2.71		
mt	173.1	173.1	173.1	_	
μ	1973	1768	3545		
B_{μ}	16.9	19.5	27.8	_	
m _h	122	122	124		
m _H	550	510	589		
m _A	547	507	585		
$m_{H^{\pm}}$	559	519	597	_	
$m_{\tilde{\chi}^{0}_{1,2}}$	499,1980	490, 1777	<mark>854</mark> , 3554		
$m_{\tilde{\chi}_{3,4}^{0}}$	1984, 2727	1781, 2683	3557, 4611		
$m_{\tilde{\chi}_{1,2}^{\pm}}$	2007, 2699	1803, 2655	3601, 4565		
m _ĝ	4524	4457	7377		
m _{ũi R}	4462, 3981	4430, 3963	7336, 6527		
m _{t̃1,2}	3190, 3880	3127, 3814	5079, 6259		
m _{d̃L,R}	4463, 3976	4431, 3958	7337, 6518		
m _{<i>b</i>1,2}	3309, 3858	3259, 3792	5286, 6226		
$m_{\tilde{\nu}_1}$	2290	2323	3933		
$m_{\tilde{\nu}_3}$	2177	2179	3689		
m _{ẽL,R}	2295, 1089	2327, 1211	3938, 2063		
$m_{\tilde{\tau}_{1,2}}$	500, 2188	492 , 2188	<mark>861</mark> , 3705	_	
$\Delta (g-2)_{\mu}$	0.97×10^{-10}	0.10×10^{-9}	0.34×10^{-10}		
$\sigma_{SI}(pb)$	0.16×10^{-9}	$0.28 imes 10^{-9}$	0.37×10^{-10}		
$\sigma_{\rm sn}(\rm pb)$	0.69×10^{-8}	0.12×10^{-7}	0.58×10^{-9}		
$\Omega_{CDM} h^2$	0.15	0.17	0.53		
R	1.04	1.04	1.01	지금 지지 문제	

sMSSM : (Flavour) Symmetry-based MSSM K. Babu, I. Gogoladze, S. Rizvi, QS.

- *Motivation*: Realize Supersymmetric Models in which symmetry considerations alone dictate the form of the SUSY breaking Lagrangian.
- Two key Ingredients:
 - GUT symmetry G such as SO(10);
 - Non-Abelian Flavour symmetry H which adequately suppresses SUSY-induced flavour violation.
- H unifies the three 16-plets of SO(10) into either a 2+1 pattern [e.g. SU(2), S₃], or a triplet [SO(3), A₄];
- Soft SUSY breaking squark masses of the first two families would be degenerate in the 2+1 case ⇒ Split families;

sMSSM : (Flavour) Symmetry-based MSSM K. Babu, I. Gogoladze, S. Rizvi, QS.

- Discrete non-abelian symmetries may have the advantage that they are automatically free from D-term issues (which can split the masses of superparticles within a given H-multiplet after SUSY breaking).
- Solution of SUSY CP problem based on spontaneous CP violation leading to a complex quark mixing matrix.
- Non-trivial task in constructing such models is to ensure compatibility with the observed fermion masses and mixings.
- Phenomenology of sMSSM controlled by 7 soft SUSY breaking parameters for the 2+1 assignment of matter multiplets:
- 2 scalar masses, universal gaugino mass, A_0 , tan β , $|\mu|$, m_A .

Random scans performed for the following parameter range:

 $0 \le m_{1,2} \le 3 \text{ TeV}$ $0 \le m_3 \le 3 \text{ TeV}$ $0 \le M_{1/2} \le 3 \text{ TeV}$ $-3 \le A_0/m_3 \le 3$ $2 \le tan\beta \le 60$ $0 \le \mu \le 3 \text{ TeV}$ $0 \le m_A \le 3 \text{ TeV}$ $\mu > 0$

· < @ > < 글 > < 글 > · · 글

The anomalous magnetic moment of muon, $a_{\mu} = (g - 2)_{\mu}/2$, (muon g - 2)

 $\Delta a_{\mu} \equiv a_{\mu}(\exp) - a_{\mu}(SM) = (28.6 \pm 8.0) \times 10^{-10}$

3.6 σ discrepancy

The leading contribution from low scale supersymmetry

(4) (5) (4) (5) (4)

	Point 1	Point 2	Point 3	Point 4
m _{1,2}	222	302	355	55.2
m ₃	2862	1760	1623	2610
$M_{1/2}$	545.6	494	645	886.2
tan β	35.4	20.9	44.4	49.2
A_0/m_3	-1.54	-2.24	-2.61	-1.94
μ	503.1	2179	2582	2171
m _A	2891	1648	2815	1851
mt	173.3	173.3	173.3	173.3
Δa_{μ}	$31.8 imes10^{-10}$	$24.3 imes10^{-10}$	$23.4 imes10^{-10}$	$21.0 imes 10^{-10}$
m _h	123.1	124.2	124.5	125
m _A	2910	1658	2833	1863
$m_{H\pm}$	2911	1661	2835	1865
$m_{\tilde{\chi}_{1}^{0}2}$	232,420.7	<mark>211</mark> , 410	<mark>279</mark> , 535	<mark>387</mark> , 737
$m_{\tilde{\chi}^{0}_{3,4}}$	514.2, 548	2164, 2164	2565, 2565	2159, 2161
$m_{\tilde{\chi}_{1,2}^{\pm}}$	423.5, 546.5	411, 2169	536, 2566	739, 2163
m _ĝ	1290	1171	1485	1987
m _{ũI.R}	1137, 1041	1066, 1059	1399, 1218	1775, 1694
$m_{\tilde{t}_{1,2}}$	1066, 1960	896, 1553	990, 1537	1364, 2067
m _d L.R	1140, 1117.5	1069, 1022	1402, 1374	1777, 1703
m _{b1,2}	1976, 2466	1532, 1892	1480, 1675	2049, 2352
$m_{\tilde{\nu}_1}$	244	473	328	549
m _{ẽl R}	319, 474	491, <mark>218</mark>	355, 756	571, <mark>387</mark>
$m_{\tilde{\tau}_{1,2}}$	2195, 2546	1581, 1731	298, 1092	1029, 2054
$\Omega_{CDM} h^2$	0.11	0.11	0.10	0.12

・ロト・(四)・(日)・(日)・(日)・

Conclusions

- Several interesting and distinct scenarios which are being tested at the LHC:
 b-τ YU
 - CMSSM/mSUGRA; NLSP Stop
 - SU(5); NLSP Stop & A-resonance
 - NUGM; NLSP Stau & A-resonance
 - 422; NLSP Gluino, NLSP Stop
 - t-b- τ YU
 - NUHM2 (SO(10)); Gluino lightest colored particle (can be \sim 2-3 TeV)
 - NUGM
 - SO(10); NLSP Stau, Gluino & Squarks \gtrsim 3TeV
 - 422; NLSP Gluino
- Flavor symmetry & SUSY GUTs
 - 7 parameters \rightarrow rich LHC phenomenology.

- 4 回 入 - 4 回 入 - 4 回 入 - -