RECENT RESULTS FROM LHCb A brief selection

Patrick Spradlin on behalf of the LHCb collaboration

University of Glasgow Particle Physics

Fourth workshop on flavour symmetries and consequences in accelerators and cosmology (FLASY 2014) 17-21 June 2014, University of Sussex, Brighton, UK

LARGE HADRON COLLIDER

P. SPRADLIN (GLASGOW)

FORWARD ACCEPTANCE

Forward acceptance 2 < η < 5.

Takes advantage of the predominant forward production of heavy flavored hadrons.

Pseudorapidity range unique among the LHC detectors.

Complementary to the GPDs.

LHCb detector

LHCb beyond design

Exceeding design specifications to maximize physics reach

TRIGGER STRUCTURE

Architecture and performance documented in JINST 8 (2013) P04022.

Input includes $15\,\mathrm{MHz}$ of non-empty bunch crossings.

L0 hardware trigger includes three main collections of channels

- Hadron calorimeter triggers,
- Muon detector triggers,
- Electromagnetic calorimeter triggers.

HLT software trigger divided into two sequential stages

- HLT1: high-p_T displaced tracks,
 - 70 kHz retention.
- HLT2: full event reconstruction

LHCb data collection 2010-2013

LHCb Integrated Luminosity at p-Pb 4 TeV in 2013

Data collection with *p*Pb collisions: 2013 1.9 nb⁻¹ $\sqrt{s_{\rm NN}} = 5$ TeV.

LHCb physics program I

LHCb is designed for high precision searches for indirect evidence of New Physics beyond the Standard Model in

- Heavy meson mixing, e.g.,
 - ϕ_s in B_s^0 mixing,
 - A_{Γ} in $D^0 \overline{D}^0$ mixing.
- CP violation, e.g.,
 - $\gamma(\phi_3)$ in *B* decays,
 - Direct CP violation in B and D decays.
- Rare transitions of of b (and c) hadrons, e.g.,
 - Branching fractions of rare decays like $B_{(s)} \rightarrow \mu^+ \mu^-$,
 - $A_{\rm FB}$ and angular analysis of $B^0 \rightarrow K^{*0} \mu^+ \mu^-$ and related modes.

In these tasks, LHCb is performing admirably.

LHCb physics program II

However, it is also an ideal laboratory for a much broader physics program, including

- Spectroscopy and the discovery of new states,
- Precision mass and lifetime measurements,
- Production measurements and precision tests of QCD,
- Precision branching fraction and decay amplitude measurements, including newly observed decay modes,
- Studies of proton-ion collisions at forward rapidities.

Almost 200 papers submitted to journals

This talk includes just a small selection of recent results

 $Z(4430)^-$ IN $B^0 \rightarrow \psi' \pi^- K^+$ PRL 112 222002 (2014)

Four-dimensional amplitude analysis of $B^0 \rightarrow \psi'(\mu^+\mu^-)\pi^-K^+$ $m^2(K^+\pi^-), m^2(\psi'\pi^-),$ ψ' helicity angle $\cos \theta_{\psi'},$ and decay plane angle ϕ .

25176 \pm 174 $B^0 \! \rightarrow \psi^\prime(\mu^+\mu^-)\pi^-K^+$ decays

• An order of magnitude more than previous analyses.

 $Z(4430)^-$ established at 13.9 σ with properties

•
$$m(Z) = 4475 \pm 7^{+15}_{-25}$$
 MeV,

•
$$\Gamma(Z) = 172 \pm 13^{+37}_{-34}$$
 MeV,

•
$$f_Z = (5.9 \pm 0.9^{1.5}_{3.3})\%$$
,

 J^P = 1⁺, with other assignments ruled out at > 9σ. $Z(4430)^{+}$

 $Z(4430)^-$ in $B^0 \rightarrow \psi' \pi^- K^+$ PRL 112 222002 (2014)

Model-independent analysis:

- Method of BaBar, PRD 79 112001 (200
- Legendre moments of K* helicity angle distribution in slices of m(K⁺π⁻)
- Reflect J ≤ 2 moments into the m(ψ'π⁻) distribution.

K^* reflections unable describe the data.

Replace Breit-Wigner amplitude model for $Z(4430)^-$ with six independent complex amplitudes in bins of $m(\psi'\pi^-)$ in the peak region,

LHCb

42

44

4.6 m_{w'π} [GeV]

• Tests phase variation with mass,

0.0 ₩

/ (25

Efficiency corrected yield

0.0

0.0

 Argand diagram shows rapid variation of phase at peak of magnitude,

Consistent with resonance.

 $A_{CP} \text{ in } D^0 \rightarrow h^- h^+ \text{ decays}$

 A_{CP} IN $D^0 \rightarrow h^- h^+$ decays LHCb-Paper-2014-013, accepted by JHEP

Samples of $D^0 \to K^- K^+$ and $D^0 \to \pi^- \pi^+$ produced in $\overline{B} \to D^0 \mu^- \overline{\nu}_\mu X$

• Charge of muon tags initial flavor of *D*⁰.

Observed asymmetries a combination of *CP* asymmetry and confounding detection and production asymmetries...

$$A_{\text{raw}} = A_{CP} + A_{D}(\mu^{-}) + A_{P}(\overline{B})$$

... that cancel in the difference

$$\Delta A_{C\!P} \equiv A_{C\!P}(K^-K^+) - A_{C\!P}(\pi^-\pi^+) = A_{\rm raw}(K^-K^+) - A_{\rm raw}(\pi^-\pi^+)$$

Further, $A_{CP}(K^-K^+)$ can be extracted directly

- $\overline{B} \rightarrow D^0(K^-\pi^+)\mu^-\overline{\nu}_{\mu}X$ decays to cancel $A_{\rm D}(\mu^-) + A_{\rm P}(\overline{B})$,
- Samples of promptly produced $D^+ \rightarrow K^- \pi^+ \pi^+$ and $D^+ \rightarrow \overline{K}{}^0 \pi^+$ to measure the $K^- \pi^+$ detection asymmetry in the $D^0 \rightarrow K^- \pi^+$ sample

$$\boldsymbol{A_{C\!P}}(\boldsymbol{K}^{-}\boldsymbol{K}^{+}) = \boldsymbol{A}_{\mathrm{raw}}(\boldsymbol{K}^{-}\boldsymbol{K}^{+}) - \boldsymbol{A}_{\mathrm{raw}}(\boldsymbol{K}^{-}\pi^{+}) + \boldsymbol{A}_{\mathrm{D}}(\boldsymbol{K}^{-}\pi^{+})$$

 $A_{\mathcal{O}}$ in $D^0 \to h^- h^+$ decays

 A_{CP} IN $D^0 \rightarrow h^- h^+$ decays LHCD-PAPER-2014-013, accepted by JHEP

 A_{CP} has contributions from direct and indirect CP violation.

Indirect contribution dependent on mean D^0 decay time of sample.

$$m{A}_{C\!P}pproxm{a}_{C\!P}^{
m dir}-m{A}_{\Gamma}rac{\langle t
angle}{ au}$$

 $\frac{\langle t \rangle}{\tau}$ similar for $K^- K^+$ and $\pi^- \pi^+$ samples $\Rightarrow \Delta A_{CP} \approx \Delta a_{CP}^{dir}$

The most precise measurements of time-integrated CP asymmetries in $D^0 \rightarrow h^- h^+$ decays from a single experiment to date:

$$\Delta A_{CP} = (+0.14 \pm 0.16 \pm 0.08)\%$$
$$A_{CP}(K^-K^+) = (-0.06 \pm 0.15 \pm 0.10)\%$$
$$A_{CP}(\pi^-\pi^+) = (-0.20 \pm 0.19 \pm 0.10)\%$$

*Q***P** VIOLATION IN $B^{\pm} \rightarrow K^+ K^- \pi^{\pm}$ and $B^{\pm} \rightarrow \pi^+ \pi^- \pi^{\pm}$

INCLUSIVE CPV IN $B^{\pm} \rightarrow K^{+}K^{-}\pi^{\pm}$ and $B^{\pm} \rightarrow \pi^{+}\pi^{-}\pi^{\pm}$ PRL 112 011801 (2014)

First evidence of inclusive CP asymmetry in these modes:

$$\begin{aligned} \mathcal{A}_{CP}(K^+K^-\pi^\pm) &= -0.141 \pm 0.040(\text{stat}) \pm 0.018(\text{syst}) \pm 0.007 \left(\mathcal{A}_{CP}(J/\psi K^\pm)\right) (3.2\sigma) \\ \mathcal{A}_{CP}(\pi^+\pi^-\pi^\pm) &= 0.117 \pm 0.021(\text{stat}) \pm 0.009(\text{syst}) \pm 0.007 \,\mathcal{A}_{CP}(J/\psi K^\pm) (4.9\sigma) \end{aligned}$$

(First evidence of O^{P} asymmetry in 3-body charmless *B* decays in an earlier analysis of $B^{\pm} \rightarrow K^{+}K^{-}K^{\pm}$, PRL 111 (2013) 101801)

Observed asymmetry a combination of *CP* asymmetry and confounding detection and production asymmetries

$$A_{\mathrm{raw}} = A_{CP} + A_{\mathrm{D}}(\pi^{\pm}) + A_{\mathrm{P}}(B^{\pm})$$

• $A_{\rm D}(\pi^{\pm})$ previously measured

• $A_{\rm P}(B^{\pm})$ from $B^{\pm} \rightarrow J/\psi K^{\pm}$

*Q***P** VIOLATION IN $B^{\pm} \rightarrow K^+ K^- \pi^{\pm}$ and $B^{\pm} \rightarrow \pi^+ \pi^- \pi^{\pm}$

LOCAL CPV IN $B^{\pm} \rightarrow K^{+}K^{-}\pi^{\pm}$ and $B^{\pm} \rightarrow \pi^{+}\pi^{-}\pi^{\pm}$

Regions of large asymmetry not clearly associated to resonances.

 $\begin{aligned} \mathcal{A}_{CP}^{\mathrm{reg}}(K^+K^-\pi^{\pm}) &= -0.648 \pm 0.040(\mathrm{stat}) \pm 0.013(\mathrm{syst}) \pm 0.007 \left(\mathcal{A}_{CP}(J/\psi K^{\pm})\right) \\ \mathcal{A}_{CP}^{\mathrm{reg}}(\pi^+\pi^-\pi^{\pm}) &= 0.584 \pm 0.082(\mathrm{stat}) \pm 0.027(\mathrm{syst}) \pm 0.007 \left(\mathcal{A}_{CP}(J/\psi K^{\pm})\right) \\ \mathcal{A}_{CP}^{\mathrm{reg}}(\pi^+\pi^-\pi^{\pm}) &= 0.584 \pm 0.082(\mathrm{stat}) \pm 0.027(\mathrm{syst}) \pm 0.007 \left(\mathcal{A}_{CP}(J/\psi K^{\pm})\right) \\ \mathcal{A}_{CP}^{\mathrm{reg}}(\pi^+\pi^-\pi^{\pm}) &= 0.584 \pm 0.082(\mathrm{stat}) \pm 0.027(\mathrm{syst}) \pm 0.007 \left(\mathcal{A}_{CP}(J/\psi K^{\pm})\right) \\ \mathcal{A}_{CP}^{\mathrm{reg}}(\pi^+\pi^-\pi^{\pm}) &= 0.584 \pm 0.082(\mathrm{stat}) \pm 0.027(\mathrm{syst}) \pm 0.007 \left(\mathcal{A}_{CP}(J/\psi K^{\pm})\right) \\ \mathcal{A}_{CP}^{\mathrm{reg}}(\pi^+\pi^-\pi^{\pm}) &= 0.584 \pm 0.082(\mathrm{stat}) \pm 0.027(\mathrm{syst}) \pm 0.007 \left(\mathcal{A}_{CP}(J/\psi K^{\pm})\right) \\ \mathcal{A}_{CP}^{\mathrm{reg}}(\pi^+\pi^-\pi^{\pm}) &= 0.584 \pm 0.082(\mathrm{stat}) \pm 0.027(\mathrm{syst}) \pm 0.007 \left(\mathcal{A}_{CP}(J/\psi K^{\pm})\right) \\ \mathcal{A}_{CP}^{\mathrm{reg}}(\pi^+\pi^-\pi^{\pm}) &= 0.584 \pm 0.082(\mathrm{stat}) \pm 0.027(\mathrm{syst}) \pm 0.007 \left(\mathcal{A}_{CP}(J/\psi K^{\pm})\right) \\ \mathcal{A}_{CP}^{\mathrm{reg}}(\pi^+\pi^-\pi^{\pm}) &= 0.584 \pm 0.082(\mathrm{stat}) \pm 0.027(\mathrm{syst}) \pm 0.007 \left(\mathcal{A}_{CP}(J/\psi K^{\pm})\right) \\ \mathcal{A}_{CP}^{\mathrm{reg}}(\pi^+\pi^-\pi^{\pm}) &= 0.584 \pm 0.082(\mathrm{stat}) \pm 0.027(\mathrm{syst}) \pm 0.007 \left(\mathcal{A}_{CP}(J/\psi K^{\pm})\right) \\ \mathcal{A}_{CP}^{\mathrm{reg}}(\pi^+\pi^-\pi^{\pm}) &= 0.584 \pm 0.082(\mathrm{stat}) \pm 0.027(\mathrm{syst}) \pm 0.007 \left(\mathcal{A}_{CP}(J/\psi K^{\pm})\right) \\ \mathcal{A}_{CP}^{\mathrm{reg}}(\pi^+\pi^-\pi^{\pm}) &= 0.584 \pm 0.082(\mathrm{stat}) \pm 0.027(\mathrm{syst}) \pm 0.007 \left(\mathcal{A}_{CP}(J/\psi K^{\pm})\right) \\ \mathcal{A}_{CP}^{\mathrm{reg}}(\pi^+\pi^-\pi^{\pm}) &= 0.026(\mathrm{stat}) \pm 0.027(\mathrm{syst}) \pm 0.007(\mathrm{stat}) + 0.007(\mathrm{stat}) \pm 0.007(\mathrm{stat}) + 0.007($

ϕ_s AVERAGE WITH LHCb 1 fb⁻¹ results

 ϕ_{s} WORLD AVERAGE

The *CP*-violating phase, ϕ_s , characterizing the interference between B_s^0 mixing and decay in $b \rightarrow c\overline{c}s$ transitions.

• Sensitive to NP in mixing diagrams and penguin decay diagrams.

• SM: $\phi_s^{\text{SM}} = -2 \arg \frac{V_{ls} V_{lb}^*}{V_{cs} V_{cb}^*} = -0.0363^{+0.0016}_{-0.0015} \operatorname{rad}$ [Charles *et al.*, PRD 84 033005 (2011)]

World average with LHCb 1 fb⁻¹: $\phi_s = 0.00 \pm 0.07$ rad

 $\phi_s \text{ in } B^0_s \to J/\psi \pi^+ \pi^ \phi_s \text{ in } B^0_s \to J/\psi \pi^+ \pi^-$ LHCD-PAPER-2014-019, submitted to PLB

New measurement of ϕ_s in $B^0_s \rightarrow J/\psi \, \pi^+ \pi^-$ decays

27100 \pm 200 $B_s^0 \rightarrow J/\psi \pi^+\pi^-$ candidates with 79.6% purity in the full Run 1 3 fb⁻¹.

(Update to ϕ_s in $B_s^0 \rightarrow J/\psi K^+ K^-$ with 3 fb⁻¹ is in preparation.)

Time-dependent flavor-tagged amplitude fit that determines the *CP* content of the final state

- Independent variables: $J/\psi \pi^+\pi^-$ mass, $\pi^+\pi^-$ mass, three angles in the helicity basis, and decay time.
- Resonant components as in LHCb, LHCB-PAPER-2014-012
- Same-side and opposite-side flavor tagging
- Decay time acceptance measured in $B^0 \rightarrow J/\psi \, K^{*0}$.

 $\phi_{\rm s} \text{ in } B_{\rm s}^0 \rightarrow J/\psi \, \pi^+ \pi^-$

 ϕ_s in $B^0_s \rightarrow J/\psi \pi^+ \pi^-$ LHCb-paper-2014-019, submitted to PLB

Consistent with Standard Model prediction:

 $\phi_s^{\text{SM}} = -36.3^{+1.6}_{-1.5} \text{ mrad} \text{ [Charles et al., PRD 84 033005 (2011)]}$

$B_s^0 ightarrow \mu^+ \mu^-$ in LHC Run 1

 $B_{\rm s}^0 \rightarrow \mu^+ \mu^-$

LHCb: 4.0 σ significance in 3 fb⁻¹ [PRL 111, 101805 (2013)] $\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = (2.9^{+1.1}_{-1.0}) \times 10^{-9}$

CMS: 4.3 σ significance in 25 fb⁻¹ [PRL 111, 101804 (2013)] $\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = (3.0^{+1.0}_{-0.9}) \times 10^{-9}$

 $B_s^0 \rightarrow \mu^+ \mu^-$ COMBINED RESULT CMS-PAS-BPH-13-007, LHCb-CONF-2013-012

Naive combination of LHCb and CMS Run I measurements:

$$\begin{split} \mathcal{B}(B^0_s \to \mu^+ \mu^-) &= (2.9 \pm 0.7) \times 10^{-9} \\ \mathcal{B}(B^0 \to \mu^+ \mu^-) &= \left(3.6^{+1.6}_{-1.4}\right) \times 10^{-10} \end{split}$$

Consistent with SM predictions [Bobeth et al. PRL 112, 101801 (2014)]

$${\cal B}^{
m SM}(B^0_{m s}\!
ightarrow \mu^+\mu^-) = (3.65\pm 0.23) imes 10^{-9}$$

Preliminary conclusions (thorough treatment in progress):

- $B_s^0 \rightarrow \mu^+ \mu^-$ observed at > 5 σ significance!
- No statistically significant evidence for $B^0 \rightarrow \mu^+ \mu^-$.

P. SPRADLIN (GLASGOW)

Analysis of ${\it B}^{\scriptscriptstyle 0} \! ightarrow {\it K}^{*0} \mu^+ \mu^-$

Differential branching fraction, dB/dq^2 , and angular analysis [JHEP 08 (2013) 131]

- Four observables after angular folding
 - A_{FB}: dimuon F-B asymmetry,
 - F_L : fractional K^{*0} polarization,
 - S₃: asymmetry related to the virtual photon polarization,
 - A₉: a CP asymmetry.

Form-factor independent angular analysis [PRL 111 (2013) 191801]

- Observables with canceling form-factor uncertainties,
- 3.7 σ discrepancy in P'_5 .

Isospin asymmetry with $B^+ \rightarrow K^{*+} \mu^+ \mu^-$ [LHCB-PAPER-2014-006]

$B \rightarrow K^* \mu^+ \mu^-$

ANGULAR ANALYSIS OF $B \rightarrow K \mu^+ \mu^-$ LHCb-PAPER-2014-007, SUBMITTED TO JHEP

Angular analysis of $B^+ \to K^+ \mu^+ \mu^-$ and $B^0 \to K^0_s \mu^+ \mu^-$ in bins of q^2 to measure

- $A_{\rm FB}$: forward-backward asymmetry ($B^+ \rightarrow K^+ \mu^+ \mu^-$ only)
 - Approximately 0 in SM
- *F_H*: fractional contribution of (pseudo)scalar and tensor amplitudes to the decay width
 - Small in SM

P. SPRADLIN (GLASGOW)

$B \rightarrow K^* \mu^+ \mu^-$

ANGULAR ANALYSIS OF $B \rightarrow K \mu^+ \mu^-$ LHCb-PAPER-2014-007, SUBMITTED TO JHEP

Consistent with SM predictions in every q^2 bin.

Constrains contributions from (pseudo)scalar and tensor amplitudes.

Figures show SM predictions from Bobeth *et al.*, JHEP 01 (2012) 107 Exploitation of the full LHC Run 1 data set of 3 fb^{-1} at LHCb is underway and yielding some of the most precise measurements in the *b* and *c* sector.

- Only a fraction of our results were presented today,
- Many more measurements in progress.

No deviations from the SM yet observed.

LHC Run 2 projected to add 8 fb⁻¹, allowing LHCb to find or rule-out large sources of flavour symmetry breaking at the TeV scale.

An upgraded LHCb detector to operate during LHC Runs 3 and 4 is approved and in development,

- Up to 50 fb⁻¹
- Essential to match SM theory errors in many key measurements.