Stealthy new strong interactions

Emmanuel Stamou

in collaboration with J. Brod, J. Drobnak, A. L. Kagan and J. Zupan

Weizmann Institute of Science

Flasy 2014 @ University of Sussex

June 21, 2014

Yes, we have not discovered NP yet.

But:

- LHC is a hadron machine → environment with large background
- many NP searches (have to) rely on leptonic final states or MET
- LHC13 starts next year

Questions:

- Is it possible that we missed some NP?
- Can it have O(1) couplings to the SM?
- Could the A_{FB} be a first manifestation?

- \circ A_{FB} present situation
- What we know from toy-models.
- UV-complete strong-interaction realisation
- Phenomenology at Tevatron and LHC.

Top-quark forward-backward asymmetry

CDF/D0 → more tops in forward direction

QCD \rightarrow $A_{FB} = 0$ at tree level, $A_{FB} > 0$ at NLO from real and virtual gluons

Tevatron: top-quark forward-backward asymmetry

LHC: top-quark charge asymmetry

@LHC initial state is symmetric \rightarrow no A_{FB} . Instead

$$A_{C} = \frac{N(|y_{t}| > |y_{\bar{t}}|) - N(|y_{t}| < |y_{\bar{t}}|)}{N(|y_{t}| > |y_{\bar{t}}|) + N(|y_{t}| < |y_{\bar{t}}|)}$$

Blue: top distribution [Ahrens et al., 12]

$$A_{\rm C}^{\rm SM}(7{
m TeV}) = (1.23 \pm 0.05)\%$$

 $A_{\rm C}^{\rm SM}(8{
m TeV}) = (1.11 \pm 0.04)\%$

$A_{\rm FB}$ and NP

• *A*_{FB} comes from **interference** with SM [Grinstein et al.; 11]

→ Favoured scenarios:

s-channel: colour-octet vector with axial couplings

(heavy axigluon)

t-channel: colour-singlet or coloured resonances

(flavoured gauge bosons, flavoured resonances?)

• t-channel mediator \approx 150 GeV → $A_{\rm FB}$ rises with $m_{t\bar{t}}$

[Jung et al.; 09]

→ compatible with diff. $t\bar{t}$ x-section

[Gresham et al.; 11]

→ O(1) $\bar{t}_R \forall u_R$ couplings from flavoursymmetric sector favoured

[Grinstein et al.; 11]

Recapitulation / challenges / solutions

uv complete model with t-channel solution for the $A_{\rm FB}$

- $\circ~A_{
 m FB}$ increasing with $m_{tar{t}}$ / Δy
 - → $M_{\text{med}} \approx 150 \text{ GeV}$ with O(1) couplings to t-u
- \circ A_C compatible with SM
 - → possible through associate production of med. if
 - BR(mediator $\rightarrow t\bar{u}$) $\approx 20\%$

[Drobnak et al.; 12]

מכוז ויצמו למדע

- → need another dominant decay channel
- \circ compatible with differential $t\bar{t}$ spectra
- o compatible with same-sign, single top searches & FCNCs
 - → flavour-symmetric sector
- not yet discovered at LHC

a new stealth strongly-coupled sector can naturally have such resonances

Strong interaction realisation

Idea:

O confinement of new asymptotically-free SU(N)_{HC}

(around 200 GeV)

O breaking of chiral symmetry of new HC quarks

(just like QCD)

HC quarks form colour/HC singlet bound states

 $(\pi_{\rm HC}, \rho_{\rm HC}, K_{\rm HC}^*, a_{\rm 1HC}, \dots)$

 O(1) couplings only to right-handed up-type quarks (due to hypercharge assignment, couplings through partial compositeness)

• $U(2)_{u_{B}}$ symmetry protects from dangerous FCNCs

(just 5 new parameters)

6 A_{FB} from resonances in the t-channel

(mediator has naturally a dominant decay channel other than $t\bar{u}$)

How it works

The model

• under $SU(3)_{HC} \times SU(3)_c \times SU(2)_L \times U(1)_Y$ $Q_{Li,Ri}(3, 1, 1, 0) \qquad S(\overline{3}, 3, 1, 2/3)$

$$\mathcal{L}_{\mathrm{NP}} \supset \mathbf{m}_{Q_{ij}} \overline{Q}_{i} Q_{j} + m_{\mathcal{S}}^{2} |\mathcal{S}|^{2} + \left(h_{ij} \overline{u}_{Ri} Q_{Lj} \mathcal{S} + h.c.\right)$$

• chiral-symmetry breaking from HC quark condensate

(copy of QCD)

- coupling to SM through colour-triplet HC-antitriplet scalar S
- ⟨SQ⟩ has charge of up-type quarks (u')
 →up-type quarks rendered partial composite
 →large mixing with 3rd generation

•
$$U(2)_{u_R}$$
 flavour symmetry ala MFV
 $\rightarrow m_{Q_{ij}} = diag(m_1, m_1, m_3)$ and $h_{ij} = diag(h_1, h_1, h_3)$

A viable benchmark

How do we get the IR spectrum/couplings from the UV parameters?

QCD as prototype

pheno. quark model to fit meson masses from quark masses [Cheng, Shrock; 11]
 naive rescaling from \(\Lambda_{QCD}\) up to \(\Lambda_{HC}\)
 vector-meson dominance for estimating strong couplings

We then perform a χ^2 fit including A_{FB} , A_{C} and $\sigma_{t\bar{t}}$:

- $\Lambda_{\chi HC} \approx 180 \text{ GeV} \equiv \Lambda_{\chi QCD} \approx 700 \text{ MeV}$
- Q_1 [3GeV], Q_2 [3GeV], Q_3 [20GeV] of HC $\equiv u, d, s$ of QCD S [500GeV] of HC > $\Lambda_{\chi HC} \equiv c$ of QCD

octet of (pseudo)-Nambu Goldstone bosons $\langle Q_i Q_j \rangle$ $\pi_{\rm HC}$ [60 GeV], $\mathcal{K}_{\rm HC}$ [140 GeV], $\eta_{\rm HC}$ [161 GeV] (neglect η - η ' mixing)

nonet of vectors $\langle Q_i Q_j \rangle$ ρ_{HC} [177 GeV], K_{HC}^* [210 GeV], Ω_{HC} [180 GeV], Φ_{HC} [240 GeV] (K_{HC}^* main contribution to A_{FB} because $\Omega_{\text{HC}} \Phi_{\text{HC}}$ ideally mixed)

> would-be *u*'s $\langle Q_i S \rangle$ similar to top in SM: *S* decays before forming $\langle Q_i S \rangle$ $\Gamma(S \to u_j \overline{Q_j}) \propto m_S |h_i|^2 \approx 240 \text{ GeV}$

This benchmark has $h_1 \approx 2$ and $h_3 \approx 4$. Problem? Low Landau pole? Is the QCD breaking pattern disturbed? Currently looking into this.

$A_{\rm FB}$ and A_C

 $A_{FB}-A_C$ correlation naturally broken by associate K_{HC}^* production (since K_{HC}^* not self-conjugate and $BR(K_{HC}^* \rightarrow t\bar{u}_{HC} \approx 30\%)$)

 $A_{\rm C}(7~{
m TeV}) = 2.45\%$ (no associates) ightarrow 1.37% (with associates) $A_{\rm C}(7~{
m TeV}) = (1.0 \pm 0.8)\%$ [ATLAS, CMS]

$$A_{\rm C}(8 {
m TeV}) = 2.39\%$$
 (no associates) \rightarrow 1.35% (with associates)
 $A_{\rm C}(8 {
m TeV}) = (0.5 \pm 0.9)\%$ [ATLAS, CMS]

Differential $t\bar{t}$ cross section at Tevatron and LHC

$\sigma_{t\bar{t}}$	SM + NP	experiment
Tevatron	6.38 ± 0.54 pb	7.50 ± 0.48 pb
LHC (7 TeV)	$176 \pm 15 \text{ pb}$	$172.4 \pm 8.5 \text{ pb}$
LHC (8 TeV)	$251 \pm 20 \text{ pb}$	$234\pm8~\text{pb}$

m_{ii} dijet spectra and dijet pairs constraints

E. Stamou: Stealthy new strong interactions

Dijet angular distributions

CMS @ LHC

פכון ויצמן למ

Top-jet resonance searches

→Possible signal at LHC13.

S production and multi-jet searches

• ATLAS searches for multi-jets from gluinos with RPV decays.

[ATLAS-CONF-2013-091]

 \circ ${\cal S}$ also decays to high multiplicity jets.

E. Stamou: Stealthy new strong interactions

- We constructed a **uv-complete model** with many **low-mass resonances** from a new strongly interacting sector.
 - → natural (does not address the hierarchy problem)
 → O(1) couplings to up-type quarks
- It is stealth @ LHC
 - → multi-jet final state
 - → no MET, no leptonic final states
 - \rightarrow can give large $A_{\rm FB}$
- Good prospects for discovery at LHC13 and is a proof of principle for what we may have missed.

LHC results...

125 GeV palm tree

[Avelino Vicentes to Flasy 2014

Avelino Vicente - FlavorKit: Flavor physics beyond the

Backup

Associated K production

 \circ Recall $M_{K} = 143 \, \text{GeV}$

- Contribution to single top + W production? $\sigma_{tW} < 1.7 \text{ pb} \text{ (cf. } \sigma_{tW} = 16^{+5}_{-4} \text{ pb} \text{ [CMS, arxiv:1209.3489]} \text{)}$
- Contribution to $\sigma_{t\bar{t}}$? $\sigma_{t\bar{t}} < 11 \text{ pb (cf. } \sigma_{t\bar{t}} = 239 \pm 13 \text{ pb [CMS, arxiv:1312.7582])}$
- \Rightarrow Contributions smaller than current exp. error

