Resonances gone topsy turvy in bightarrow sll - the charm of QCD or new physics?

Lyon and RZ 1406.0566

Roman Zwicky Edinburgh University

20 June 2014 - FLASY'14

 LHCb EPS'13 surprise: pronounced open-charm resonances in B→KII

- LHCb EPS'13 surprise: pronounced open-charm resonances in B→KII
- Can we understand it? Lyon and RZ 1406.0566

- LHCb EPS'13 surprise: ٢ pronounced open-charm resonances in B→KII
- Can we understand it? ٢ Lyon and RZ 1406.0566

Headlines —

No(t yet)

- LHCb EPS'13 surprise: ٢ pronounced open-charm resonances in B→KII
- Can we understand it? ٢ Lyon and RZ 1406.0566

Headlines -

- LHCb EPS'13 surprise: ۲ pronounced open-charm resonances in B→KII
- Can we understand it? ٢ Lyon and RZ 1406.0566

- LHCb EPS'13 surprise: pronounced open-charm resonances in B→KII
- Can we understand it? Lyon and RZ 1406.0566

Overview

- A. Introduction $B \rightarrow K^{(*)}II$ and resonances in factorisation
- B. (charm) vacuum polarisation from BESII-data
- C. combined fits LHCb- and BESII-data
- D. assessment non-factorisable corrections be? (duality)
- E. relation to 2013-anomalies
- F. discussion & conclusion

• framework effective Hamiltonian:

• framework effective Hamiltonian:

framework effective Hamiltonian:

electroweak penguin (also O7..)

4-quark operators (also O_{3..6})

framework effective Hamiltonian:

electroweak penguin (also O7..) 4-quark operators (also O3..6)

chirality flipped operators (right-handed currents):

 $O' = O|_{s_L \to s_R} \quad \Leftrightarrow \quad V-A \to V+A$

• one of the main dramas:

 O_2 and O_9 (not O_{10}) same quantum numbers \Rightarrow hardly distinguishable amplitude level • one of the main dramas:

 O_2 and O_9 (not O_{10}) same quantum numbers \Rightarrow hardly distinguishable amplitude level

partly reveal themselves in the q²-spectrum (lepton-pair mom. squared)

after all it really works (angular observables)....

after all it really works (angular observables)....

not quite everywhere (2013-anomalies) ...

after all it really works (angular observables)....

• what's charm got to with it? let's see

B. charm vacuum polarisation

- fully non-perturbative from BESII-data; as for (g-2)
- fully describes factorisation (later beyond)

Charm vacuum polarisation from BESII-data

• Kallen-Lehmann-representation follows (first principle dispersion relation)

vac.pol.
$$\equiv h_c(q^2) = h_c(s_0) + \frac{q^2 - s_0}{2\pi i} P \int_{s_{J/\Psi}}^{\infty} \frac{dt}{t - s_0} \frac{\text{Disc}[h_c](t)}{t - q^2 - i0}$$
,

Charm vacuum polarisation from BESII-data

• Kallen-Lehmann-representation follows (first principle dispersion relation)

$$\text{vac.pol.} \equiv h_c(q^2) = h_c(s_0) + \frac{q^2 - s_0}{2\pi i} P \int_{s_{J/\Psi}}^{\infty} \frac{dt}{t - s_0} \frac{\text{Disc}[h_c](t)}{t - q^2 - i0} ,$$

$$p\text{QCD "ok"}$$

$$\text{Disc}[h_c](s) = \frac{2\pi i}{3} \frac{\sigma(e^+e^- \to \text{c-hadrons})}{\sigma(e^+e^- \to \mu^+\mu^-)} , \quad \text{celebrated R-function}$$

Charm vacuum polarisation from BESII-data

• Kallen-Lehmann-representation follows (first principle dispersion relation)

$$\text{vac.pol.} \equiv h_c(q^2) = h_c(s_0) + \frac{q^2 - s_0}{2\pi i} P \int_{s_{J/\Psi}}^{\infty} \frac{dt}{t - s_0} \frac{\text{Disc}[h_c](t)}{t - q^2 - i0} ,$$

$$p\text{QCD "ok"}$$

$$\text{Disc}[h_c](s) = \frac{2\pi i}{3} \frac{\sigma(e^+e^- \to c\text{-hadrons})}{\sigma(e^+e^- \to \mu^+\mu^-)} , \quad \text{celebrated R-function}$$

Factorisation (BESII-data) applied to B→KII at high q²

"oh dear!" does not work at all (topsy turvy)! much worse than "expected" (later)

phase 1:

phenomenological assessment through combined fits to LHCb- and BESII-data

phase 1:

 phenomenological assessment through combined fits to LHCb- and BESII-data

phase 2:

• assessment of non-factorisable corrections — discussion of duality

C. Combined fits to LHCb- and BESII-data

• Masses and width of resonances are same in both data 4 fits:

- a) fit normalisation $\eta_{\mathcal{B}}$
- b) fit BESII-prefactor η_c and $\eta_{\mathcal{B}}$
- c) fit residues $\rho_r \in \mathbb{R}$ of LHCb-resonances (allow for non-factorisable effects)
- d) fit residues $\rho_r \in \mathbb{C}$ of LHCb-resonances

Fit	$\eta_{\mathcal{B}}$	η_c	$\rho_{\Psi(2S)}$	$ ho_{\Psi(3370)}$	$ ho_{\Psi(4040)}$	$ ho_{\Psi(4160)}$	$ ho_{\Psi(4415)}$	$\chi^2/d.o.f.$	d.o.f.	pts	
a)	0.98	$\equiv 1$	$\equiv 1$	$\equiv 1$	$\equiv 1$	$\equiv 1$	$\equiv 1$	3.59	99	117	
b)	1.08	-2.55	$\equiv 1$	$\equiv 1$	$\equiv 1$	$\equiv 1$	$\equiv 1$	1.334	98	117	
c)	0.81	$\equiv 1$	-1.3	-7.2	-1.9	-4.6	-3.0	1.169	94	117	
d)	1.06	$\equiv 1$	3.8-5.1 <i>i</i>	-0.1-2.3i	-0.5-1.2i	-3.0-3.1 <i>i</i>	-4.5+2.3i	1.124	89	117	
			$ 6.4e^{-i53.3^{\circ}}$	$2.0e^{-i92^{\circ}}$	$1.3e^{-i111^{\circ}}$	$4.3e^{-i135^{\circ}}$	$5.1e^{i153^{\circ}}$				

conclusions of phase 1:

- factorisation scaled by a factor -2.5 (fit b) works surprisingly well
- this corresponds to a correction of -3.5 with regard to 1.0
 ⇒ factorisation fails by 350% !
- keep it simple fits c,d) refinements for later (duality)

conclusions of phase 1:

- factorisation scaled by a factor -2.5 (fit b) works surprisingly well
- this corresponds to a correction of -3.5 with regard to 1.0
 ⇒ factorisation fails by 350% !
- keep it simple fits c,d) refinements for later (duality)

question:

• can QCD explain this? \Rightarrow phase 2:

D. how large are non-fac. corrections

- from QCD alone not chance to resolve locally in q²
- at high q²: q² is a large scale can integrate out charm quarks so-called high-q² "OPE" Grinstein,Pirjol'04 Beylich,Buchalla,Feldmann'11

D. how large are non-fac. corrections

- from QCD alone not chance to resolve locally in q²
- at high q²: q² is a large scale can integrate out charm quarks so-called high-q² "OPE" Grinstein,Pirjol'04 Beylich,Buchalla,Feldmann'11

factorisation (BESII)

Lyon RZ'14

100% in our units

dim-3 vertex-corrections Hurth, Isidori, Ghinculov, Yao'03 Greub, Pilipp, Schupach'08

roughly -50% throughout q²domain N.B. large due to colorenhancement (not repeated higher orders) dim-5 spectator & soft gluon Beylich,Buchalla,Feldmann'11

small O(2%) QCDF consistent dim. suppression

first conclusions of phase 2:

-50%-correction is nowhere near -350%

first conclusions of phase 2:

-50%-correction is nowhere near -350%

• can we trust partonic QCD? no not locally \Rightarrow quark-hadron duality ...

 colloquially: "when smeared (integrated) over large enough interval quark and hadrons lead to quantitatively similar results"

- colloquially: "when smeared (integrated) over large enough interval quark and hadrons lead to quantitatively similar results"
- formal level only approach (known to me) via dispersion relations (DR) non-fac. correction obey same (verified) DR as factorisable part

$$H^{V,X}(s) = H^{V,X}(s_0) + \frac{(s-s_0)}{2\pi i} \int_{s_{J/\Psi}}^{\infty} \frac{dt}{t-s_0} \frac{\text{Disc}[H^{V,X}](t)}{t-s-i0} , \quad X \in \{\text{fac, cor}\} .$$

- colloquially: "when smeared (integrated) over large enough interval quark and hadrons lead to quantitatively similar results"
- formal level only approach (known to me) via dispersion relations (DR) non-fac. correction obey same (verified) DR as factorisable part

$$H^{V,X}(s) = H^{V,X}(s_0) + \frac{(s-s_0)}{2\pi i} \int_{s_{J/\Psi}}^{\infty} \frac{dt}{t-s_0} \frac{\text{Disc}[H^{V,X}](t)}{t-s-i0} , \quad X \in \{\text{fac, cor}\}$$

- colloquially: "when smeared (integrated) over large enough interval quark and hadrons lead to quantitatively similar results"
- formal level only approach (known to me) via dispersion relations (DR) non-fac. correction obey same (verified) DR as factorisable part

$$H^{V,X}(s) = H^{V,X}(s_0) + \frac{(s - s_0)}{2\pi i} \int_{s_{J/\Psi}}^{\infty} \frac{dt}{t - s_0} \frac{\text{Disc}[H^{V,X}](t)}{t - s - i0} , \quad X \in \{\text{fac, cor}\}$$

second conclusions of phase 2:

- factorisable part duality over open charm is ok less 10% error
- could expect same pattern for non-factorisable part

second conclusions of phase 2:

- factorisable part duality over open charm is ok less 10% error
- could expect same pattern for non-factorisable part

possible pitfall — (non)-positivity

 factorisable part is positive definite (related cross section) non-factorisable part isn't (that's what we tested for in fit d)

second conclusions of phase 2:

- factorisable part duality over open charm is ok less 10% error
- could expect same pattern for non-factorisable part

possible pitfall — (non)-positivity

 factorisable part is positive definite (related cross section) non-factorisable part isn't (that's what we tested for in fit d)

fit d) effect of cancellations 20% instead of 350% its 280%
 ⇒ that's not it!

third conclusions of phase 2:

 in our analysis we have not come across any signs that QCD can explain this effect. Yet charm-physics has a reputation of being notoriously difficult.

third conclusions of phase 2:

 in our analysis we have not come across any signs that QCD can explain this effect. Yet charm-physics has a reputation of being notoriously difficult.

how to improve:

- 1) measure residues (phases) of all resonances in $B \rightarrow (\Psi \rightarrow II) K^{(*)}$
- 2) perform fits to various fine binned observables (more robust results)
- 3) if 1) is successful \Rightarrow spectral information to reconstruct

charm amplitude fully non-perturbative from DR (fit subtraction constant)

remains to be seen whether 3) is realistic

E. possible impact on low q²

• if charm resonances have surprised us at high q², likely they will at low q²

E. possible impact on low q²

- if charm resonances have surprised us at high q², likely they will at low q²
- question: how transport information from high q² to low q² ?
 a) no microscopic model
 b) not yet a dispersion relation point 3) previous slide (mode-independent)
 > currently ambiguity how to do it

E. possible impact on low q²

- if charm resonances have surprised us at high q², likely they will at low q²
- question: how transport information from high q² to low q² ?
 a) no microscopic model
 b) not yet a dispersion relation point 3) previous slide (mode-independent)
 > currently ambiguity how to do it
- fit b) scaling of factorisable part (at least close) 4D field theory and describes data astonishingly well.
 > shall take this as a model to assess the size of the effect

B→KII measures C₉₊ whereas B→K^{*}II involves both C_{9±}
 N.B. K^{*}₀(1430) sensitive to C₉₋ yet another opportunity

- B→KII measures C₉₊ whereas B→K^{*}II involves both C_{9±}
 N.B. K^{*}₀(1430) sensitive to C₉₋ yet another opportunity
- \Rightarrow long term advantage as can look for right-handed currents!
- \Rightarrow short term need to make a split η_c =-2.5 into C₉₊ and C₉₋

- B→KII measures C₉₊ whereas B→K^{*}II involves both C_{9±}
 N.B. K^{*}₀(1430) sensitive to C₉₋ yet another opportunity
- \Rightarrow long term advantage as can look for right-handed currents!
- \Rightarrow short term need to make a split η_c =-2.5 into C₉₊ and C₉₋
- N.B. best fits to $B \rightarrow K^*II$ ($b \rightarrow sII$)-anomalies $\Delta C_9 \simeq \Delta C_{9'} \simeq -1.5$ Descotes et al, Altmanhofeer et al, Beaujean et al, Meinel et al'13 (there nuances ...)

- B→KII measures C₉₊ whereas B→K^{*}II involves both C_{9±}
 N.B. K^{*}₀(1430) sensitive to C₉₋ yet another opportunity
- \Rightarrow long term advantage as can look for right-handed currents!
- \Rightarrow short term need to make a split η_c =-2.5 into C₉₊ and C₉₋
- N.B. best fits to $B \rightarrow K^*II$ ($b \rightarrow sII$)-anomalies $\Delta C_9 \simeq \Delta C_{9'} \simeq -1.5$ Descotes et al, Altmanhofeer et al, Beaujean et al, Meinel et al'13 (there nuances ...)
- hence charm effect good omen but on top more pronounced towards charm resonances and this is what is needed to account for LHCb-results

choose three scenarios

	Observable	q ² -bin	LHCb	SM	$\eta_c =$	1.25(1, 1) -	2.5(0, 1)	-2.5(1,0)	
	$\langle P_2 \rangle$	[1.00, 6.00]	$0.33\substack{+0.11\\-0.12}$	0.0085		0.16	-0.013	0.33	
	$\langle P_2 \rangle$	[2.00, 4.30]	$0.50\substack{+0.00\\-0.07}$	0.15		0.25	0.067	0.39	
	$\langle P_2 \rangle$	[4.30, 8.68]	$-0.25\substack{+0.07\\-0.08}$	-0.44		-0.05	-0.23	0.29	
	$\langle P_2 \rangle$	[14.18, 16.00]	$-0.50\substack{+0.03\\-0.00}$	-0.42		-0.39	-0.36	-0.36	
	$\langle P_2 \rangle$	[16.00, 19.00]	$-0.32\substack{+0.08\\-0.08}$	-0.34		-0.31	-0.25	-0.25	
	$\langle P_4' \rangle$	[1.00, 6.00]	$0.58\substack{+0.32\\-0.36}$	0.57		0.66	0.80	0.64	
	$\langle P'_4 \rangle$	[2.00, 4.30]	$0.74_{-0.60}^{+0.54}$	0.61		0.69	0.82	0.67	
	$\langle P'_4 \rangle$	[4.30, 8.68]	$1.18^{+0.26}_{-0.32}$	1.0		1.0	1.2	0.98	
	$\langle P'_4 \rangle$	[14.18, 16.00]	$-0.18\substack{+0.54\\-0.70}$	1.2		1.2	1.2	1.2	
	$\langle P'_4 \rangle$	[16.00, 19.00]	$0.70\substack{+0.44\\-0.52}$	1.3		1.3	1.3	1.3	
	$\langle P_5' \rangle$	[1.00, 6.00]	$0.21^{+0.20}_{-0.21}$	-0.44		-0.15	-0.33	0.17	
	$\langle P_5' \rangle$	[2.00, 4.30]	$0.29\substack{+0.40\\-0.39}$	-0.47		-0.17	-0.36	0.13	
	$\langle P_5' \rangle$	[4.30, 8.68]	$-0.19\substack{+0.16\\-0.16}$	-0.88		-0.31	-0.44	0.26	
	$\langle P_5' angle$	[14.18, 16.00]	$-0.79^{+0.27}_{-0.22}$	-0.70		-0.66	-0.59	-0.61	
	$\langle P_5' \rangle$	[16.00, 19.00]	$-0.60\substack{+0.21\\-0.18}$	-0.53		-0.49	-0.39	-0.38	
	$\langle A_{ m FB} angle$	[1.00, 6.00]	$0.17\substack{+0.06\\-0.06}$	0.0026		0.054	-0.0033	0.14	
	$\langle A_{\rm FB} \rangle$	[2.00, 4.30]	$0.20\substack{+0.08\\-0.08}$	0.034		0.069	0.014	0.15	
	$\langle A_{\rm FB} \rangle$	[4.30, 8.68]	$-0.16\substack{+0.05\\-0.06}$	-0.21		-0.025	-0.098	0.19	
	$\langle A_{ m FB} angle$	[14.18, 16.00]	$-0.51\substack{+0.05\\-0.07}$	-0.43		-0.40	-0.36	-0.37	
	$\langle A_{\rm FB} \rangle$	[16.00, 19.00]	$-0.30\substack{+0.08\\-0.08}$	-0.35		-0.33	-0.26	-0.26	

inspection tells us that mix between scenario (i) and (iii) best for data ...

what fine binning can do $B \rightarrow K^*II$ angular observables

large effects in broad charm resonances
 factorisation fails 350% (nominal correction 50%)

- large effects in broad charm resonances
 factorisation fails 350% (nominal correction 50%)
- found no signs to explain it within QCD investigation under duality

- large effects in broad charm resonances
 factorisation fails 350% (nominal correction 50%)
- found no signs to explain it within QCD investigation under duality

- large effects in broad charm resonances
 factorisation fails 350% (nominal correction 50%)
- found no signs to explain it within QCD investigation under duality

▶ scaled factorisation (-2.5) (can) explain(s) $B \rightarrow K^*$ II-anomalies

- large effects in broad charm resonances
 factorisation fails 350% (nominal correction 50%)
- found no signs to explain it within QCD investigation under duality

- scaled factorisation (-2.5) (can) explain(s) $B \rightarrow K^*$ II-anomalies
- of course there can still be ΔC₉ short distance new physics (power corrections cannot explain central values)

 high q²: measure C₉ and C₉'-part of effects as well as polarisation non-universality (from non-factorisable effects)

need observables fine binning (LHCb-collaboration)

 high q²: measure C₉ and C₉'-part of effects as well as polarisation non-universality (from non-factorisable effects)

need observables fine binning (LHCb-collaboration)

 latter is crucial as non-universality and right-handed currents are set of in not easy to disentangle (we will get there)
 collaboration with u HCb

 high q²: measure C₉ and C₉'-part of effects as well as polarisation non-universality (from non-factorisable effects)

need observables fine binning (LHCb-collaboration)

- latter is crucial as non-universality and right-handed currents are suff in not easy to disentangle (we will get there)
- need to address question of strong phases in B→ΨK^(*) use model-independent dispersion relation (a la S-matrix ...) tell us more definitely about low q²

need data (at least close) to J/Ψ and $\Psi(S)$ resonances

 high q²: measure C₉ and C₉'-part of effects as well as polarisation non-universality (from non-factorisable effects)

need observables fine binning (LHCb-collaboration)

- latter is crucial as non-universality and right-handed currents are shown with not easy to disentangle (we will get there)
- need to address question of strong phases in B→ΨK^(*) use model-independent dispersion relation (a la S-matrix ...) tell us more definitely about low q²

need data (at least close) to J/Ψ and $\Psi(S)$ resonances

low q²: makes sense to do SM predictions well below J/Ψ-resonances

exciting times — close collaboration between theorists and experimentalists seems the way to go (at least to me) exciting times — close collaboration between theorists and experimentalists seems the way to go (at least to me)

Fínal words: "charm (can) explaín(s) B→K*ll-anomalíes but charm doesn't explaín ítself"

BACKUP SLIDES

$B \rightarrow$ charmonium $K^{(*)}$ et al

- $B \rightarrow \Psi K^{(*)}$ has got notorious reputation (also with factorisation)
- the setting we have with duality interval is on much safer grounds but what we have found is that not only factorisation is not very precise but that the sign of factorisation is the wrong one (indirect analysis)
- it seems the problem in b->css physics has become much worse with this new analysis
- motivates reinvestigation of b->css physics in general

Fit BESII-data (more details)

$$R_{
m fit}(s) = R_{
m res}(s) + R_{
m con}(s)$$

r	$m_r[{ m GeV}]$	$\Gamma_r[MeV]$	$ ^{2s+1}L_J$
J/Ψ	3.097	0.0934(21)	${}^{3}S_{1}$
$\Psi(2S)$	3.686	0.337(13)	$^{3}S_{1}$
$\Psi(3370)$	3.771	23.3	${}^{3}D_{1}$
$\Psi(4040)$	4.039	76.2	${}^{3}S_{1}$
$\Psi(4160)$	4.192	73.5	${}^{3}D_{1}$
$\Psi(4415)$	4.415	78.5	$^{3}S_{1}$

$$R_{
m con}(s) = R_{uds} + (1-z)(\Delta R_c + za) , \quad \Delta R_c \equiv R_{udsc} - R_{uds} ,$$

$$R_{\rm res}(s) = \frac{9}{\alpha^2} \sum_f |\sum_r T^{r \to f}(s)|^2$$

phase at production of resonance r

$$T^{r \to f}(s) = \frac{m_r \sqrt{\Gamma^{r \to e^+ e^-} \Gamma^{r \to f}(s)}}{s - m_r^2 + i m_r \Gamma_r(s)} e^{i\delta_r} .$$

• Breit-Wigner ansatz with energy dependent width and interference effects