Resonances gone topsy turvy in $b \rightarrow$ sll the charm of $Q \subset \mathscr{D}$ or new physies?

Lyon and RZ 1406.0566
${ }^{C P^{3}}$ Origins
Cosmology \& Particle Physics

Roman Zwicky
Edinburgh University

20 June 2014 - FLASY'14

Proolodjue

- LHCb EPS'13 surprise: pronounced open-charm resonances in $B \rightarrow K I I$

Propledjue

- LHCb EPS'13 surprise: pronounced open-charm resonances in $\mathrm{B} \rightarrow \mathrm{KII}$
- Can we understand it?

Lyon and RZ 1406.0566

Prodidajue

- LHCb EPS'13 surprise: pronounced open-charm resonances in $\mathrm{B} \rightarrow \mathrm{KII}$
- Can we understand it?

Lyon and RZ 1406.0566

- Headlines -

No(t yet)

Prodledjue

- LHCb EPS'13 surprise: pronounced open-charm resonances in $\mathrm{B} \rightarrow \mathrm{KII}$
- Can we understand it?

Lyon and RZ 1406.0566

- Headlines -

Is it QCD (pulling our leg)?
No(t yet)

Proledjue

- LHCb EPS'13 surprise: pronounced open-charm resonances in $\mathrm{B} \rightarrow \mathrm{KII}$
- Can we understand it?

Lyon and RZ 1406.0566

- Headlines -

Is it QCD (pulling our leg)?
No(t yet)

Is it new physics bscc?

Prodidajue

- LHCb EPS'13 surprise: pronounced open-charm resonances in $B \rightarrow K I I$
- Can we understand it?

Lyon and RZ 1406.0566

Effect right sign and size to explain 2013-anomalies

Is it QCD (pulling our leg)?
No(t yet)

Is it new physics bscc?

Overview

- A. Introduction $B \rightarrow K\left(^{*}\right) \|$ and resonances in factorisation
- B. (charm) vacuum polarisation from BESII-data
- C. combined fits LHCb- and BESII-data
- D. assessment non-factorisable corrections be? (duality)
- E. relation to 2013-anomalies
- F. discussion \& conclusion

A. Basics of $B \rightarrow K^{(*)} \mid \boldsymbol{I}$ for this talk

- framework effective Hamiltonian:

A. Basics of $B \rightarrow K^{(*)}| |$ for this talk

- framework effective Hamiltonian:

A. Basics of $B \rightarrow K^{(*)} \|$ for this talk

- framework effective Hamiltonian:

- main actors of this talk:

short distance

factorisation
fully described
vacuum polarisation

Long distance
electroweak penguin (also O7..)

A. Basics of $B \rightarrow K^{(*)} \|$ for this talk

- framework effective Hamiltonian:

- main actors of this talk:

short distance

factorisation
fully described
vacuum polarisation

Long distance
electroweak penguin (also O7..)
4-quark operators (also $\mathrm{O}_{3 . .6}$)

- chirality flipped operators (right-handed currents):

$$
O^{\prime}=\left.O\right|_{s_{L} \rightarrow s_{R}} \quad \Leftrightarrow \quad \mathrm{~V}-\mathrm{A} \rightarrow \mathrm{~V}+\mathrm{A}
$$

- one of the main dramas:
O_{2} and $O_{9}\left(\right.$ not $\left.O_{10}\right)$ same quantum numbers \Rightarrow hardly distinguishable amplitude level
- partly reveal themselves in the q²-spectrum (lepton-pair mom. squared)

after all it really works (angular observables)

after all it really works (angular observables)

 not quite everywhere (2013-anomalies) ..

after all it really works (angular observables)

not quite everywhere (2013-anomalies) ..

- what's charm got to with it? let's see

B. charm vacuum polarisation

- fully non-perturbative from BESII-data; as for (g-2)
- fully describes factorisation (later beyond)

Charm vacuum polarisation from BESII-data

- Kallen-Lehmann-representation follows (first principle dispersion relation)

$$
\text { vac.pol. } \equiv h_{c}\left(q^{2}\right)=h_{c}\left(s_{0}\right)+\frac{q^{2}-s_{0}}{2 \pi i} P \int_{s_{J / \Psi}}^{\infty} \frac{d t}{t-s_{0}} \frac{\operatorname{Disc}\left[h_{c}\right](t)}{t-q^{2}-i 0}
$$

Charm vacuum polarisation from BESII-data

- Kallen-Lehmann-representation follows (first principle dispersion relation)

$$
\begin{gathered}
\text { vac.pol. } \equiv h_{c}\left(q^{2}\right)=h_{c}\left(s_{0}\right)+\frac{q^{2}-s_{0}}{2 \pi i} P \int_{s_{J / \Psi}}^{\infty} \frac{d t}{t-s_{0}} \frac{\operatorname{Disc}\left[h_{c}\right](t)}{t-q^{2}-i 0} \\
\text { pQCD "ok" } \\
\operatorname{Disc}\left[h_{c}\right](s)=\frac{2 \pi i}{3} \frac{\sigma\left(e^{+} e^{-} \rightarrow \text { c-hadrons }\right)}{\sigma\left(e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}\right)}, \quad \text { celebrated R-function }
\end{gathered}
$$

Charm vacuum polarisation from BESII-data

- Kallen-Lehmann-representation follows (first principle dispersion relation)

$$
\begin{gathered}
\text { vac.pol. } \equiv h_{c}\left(q^{2}\right)=h_{c}\left(s_{0}\right)+\frac{q^{2}-s_{0}}{2 \pi i} P \int_{s_{J / \Psi}}^{\infty} \frac{d t}{\operatorname{pQCD} \text { "ok" }} \frac{\operatorname{Disc}\left[h_{c}\right](t)}{t-s_{0}^{2}-i 0}, \\
\operatorname{Disc}\left[h_{c}\right](s)=\frac{2 \pi i}{3} \frac{\sigma\left(e^{+} e^{-} \rightarrow \text { c-hadrons }\right)}{\sigma\left(e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}\right)}, \quad \text { celebrated R-function }
\end{gathered}
$$

Disc ~ Im[h]; BESII-data'PLB08

$\operatorname{Re}[h]$ dispersion relation above

Factorisation (BESII-data) applied to $B \rightarrow K I I$ at high q^{2}

"oh dear!" does not work at all (topsy turvy)! much worse than "expected" (later)

phase 1:

phenomenological assessment through combined fits to LHCb- and BESII-data

phase 1:

- phenomenological assessment through combined fits to LHCb- and BESII-data

phase 2:

- assessment of non-factorisable corrections - discussion of duality

C. Combined fits to LHCh- and BESII-data

- Masses and width of resonances are same in both data 4 fits:
a) fit normalisation $\eta_{\mathcal{B}}$
b) fit BESII-prefactor η_{c} and $\eta_{\mathcal{B}}$
c) fit residues $\rho_{r} \in \mathbb{R}$ of LHCb-resonances (allow for non-factorisable effects)
d) fit residues $\rho_{r} \in \mathbb{C}$ of LHCb-resonances

results

Fit	$\eta_{\mathcal{B}}$	η_{c}	$\rho_{\Psi(2 S)}$	$\rho_{\Psi(3370)}$	$\rho_{\Psi(4040)}$	$\rho_{\Psi(4160)}$	$\rho_{\Psi(4415)}$	$\chi^{2} /$ d.o.f.	d.o.f.	pts
$a)$	0.98	$\equiv 1$	3.59	99	117					
$b)$	1.08	-2.55	$\equiv 1$	1.334	98	117				
$c)$	0.81	$\equiv 1$	-1.3	-7.2	-1.9	-4.6	-3.0	1.169	94	117
$d)$	1.06	$\equiv 1$	$3.8-5.1 i$	$-0.1-2.3 i$	$-0.5-1.2 i$	$-3.0-3.1 i$	$-4.5+2.3 i$	1.124	89	117
			$6.4 e^{-i 53.3^{\circ}}$	$2.0 e^{-i 92^{\circ}}$	$1.3 e^{-i 111^{\circ}}$	$4.3 e^{-i 135^{\circ}}$	$5.1 e^{i 153^{\circ}}$			

conclusions of phase 1:

- factorisation scaled by a factor -2.5 (fit b) works surprisingly well
- this corresponds to a correction of -3.5 with regard to 1.0 \Rightarrow factorisation fails by 350% !
- keep it simple - fits c,d) refinements for later (duality)

conclusions of phase 1:

- factorisation scaled by a factor -2.5 (fit b) works surprisingly well
- this corresponds to a correction of -3.5 with regard to 1.0 \Rightarrow factorisation fails by 350% !
- keep it simple - fits c,d) refinements for later (duality)

question:

- can QCD explain this? \Rightarrow phase 2:

D. how large are non-fac. corrections

- from QCD alone not chance to resolve locally in q^{2}
- at high $q^{2}: q^{2}$ is a large scale can integrate out charm quarks so-called high-q2 "OPE" Grinstein,Pirjol'04 Beylich,Buchalla,Feldmann'11

D. how large are non-fac. corrections

- from QCD alone not chance to resolve locally in q^{2}
- at high $q^{2}: q^{2}$ is a large scale can integrate out charm quarks so-called high-q2 "OPE" Grinstein,Pirjol'04 Beylich,Buchalla,Feldmann'11

factorisation (BESII)
Lyon RZ'14

dim-3 vertex-corrections
Hurth, Isidori, Ghinculov, Yao’03
Greub, Pilipp, Schupach'08
100% in our units
small O(2\%) QCDF consistent dim. suppression
N.B. large due to colorenhancement (not repeated higher orders)

first conclusions of phase 2:

- -50\%-correction is nowhere near - 350%

first conclusions of phase 2:

- -50\%-correction is nowhere near -350\%

- can we trust partonic QCD? no not locally \Rightarrow quark-hadron duality ...

Quark-hadron duality

- colloquially:"when smeared (integrated) over large enough interval quark and hadrons lead to quantitatively similar results"

Quark-hadron duality

- colloquially:"when smeared (integrated) over large enough interval quark and hadrons lead to quantitatively similar results"
- formal level only approach (known to me) via dispersion relations (DR) non-fac. correction obey same (verified) DR as factorisable part

$$
H^{V, X}(s)=H^{V, X}\left(s_{0}\right)+\frac{\left(s-s_{0}\right)}{2 \pi i} \int_{s_{J / X}}^{\infty} \frac{d t}{t-s_{0}} \frac{\operatorname{Disc}\left[H^{V, X}\right](t)}{t-s-i 0}, \quad X \in\{\text { fac, cor }\} .
$$

Quark-hadron duality

- colloquially:"when smeared (integrated) over large enough interval quark and hadrons lead to quantitatively similar results"
- formal level only approach (known to me) via dispersion relations (DR) non-fac. correction obey same (verified) DR as factorisable part

$$
H^{V, X}(s)=H^{V, X}\left(s_{0}\right)+\frac{\left(s-s_{0}\right)}{2 \pi i} \int_{s_{J / \Psi}}^{\infty} \frac{d t}{t-s_{0}} \frac{\operatorname{Disc}\left[H^{V, X}\right](t)}{t-s-i 0}, \quad X \in\{\mathrm{fac}, \mathrm{cor}\}
$$

Quark-hadron duality

- colloquially:"when smeared (integrated) over large enough interval quark and hadrons lead to quantitatively similar results"
- formal level only approach (known to me) via dispersion relations (DR) non-fac. correction obey same (verified) DR as factorisable part

$$
H^{V, X}(s)=H^{V, X}\left(s_{0}\right)+\frac{\left(s-s_{0}\right)}{2 \pi i} \int_{s_{J / \Psi}}^{\infty} \frac{d t}{t-s_{0}} \frac{\operatorname{Disc}\left[H^{V, X}\right](t)}{t-s-i 0}, \quad X \in\{\mathrm{fac}, \mathrm{cor}\}
$$

second conclusions of phase 2:

- factorisable part duality over open charm is ok less 10\% error
- could expect same pattern for non-factorisable part

second conclusions of phase 2:

- factorisable part duality over open charm is ok less 10\% error
- could expect same pattern for non-factorisable part

possible pitfall — [non]-positivity

- factorisable part is positive definite (related cross section) non-factorisable part isn't (that's what we tested for in fit d)

second conclusions of phase 2:

- factorisable part duality over open charm is ok less 10\% error
- could expect same pattern for non-factorisable part

possible pitfall — [non]-positivity

- factorisable part is positive definite (related cross section) non-factorisable part isn't (that's what we tested for in fit d)
complex residues ρ_{r} (fit d)

- fit d) effect of cancellations 20\% instead of 350% its 280%
\Rightarrow that's not it!

third conclusions of phase 2:

- in our analysis we have not come across any signs that QCD can explain this effect. Yet charm-physics has a reputation of being notoriously difficult.

third conclusions of phase 2:

- in our analysis we have not come across any signs that QCD can explain this effect. Yet charm-physics has a reputation of being notoriously difficult.
- how to improve:

1) measure residues (phases) of all resonances in $B \rightarrow(\Psi \rightarrow \|) K^{(*)}$
2) perform fits to various fine binned observables (more robust results)
3) if 1) is successful \Rightarrow spectral information to reconstruct
charm amplitude fully non-perturbative from DR (fit subtraction constant)
remains to be seen

E. possible impact on low q ${ }^{2}$

- if charm resonances have surprised us at high q^{2}, likely they will at low q^{2}

E. possible impact on low q 2

- if charm resonances have surprised us at high q^{2}, likely they will at low q^{2}
- question: how transport information from high q^{2} to low q^{2} ?
a) no microscopic model
b) not yet a dispersion relation point 3) previous slide (mode-independent)
> currently ambiguity how to do it

E. possible impact on low q 2

- if charm resonances have surprised us at high q^{2}, likely they will at low q^{2}
- question: how transport information from high q^{2} to low q^{2} ?
a) no microscopic model
b) not yet a dispersion relation point 3) previous slide (mode-independent) > currently ambiguity how to do it
- fit b) scaling of factorisable part (at least close) 4D field theory and describes data astonishingly well.
$>$ shall take this as a model to assess the size of the effect

effect on $\mathrm{C}_{9+}=\mathrm{C}_{9}+\mathrm{C}_{9}$ ' \ldots.

effect on $\mathbf{C}_{9+}=\mathbf{C}_{9}+\mathbf{C}_{9}{ }^{\prime} \ldots$

- $B \rightarrow K I I$ measures C_{9+} whereas $B \rightarrow K^{*} \| l$ involves both $C_{9 \pm}$ N.B. $K^{*}(1430)$ sensitive to C_{9} - yet another opportunity

effect on $\mathbf{C}_{9+}=\mathbf{C}_{9}+\mathbf{C}_{9}{ }^{\prime} \ldots$

- $B \rightarrow K I l$ measures C_{9+} whereas $B \rightarrow K^{*} \|$ involves both $C_{9 \pm}$ N.B. $K^{*}{ }_{0}(1430)$ sensitive to C_{9} - yet another opportunity
- \Rightarrow long term advantage as can look for right-handed currents!
- \Rightarrow short term need to make a split $\eta_{c}=-2.5$ into C_{9+} and C_{9}

effect on $\mathbf{C}_{9+}=\mathbf{C}_{9}+\mathbf{C}_{9}{ }^{\prime} \ldots$

- $B \rightarrow K I l$ measures C_{9+} whereas $B \rightarrow K^{*} \|$ involves both $C_{9 \pm}$ N.B. K**(1430) sensitive to C_{9} - yet another opportunity
- \Rightarrow long term advantage as can look for right-handed currents!
- \Rightarrow short term need to make a split $\eta_{c}=-2.5$ into C_{9+} and C_{9}
- N.B. best fits to $\mathrm{B} \rightarrow \mathrm{K}^{*} \|(\mathrm{b} \rightarrow \mathrm{sll})$-anomalies $\Delta \mathrm{C}_{9} \simeq \Delta \mathrm{C}_{9^{\prime}} \simeq-1.5$

Descotes et al, Altmanhofeer et al, Beaujean et al, Meinel et al'13 (there nuances ...)

effect on $\mathrm{C}_{9+}=\mathrm{C}_{\mathbf{9}}+\mathrm{C}_{9}{ }^{\prime} \ldots$.

- $B \rightarrow K I l$ measures C_{9+} whereas $B \rightarrow K^{*} \|$ involves both $C_{9 \pm}$ N.B. $K^{*} 0(1430)$ sensitive to C_{9} - yet another opportunity
- \Rightarrow long term advantage as can look for right-handed currents!
- \Rightarrow short term need to make a split $\eta_{c}=-2.5$ into C_{9+} and C_{9}
- N.B. best fits to $\mathrm{B} \rightarrow \mathrm{K}^{*} \|(\mathrm{b} \rightarrow \mathrm{sll})$-anomalies $\Delta \mathrm{C}_{9} \simeq \Delta \mathrm{C}_{9^{\prime}} \simeq-1.5$

Descotes et al, Altmanhofeer et al, Beaujean et al, Meinel et al'13 (there nuances ...)

- hence charm effect good omen but on top more pronounced towards charm resonances and this is what is needed to account for LHCb-results

choose three scenarios

Observable	q^{2}-bin	LHCb	SM	$\eta_{c}=$	1.25(1, 1)	2.5(0, 1)	-2.5(1,0)
$\left\langle P_{2}\right\rangle$	[1.00, 6.00]				0.16		0.33
$\left\langle P_{2}\right\rangle$	[2.00, 4.30]	$0.50{ }_{-0.07}^{+0.00}$	0.15		0.25	0.067	0.39
$\left\langle P_{2}\right\rangle$	[4.30, 8.68]	$-0.25^{+0.07}$	-0.44		-0.05	-0.23	0.29
$\left\langle P_{2}\right\rangle$	[14.18, 16.00]	$-0.50_{-0.00}^{+0.03}$	-0.42		-0.39	-0.36	-0.36
$\left\langle P_{2}\right\rangle$	[16.00, 19.00]	$-0.32_{-0.08}^{+0.08}$	-0.34		-0.31	-0.25	-0.25
$\left\langle P_{4}^{\prime}\right\rangle$	[1.00, 6.00]	$0.58{ }_{-0.36}^{+0.32}$	0.57		0.66	0.80	0.64
$\left\langle P_{4}^{\prime}\right\rangle$	[2.00, 4.30]	$0.74_{-0.60}^{+0.54}$	0.61		0.69	0.82	0.67
$\left\langle P_{4}^{\prime}\right\rangle$	[4.30, 8.68]	$1.18_{-0.32}^{+0.26}$	1.0		1.0	1.2	0.98
$\left\langle P_{4}^{\prime}\right\rangle$	[14.18, 16.00]	$-0.18_{-0.70}^{+0.54}$	1.2		1.2	1.2	1.2
$\left\langle P_{4}^{\prime}\right\rangle$	[16.00, 19.00]	$0.70_{-0.52}^{+0.44}$	1.3		1.3	1.3	1.3
$\left\langle P_{5}^{\prime}\right\rangle$	[1.00, 6.00]	$0.21_{-0.21}^{+0.20}$	-0.44		-0.15	-0.33	0.17
$\left\langle P_{5}^{\prime}\right\rangle$	[2.00, 4.30]	$0.29_{-0.39}^{+0.40}$	-0.47		-0.17	-0.36	0.13
$\left\langle P_{5}^{\prime}\right\rangle$	[4.30, 8.68]	$-0.19_{-0.16}^{+0.16}$	-0.88		-0.31	-0.44	0.26
〈P P_{5})	[14.18,16.00]	-0.79-0.22	-0.70		-0.66	-0.59	-0.61
$\left\langle P_{5}^{\prime}\right\rangle$	[16.00, 19.00]	$-0.60_{-0.18}^{+0.21}$	-0.53		-0.49	-0.39	-0.38
$\left\langle A_{\text {FB }}\right\rangle$	[1.00, 6.00]	$0.17_{-0.06}^{+0.06}$	0.0026		0.054	-0.0033	0.14
$\left\langle A_{\text {FB }}\right\rangle$	[2.00, 4.30]	$0.20_{-0.08}^{+0.08}$	0.034		0.069	0.014	0.15
$\left\langle A_{\text {FB }}\right\rangle$	[4.30, 8.68]	$-0.16_{-0.06}^{+0.05}$	-0.21		-0.025	-0.098	0.19
$\left\langle A_{\text {FB }}\right\rangle$	[14.18, 16.00]	$-0.51_{-0.07}^{+0.05}$	-0.43		-0.40	-0.36	-0.37
$\left\langle A_{\mathrm{FB}}\right\rangle$	[16.00, 19.00]	$\left\|-0.30_{-0.08}^{+0.08}\right\|$	-0.35		-0.33	-0.26	-0.26

- inspection tells us that mix between scenario (i) and (iii) best for data ...

what fine binning can do $\mathbf{B} \rightarrow \mathbf{K}^{\star}$ Il angular observables

noticeable effects

moderate effects (at least when universal)

F. discussion and conclusions

- large effects in broad charm resonances factorisation fails 350\% (nominal correction 50\%)

F. discussion and conclusions

- large effects in broad charm resonances factorisation fails 350\% (nominal correction 50\%)
- found no signs to explain it within QCD investigation under duality

F. discussion and conclusions

- large effects in broad charm resonances factorisation fails 350\% (nominal correction 50\%)
- found no signs to explain it within QCD investigation under duality
reconsider the way treat QCD in this sector?
new physics in form
$\mathcal{O}_{\Gamma_{1} \Gamma_{2}}=\bar{c} \Gamma_{1} c \bar{b} \Gamma_{2} s$
$\Delta C_{2}(M w)$ contrived constraints $\sin (2 \beta), \Delta \Gamma_{s}, \cdots$

F. discussion and conclusions

- large effects in broad charm resonances factorisation fails 350\% (nominal correction 50\%)
- found no signs to explain it within QCD investigation under duality

- scaled factorisation (-2.5) (can) explain(s) B $\rightarrow \mathrm{K}^{*} \|$-anomalies

F. discussion and conclusions

- large effects in broad charm resonances factorisation fails 350\% (nominal correction 50\%)
- found no signs to explain it within QCD investigation under duality
reconsider the way treat QCD in this sector?
new physics in form
$\mathcal{O}_{\Gamma_{1} \Gamma_{2}}=\bar{c} \Gamma_{1} c \bar{b} \Gamma_{2} s \quad \begin{gathered}\text { constraints } \\ \sin (2 \beta), \Delta \Gamma_{s}, \cdots\end{gathered}$
- scaled factorisation (-2.5) (can) explain(s) B $\rightarrow \mathrm{K}^{*} \|$-anomalies
- of course there can still be $\Delta \mathrm{C} 9$ short distance new physics (power corrections cannot explain central values)

what to do

- high q²: measure C_{9} and Cg^{\prime}-part of effects as well as polarisation non-universality (from non-factorisable effects)
need observables fine binning (LHCb-collaboration)

what to do

- high q²: measure C_{9} and Cg^{\prime}-part of effects as well as polarisation non-universality (from non-factorisable effects)

need observables fine binning (LHCb-collaboration)

- latter is crucial as non-universality and right-handed currentabareuff in not easy to disentangle (we will get there)

what to do

- high q²: measure C_{9} and Cg^{\prime}--part of effects as well as polarisation non-universality (from non-factorisable effects)
need observables fine binning (LHCb-collaboration)
- latter is crucial as non-universality and right-handed currentabareuff in not easy to disentangle (we will get there)
- need to address question of strong phases in $\left.B \rightarrow \Psi K{ }^{*}\right)$ use model-independent dispersion relation (a la S-matrix ...) tell us more definitely about low q^{2}

what to do

- high q²: measure C_{9} and Cg^{\prime}--part of effects as well as polarisation non-universality (from non-factorisable effects)
need observables fine binning (LHCb-collaboration)
- latter is crucial as non-universality and right-handed currentabareuff in not easy to disentangle (we will get there)
- need to address question of strong phases in $\left.B \rightarrow \Psi K{ }^{*}\right)$ use model-independent dispersion relation (a la S-matrix ...) tell us more definitely about low q²

need data (at least close) to J / Ψ and $\Psi(S)$ resonances

- low q²: makes sense to do SM predictions well below J/ Ψ-resonances
exciting times - close collaboration between theorists and experimentalists seems the way to go (at least to me)
exciting times - close collaboration between theorists and experimentalists seems the way to go (at least to me)

Final words:
"charm (can) explain (s) $\mathcal{B} \rightarrow K^{*} U$-anomaties
but charm doesn't explain itself"

BACKUP SLIDES

$\mathrm{B} \rightarrow$ charmonium $\mathrm{K}^{[\mathrm{Cl}}$ et al

- $\left.B \rightarrow \Psi K^{*}\right)$ has got notorious reputation (also with factorisation)
- the setting we have with duality interval is on much safer grounds but what we have found is that not only factorisation is not very precise but that the sign of factorisation is the wrong one (indirect analysis)
- it seems the problem in b->css physics has become much worse with this new analysis
- motivates reinvestigation of b->css physics in general

Fit BESII-data [more details]

$$
R_{\mathrm{fit}}(s)=R_{\mathrm{res}}(s)+R_{\mathrm{con}}(s)
$$

r	$m_{r}[\mathrm{GeV}]$	$\Gamma_{r}[\mathrm{MeV}]$	${ }^{2 s+1} L_{J}$
J / Ψ	3.097	$0.0934(21)$	${ }^{3} S_{1}$
$\Psi(2 S)$	3.686	$0.337(13)$	${ }^{3} S_{1}$
$\Psi(3370)$	3.771	23.3	${ }^{3} D_{1}$
$\Psi(4040)$	4.039	76.2	${ }^{3} S_{1}$
$\Psi(4160)$	4.192	73.5	${ }^{3} D_{1}$
$\Psi(4415)$	4.415	78.5	${ }^{3} S_{1}$

$$
R_{\mathrm{con}}(s)=R_{u d s}+(1-z)\left(\Delta R_{c}+z a\right), \quad \Delta R_{c} \equiv R_{u d s c}-R_{u d s}
$$

$$
R_{\mathrm{res}}(s)=\frac{9}{\alpha^{2}} \sum_{f}\left|\sum_{r} T^{r \rightarrow f}(s)\right|^{2}
$$

phase at production of resonance r

$$
T^{r \rightarrow f}(s)=\frac{m_{r} \sqrt{\Gamma^{r \rightarrow e^{+} e^{-} \Gamma^{r \rightarrow f}(s)}}}{s-m_{r}^{2}+i m_{r} \Gamma_{r}(s)} e^{i \delta_{r}}
$$

- Breit-Wigner ansatz with energy dependent width and interference effects

