Neutrino Masses and Conformal Electro-Weak Symmetry Breaking

Manfred Lindner

Look very careful at the SM as QFT

- The SM itself (without embeding) is a QFT like QED
 - infinities, renormalization → only differences are calculable
 - SM itself is perfectly OK → many things unexplained...
- Has (like QED) a triviality problem (Landau poles $\leftarrow \rightarrow$ infinite λ)
 - running U(1)_v coupling (pole well beyond Planck scale... like in QED)
 - running Higgs / top coupling \rightarrow upper bounds on m_H and m_t
 - \rightarrow requires some scale Λ where the SM is embedded
 - **→** the physics of this scale is unknown
- Another potential problem is vacuum instability ($\leftarrow \rightarrow$ negative λ)
 - does occur in SM for large top mass > 79 GeV → lower bounds on m_H

SM as QFT (without an embeding):

- a hard cutoff Λ and the sensitivity towards Λ has no meaning
- renormalizable, calculable ... just like QED

SM:Triviality and Vacuum Stability Bounds

A special Value of λ at M_{planck} ?

ML '86

downward flow of RG trajectories

- → IR QFP → random λ flows to $m_H > 150 \text{ GeV}$
- \rightarrow m_H \simeq 126 GeV flows to tiny values at M_{Planck}...

Holthausen, ML Lim (2011) Different conceivable special conditions:

- Vacuum stability $\lambda(M_{pl}) = 0$ [7–12]
- vanishing of the beta function of λ $\beta_{\lambda}(M_{pl}) = 0$ [9, 10]
- the Veltman condition [13–15] $Str \mathcal{M}^2 = 0$,

$$\delta m^{2} = \frac{\Lambda^{2}}{32\pi^{2}v^{2}} Str \mathcal{M}^{2}$$

$$= \frac{1}{32\pi^{2}} \left(\frac{9}{4}g_{2}^{2} + \frac{3}{4}g_{1}^{2} + 6\lambda - 6\lambda_{t}^{2} \right) \Lambda^{2}$$

• vanishing anomalous dimension of the Higgs mass parameter

$$\gamma_m(M_{pl}) = 0, \ m(M_{pl}) \neq 0$$

 m_H < 150 GeV → random λ = O(1) excluded

- Why do all these boundary conditions work?
 - suppression factors compared to random choice = O(1)
 - $-\lambda = F(\lambda, g_i^2, ...) \rightarrow loop factors 1/16\pi^2$
 - top loops \rightarrow fermion loops \rightarrow factors of (-1)
- \rightarrow scenarios 'predicting' sufficiently suppressed (small/tiny) λ at M_{planck} are OK
- \rightarrow more precision \rightarrow selects options; e.g. $\gamma_m = 0$ now ruled out

Is the Higgs Potential at M_{Planck} flat?

Buttazzo, Degrassi, Giardino, Giudice, Sala, Salvio, Strumia

- remarkable relation between weak scale, m_t , couplings and $M_{Planck} \leftarrow \rightarrow$ precision
- strong cancellations between Higgs and top loops
 - \rightarrow very sensitive to exact value and error of $m_{H_s} m_{t_s} \alpha_s = 0.1184(7) \rightarrow \text{currently } 1.8\sigma \text{ in } m_t$
- other physics, ... Planck scale thresholds... Lalak, Lewicki, Olszewski,
- \rightarrow important: watch central values & errors \rightarrow important: new physics $\leftarrow \rightarrow$ DM, m_v
- \rightarrow what if the SM were metastable...? \rightarrow 1st bubble... \rightarrow thermal history...

Interpretating special Conditions: E.g. $\lambda(M_{Planck}) = 0$

- $\lambda \phi^4 \rightarrow 0$ at the Planck scale \rightarrow no Higgs self-interaction (V is flat)
- \rightarrow m_H at low E radiativly generated value related to m_t and g_i
- **→** SM emdeded directly into gravity ...!?
- What about the hierarchy problem?
 - → GR is different: Non-renormalizable!
 - → requires new concepts beyond QFT/gauge theories: ... ?
 - → BAD: We have no facts which concepts are realized by nature
 - → Two GOOD aspects:
 - 1) QFTs cannot explain absolute masses and couplings
 - QFT embedings = shifting the problem only to the next level
 - → new concepts beyond QFT might explain absolute values

- → new non-QFT Planck-scale concepts could have mechanism which explain hierarchies
- \rightarrow lost in effective theory = SM

Anaology: Type II superconductor
Ginzburg-Landau effective QFT ←→ BCS theory

$$E \approx \alpha |\phi|^2 + \beta |\phi|^4 + \dots$$
 \iff α , β , dynamical details lost

→ The hierarchy problem may be an artefact of the bottom-up QFT perspective. New concepts beyond QFT at the Planck-scale could explain things top-down.

M. Lindner, MPIK FLASY2014 9

Embeding the SM

Remember: The SM does not exist without some embeding triviality/vacuum stab. \rightarrow scale Λ required \rightarrow cannot be ignored!

What kind of embeding? → two options:

- 1) some new concept beyond d=4 QFT $\leftarrow \rightarrow \lambda(M_{Planck})=0$ above
- 2) some d=4 QFT

2nd route ←→ work over many years

- add representations
- extended gauge groups with and without GUTs
- include SUSY: MSSM, NMSSM, ..., SUSY GUTs
- hidden (gauge) sectors, mirror symmetry, ...

→ Must face the gauge hierarchy problem

The Hierarchy Problem: What is "A"

- Renormalizable QFTs with two scalars ϕ , Φ with masses m, M and a mass hierarchy m << M
- These scalars must interact since $\phi^+\phi$ and $\Phi^+\Phi$ are singlets
 - $\rightarrow \lambda_{mix}(\phi^+\phi)(\Phi^+\Phi)$ must exist in addition to ϕ^4 and Φ^4
- Quantum corrections $\sim M^2$ drive both masses to the (heavy) scale
 - → two vastly different scalar scales are generically unstable

Therefore: If (=since) the SM Higgs field exists

- \rightarrow problem: embeding with a 2nd scalar with much larger mass
- **→** usual solutions:
 - a) new scale @TeV
 - b) protective symmetry @TeV

b) is usually SUSY, but SUSY & gauge unification = SUSY GUT → doublet-triplet splitting problem → hierarchy problem back

Conformal Symmetry as Protective Symmetry

- Exact (unbroken) CS
 - \rightarrow absence of Λ^2 and $\ln(\Lambda)$ divergences
 - **→** no preferred scale and therefore no scale problems
- Conformal Anomaly (CA): Quantum effects explicitly break CS existence of CA → CS preserving regularization does not exist
 - dimensional regularization is close to CS and gives only $ln(\Lambda)$
 - cutoff reg. \rightarrow Λ^2 terms; violates CS badly \rightarrow Ward Identity
 - **Bardeen:** maybe CS still forbids Λ² divergences
 - \rightarrow CS breaking $\leftarrow \rightarrow \beta$ -functions $\leftarrow \rightarrow \ln(\Lambda)$ divergences
 - **→** anomaly induced spontaneous EWSB

IMPORTANT: The conformal limit of the SM (or extensions) may have no hierarchy problem!

Implications

- With CS there no hierarchy problem, even though it has anomaly
- Dimensional transmutation due to log running like in QCD
 - **>** scalars can condense and set scales like fermions
 - ⇒ use this in Coleman Weinberg effective potential calculations \leftarrow ⇒ most attractive channels (MAC) \leftarrow ⇒ β -functions

Why the minimalistic SM does not work

Minimalistic:

SM + choose μ = 0 \leftrightarrow CS

Coleman Weinberg: effective potential

- **→** CS breaking (dimensional transmutation)
- → induces for m_t < 79 GeVa Higgs mass m_H = 8.9 GeV

This would conceptually realize the idea, but:

Higgs too light and the idea does not work for $m_t > 79$ GeV

Reason for $m_H \ll v$: V_{eff} flat around minimum

$$\leftrightarrow$$
 m_H ~ loop factor ~ $1/16\pi^2$

AND: We need neutrino masses, dark matter, ...

Realizing the Idea via Higgs Portals

- SM scalar Φ plus some new scalar φ (or more scalars)
- CS → no scalar mass terms
- the scalars interact $\rightarrow \lambda_{mix}(\varphi^+\varphi)(\Phi^+\Phi)$ must exist
 - \rightarrow a condensate of $\langle \varphi^+ \varphi \rangle$ produces $\lambda_{mix} \langle \varphi^+ \varphi \rangle (\Phi^+ \Phi) = \mu^2 (\Phi^+ \Phi)$
 - \rightarrow effective mass term for Φ
- CS anomalous ... \rightarrow breaking \rightarrow only $\ln(\Lambda)$
 - \rightarrow implies a TeV-ish condensate for φ to obtain $\langle \Phi \rangle = 246$ GeV
- Model building possibilities / phenomenological aspects:
 - ϕ could be an effective field of some hidden sector DSB
 - further particles could exist in hidden sector; e.g. confining...
 - extra hidden U(1) potentially problematic $\leftarrow \rightarrow$ U(1) mixing
 - avoid Yukawas which couple visible and hidden sector
 - → phenomenology safe due to Higgs portal, but there is TeV-ish new physics!

Realizing this Idea: Left-Right Extension

M. Holthausen, ML, M. Schmidt

Radiative SB in conformal LR-extension of SM

(use isomorphism $SU(2) \times SU(2) \simeq Spin(4) \rightarrow representations)$

particle	parity \mathcal{P}	\mathbb{Z}_4	$\operatorname{Spin}(1,3) \times (\operatorname{SU}(2)_L \times \operatorname{SU}(2)_R) \times (\operatorname{SU}(3)_C \times \operatorname{U}(1)_{B-L})$
$\mathbb{L}_{1,2,3} = \left(egin{array}{c} L_L \ -\mathrm{i}L_R \end{array} ight)$	$P\mathbb{PL}(t,-x)$	$L_R o \mathrm{i} L_R$	$\left[\left(\frac{1}{2},\underline{0}\right)(\underline{2},\underline{1}) + \left(\underline{0},\frac{1}{2}\right)(\underline{1},\underline{2})\right](\underline{1},-1)$
$\mathbb{Q}_{1,2,3}=\left(egin{array}{c} Q_L \ -\mathrm{i}Q_R \end{array} ight)$	$P\mathbb{PQ}(t,-x)$	$Q_R \to -\mathrm{i}Q_R$	$\left[\left(\underline{\frac{1}{2}},\underline{0}\right)(\underline{2},\underline{1}) + \left(\underline{0},\underline{\frac{1}{2}}\right)(\underline{1},\underline{2})\right]\left(\underline{3},\frac{1}{3}\right)$
$\Phi = \left(egin{array}{cc} 0 & \Phi \ - ilde{\Phi}^\dagger & 0 \end{array} ight)$	$\mathbb{P}^{\Phi^{\dagger}}\mathbb{P}(t,-x)$	$\Phi \to \mathrm{i} \Phi$	$(\underline{0},\underline{0})\ (\underline{2},\underline{2})\ (\underline{1},0)$
$\Psi = \left(egin{array}{c} \chi_L \ -\mathrm{i}\chi_R \end{array} ight)$	$\mathbb{P}\Psi(t,-x)$	$\chi_R \to -\mathrm{i}\chi_R$	$(\underline{0},\underline{0})\left[(\underline{2},\underline{1})+(\underline{1},\underline{2})\right](\underline{1},-1)$

- → the usual fermions, one bi-doublet, two doublets
- \rightarrow a \mathbb{Z}_4 symmetry
- \rightarrow no scalar mass terms $\leftarrow \rightarrow$ CS

→ Most general gauge and scale invariant potential respecting Z4

$$\begin{split} \mathcal{V}(\Phi, \Psi) &= \frac{\kappa_1}{2} \left(\overline{\Psi} \Psi \right)^2 + \frac{\kappa_2}{2} \left(\overline{\Psi} \Gamma \Psi \right)^2 + \lambda_1 \left(\mathrm{tr} \Phi^{\dagger} \Phi \right)^2 + \lambda_2 \left(\mathrm{tr} \Phi \Phi + \mathrm{tr} \Phi^{\dagger} \Phi^{\dagger} \right)^2 + \lambda_3 \left(\mathrm{tr} \Phi \Phi - \mathrm{tr} \Phi^{\dagger} \Phi^{\dagger} \right)^2 \\ &+ \beta_1 \, \overline{\Psi} \Psi \mathrm{tr} \Phi^{\dagger} \Phi + f_1 \, \overline{\Psi} \Gamma [\Phi^{\dagger}, \Phi] \Psi \; , \end{split}$$

- \rightarrow calculate V_{eff}
- → Gildner-Weinberg formalism (RG improvement of flat directions)
 - anomaly breaks CS
 - spontaneous breaking of parity, \mathbb{Z}_4 , LR and EW symmetry
 - m_H << v ; typically suppressed by 1-2 orders of magnitude Reason: $V_{\rm eff}$ flat around minimum
 - \leftrightarrow m_H ~ loop factor ~ $1/16\pi^2$
 - → generic feature → predictions
 - everything works nicely...

→ requires moderate parameter adjustment for the separation of the LR and EW scale... PGB...?

Rather minimalistic: SM + QCD Scalar S

J. Kubo, K.S. Lim, ML New scalar representation $S \rightarrow QCD$ gap equation:

$$C_2(S) lpha(\Lambda) \gtrsim X$$

 $C_2(\Lambda)$ increases with larger representations

 $\leftarrow \rightarrow$ condensation for smaller values of running α

M. Lindner, MPIK FLASY2014 18

Phenomenology

Figure 3. The S pair production cross section from gluon fusion channel is calculated for different value of m_S . The 95% confidence level exclusion limit on $\sigma \times BR$ for $\sqrt{s} = 7 \text{ TeV}$ by ATLAS is plotted. We assume 100% BR of $\langle S^{\dagger} S \rangle$ into two jets.

Realizing the Idea: Other Directions

SM + extra singlet: Φ , φ

Nicolai, Meissner, Farzinnia, He, Ren, Foot, Kobakhidze, Volkas

SM + extra SU(N) with new N-plet in a hidden sector

Hambye, Strumia, Ko, Carone, Ramos, Holthausen, Kubo, Lim, ML

SM embedded into larger symmetry (CW-type LR) Holthausen, ML, M. Schmidt

SM + colored scalar which condenses at TeV scale Kubo, Lim, ML

Since the SM-only version does not work \rightarrow observable effects:

- Higgs coupling to other scalars (singlet, hidden sector, ...)
- dark matter candidates ←→ hidden sectors & Higgs portals
- consequences for neutrino masses

Further Comments

- Having a new (hidden) sector → not surprisingly DM
- ... or keV-ish sterile neutrios as warm DM ...

- Question: Isn't the Planck-Scale spoiling things?

 → conformal gravity = non-linear realization
 see e.g. 1403.4226 by A. Salvio and A. Strumia → `Agravity'
 or K. Hamada, 1109.6109, 0811.1647, 0907.3969
- Question: What about inflation see e.g. 1405.3987 by K. Kannike, A. Racioppi, M. Raidal

Conformal Symmetry & Neutrino Masses

ML, S. Schmidt, J. Smirnov; arXiv:1405.6204

- No explicit scale → no explicit (Dirac or Majorana) mass term
 → only Yukawa couplings ⊗ generic scales
- Enlarge the Standard Model field spectrum like in 0706.1829 R. Foot, A. Kobakhidze, K.L. McDonald, R. Volkas
- Consider direct product groups: SM ⊗ HS
- Two scales: CS breaking scale at O(TeV) + EW scale
 - **→** spectrum of Yukawa couplings ⊗ TeV or EW scale
 - many possibilities

Examples

$$\mathcal{M} = \begin{pmatrix} 0 & y_D \langle H \rangle \\ y_D^T \langle H \rangle & y_M \langle \phi \rangle \end{pmatrix}$$

Yukawa seesaw:

$$ext{SM} + extstyle{\psi_R} + ext{singlet} \ \langle \phi
angle pprox ext{TeV} \ \langle H
angle pprox 1/4 ext{ TeV}$$

- **→** generically expect a TeV seesaw
- BUT: y_M might be tiny
- **→** wide range of sterile masses **→** includes pseudo-Dirac case

Radiative masses

Potential: $V = \lambda_L \eta H_1^{\dagger} H_2 \varphi + h.c. + ...$

$$\mathcal{M}=m_L$$

or

$$\mathcal{M} = \begin{pmatrix} \mu_1 & y_D \langle H \rangle \\ y_D^T \langle H \rangle & \mu_2 \end{pmatrix}$$

Potential:
$$V = \lambda \varphi_1 H^T i \sigma_2 \Delta^{\dagger} \tilde{H} + \lambda' \varphi_1^2 \varphi_2 \varphi_3 + h.c. + ...$$

→pseudo-Dirac case

More Examples: Inverse Seesaw

Seesaw & LNV

$$\nu_R:\,(1_{SU(2)},0_Y,0_{HS})$$

$$\nu_x: (1_{SU(2)}, 0_Y, n_{HS})$$

$$\mathcal{M} = egin{pmatrix} 0 & y_D \langle H
angle & 0 \ y_D^T \langle H
angle & 0 & y_{Rx} \langle \phi
angle \ 0 & y_{Rx}^T \langle \phi
angle & \mu \end{pmatrix}$$

$$\epsilon = \frac{1}{2} y_D^{\dagger} (y_{Rx}^{-1})^* (y_{Rx}^{-1})^T y_D \cdot \frac{\langle H \rangle^2}{\langle \phi \rangle^2}$$
$$\langle \phi \rangle > \langle H \rangle \text{ and } m_{\nu} \approx \mu \, \epsilon$$

μ is suppressed (LNV) natural scale keV

Summary

- > SM works perfectly no signs of new physics
- > The standard hierarchy problem suggests TeV scale physics ... which did (so far...) not show up
- Revisit how the hierarchy problem may be solved
- $\lambda(M_{Planck}) = 0$? $\leftarrow \rightarrow$ precise value for m_t
- Embedings into QFTs with classical conformal symmetry
 - SM: Coleman Weinberg effective potential excluded
 - extended versions → work!
 - → implications for Higgs couplings, dark matter, ...
 - → implications for neutrino masses
 - → testable consequences @ LHC, DM search, neutrinos