B-Mixing

Alexander Lenz

IPPP Durham

Outline

Mixing in the standard model

- Introduction
- Mass difference
- Decay rate difference and the HQE
- Mixing beyond the standard model
 - New physics in M_{12}
 - New physics in $\Delta \Gamma_d$
- Higher precision for M_{12} and Γ_{12}
- Conclusion

Introduction

Mixing is a common effect in particle physics! (interaction eigenstate \neq mass eigenstate)

- "Unification" of electromagnetic and weak interaction
- Neutrino oscillations
- Quark mixing via the CKM matrix
- Mixing of neutral mesons macroscopic quantum effect!

It was observed in

- *K*⁰-system: 1950s (see text books, regeneration...)
- B_d -system: 1986 ΔM_d ; ??? $\Delta \Gamma_d$
- B_s -system: 2006 ΔM_s ; 2012 $\Delta \Gamma_s$
- D^0 -system: 2007, 2012 ΔM_D , $\Delta \Gamma_D$

Strongly suppressed in the SM (higher order in weak interaction) New physics effects might be of comparable size

Introduction

 $|M_{12}|$, $|\Gamma_{12}|$ and $\phi = \arg(-M_{12}/\Gamma_{12})$ can be related to three observables:

- Mass difference: $\Delta M := M_H M_L \approx 2|M_{12}|$ (off-shell) $|M_{12}|$: heavy internal particles: t, SUSY, ...
- Decay rate difference: $\Delta \Gamma := \Gamma_L \Gamma_H \approx 2|\Gamma_{12}| \cos \phi$ (on-shell) $|\Gamma_{12}|$: light internal particles: u, c, ... (almost) no NP!!!

Flavor specific/semi-leptonic CP asymmetries: e.g. $B_q \rightarrow X l \nu$ (semi-leptonic)

$$a_{sl} \equiv a_{fs} = \frac{\Gamma(\overline{B}_q(t) \to f) - \Gamma(B_q(t) \to \overline{f})}{\Gamma(\overline{B}_q(t) \to f) + \Gamma(B_q(t) \to \overline{f})} = \left|\frac{\Gamma_{12}}{M_{12}}\right| \sin\phi$$

Mass difference ΔM

Calculating the box diagram with an internal top-quark yields

$$M_{12,q} = \frac{G_F^2}{12\pi^2} (V_{tq}^* V_{tb})^2 M_W^2 S_0(x_t) B_{B_q} f_{B_q}^2 M_{B_q} \hat{\eta}_B$$

- 1 loop calculation $S_0(x_t = m_t^2/M_W^2)$
- 2-loop perturbative QCD corrections $\hat{\eta}_B$

Inami, Lim, '81

Buras, Jamin, Weisz, '90

• Hadronic matrix element: $\frac{8}{3}B_{B_q}f_{B_q}^2M_{B_q}^2 = \langle \bar{B_q}|(\bar{b}q)_{V-A}(\bar{b}q)_{V-A}|B_q\rangle$

$$f_{B_s} = \begin{cases} 235 \pm 9 & 2 + 1 + 1 & 1311.2837; \text{ ETM '13} \\ 233 \pm 5 & 2 + 1 & 1311.0276; \text{ RBC/UKQCD '13} \\ 224 \pm 5 & 2 + 1 + 1 & 1302.2644; \text{ HPQCD '13} \\ 228 \pm 10 & 2 + 1 & 1202.4914; \text{ HPQCD '12} \\ 242.0 \pm 5.1 \pm 8.0 & 2 + 1 & 1112.3051; \text{ FNAL/MILC '11} \\ 225.0 \pm 2.9 \pm 2.9 & 2 + 1 & 1110.4510; \text{ HPQCD '11} \\ > f_{B_s} = 235 \pm 17 & \dots & 224 \pm 5 & ?!?!? \\ B_{B_s} = 1.33 \pm 0.06 & \text{HPQCD '09} & 1.32 \pm 0.05 & \text{ETM '13} \end{cases}$$

Important bounds on the unitarity triangle and new physics

 \Rightarrow

ΔM and $\Delta \Gamma$

Mass difference: One Operator Product Expansion (OPE)

Theory A.L., Nierste 1102.4274 vs. Experiment : HFAG 14

 $\Delta M_d = 0.543 \pm 0.091 \text{ ps}^{-1} \qquad \Delta M_d = 0.510 \pm 0.003 \text{ ps}^{-1}$ $\Delta M_s = 17.30 \pm 2.6 \text{ ps}^{-1} \qquad \Delta M_s = 17.761 \pm 0.022 \text{ ps}^{-1}$

- Perfect agreement, still room for NP
- Important bounds on the unitarity triangle and NP
- Dominant uncertainty = Lattice

Decay rate difference: Second OPE = Heavy Quark Expansion (HQE)

$$\Gamma_{12} = \left(\frac{\Lambda}{m_b}\right)^3 \left(\Gamma_3^{(0)} + \frac{\alpha_s}{4\pi} \Gamma_3^{(1)} + \dots\right) + \left(\frac{\Lambda}{m_b}\right)^4 \left(\Gamma_4^{(0)} + \dots\right) + \left(\frac{\Lambda}{m_b}\right)^5 \left(\Gamma_5^{(0)} + \dots\right) + \dots$$

'96: Beneke, Buchalla; '98: Beneke, Buchalla, Greub, A.L., Nierste; '03: Beneke, Buchalla, A.L., Nierste; '03: Ciuchini, Franco, Lubicz, Mescia, Tarantino; '06; '11: A.L., Nierste; '07 Badin, Gabianni,Petrov

The Heavy Quark Expansion

HQE might be questionable - relies on quark hadron duality Energy release is small \Rightarrow naive dim. estimate: series might not converge

- Mid 90's: Missing Charm puzzle $n_c^{\text{Exp.}} < n_c^{\text{SM}}$, semi leptonic branching ratio
- Mid 90's: Λ_b lifetime is too short, i.e. $\tau(\Lambda_b) \ll \tau(B_d) = 1.519$ ps
- before 2003: $\tau_{B_s}/\tau_{B_d} \approx 0.94 \neq 1$
- 2010/2011: dimuon asymmetry too large

Theory arguments for HQE

- \Rightarrow calculate corrections in all possible "directions", to test convergence
- \Rightarrow test reliability of HQE via lifetimes (no NP effects expected)

The Heavy Quark Expansion

(Almost) all discrepancies disappeared:

- '12: $n_c^{2011\text{PDG}} = 1.20 \pm 0.06$ vs. $n_c^{\text{SM}} = 1.23 \pm 0.08$ Krinner, A.L., Rauh 1305.5390
- HFAG '03 $\tau_{\Lambda_b} = 1.229 \pm 0.080 \text{ ps}^{-1} \longrightarrow \text{HFAG}$ '14 $\tau_{\Lambda_b} = 1.451 \pm 0.024 \text{ ps}^{-1}$ Shift by 2.8σ !
- **HFAG 2014:** $\tau_{B_s}/\tau_{B_d} = 0.995 \pm 0.006$
- 2010/2011: dimuon asymmetry too large Test Γ_{12} with $\Delta \Gamma_s$!

Theory arguments for HQE

 $\Rightarrow\,$ calculate corrections in all possible "directions", to test convergence

$$\Delta \Gamma_s = \Delta \Gamma_s^0 \left(1 + \delta^{\text{Lattice}} + \delta^{\text{QCD}} + \delta^{\text{HQE}} \right) \Rightarrow \text{looks ok!}$$

= 0.142 ps⁻¹ (1 - 0.14 - 0.06 - 0.19)

 \Rightarrow test reliability of HQE via lifetimes (no NP effects expected) $\Rightarrow \tau(B^+)/\tau(B_d)$ experiment and theory agree within hadronic uncertainties

Dominant uncertainties: NLO-QCD + Lattice

Finally $\Delta \Gamma_s$ is measured!

Thanks to Roger Jones

Finally $\Delta \Gamma_s$ is measured!

Finally $\Delta \Gamma_s$ is measured! E.g. from $B_s \rightarrow J/\psi \phi$ LHCb Moriond 2012, 2013; ATLAS; CDF; DO

$$\begin{array}{lll} \Delta \Gamma^{\rm Exp}_{s} &=& (0.091 \pm 0.008) \, {\rm ps}^{-1} \\ \Delta \Gamma^{\rm SM}_{s} &=& (0.087 \pm 0.021) \, {\rm ps}^{-1} \end{array} \begin{array}{l} {\rm HFAG\ 2014} \\ {\rm A.L.,Nierste\ 1102.4274} \end{array}$$

Cancellation of non-perturbative uncertainties in ratios

$$\left(\frac{\Delta\Gamma_s}{\Delta M_s}\right)^{\rm Exp} / \left(\frac{\Delta\Gamma_s}{\Delta M_s}\right)^{\rm SM} = 1.02 \pm 0.09 \pm 0.19$$

Dominant uncertainty = NNLO-QCD + Lattice

Most important lesson?: HQE works also for Γ_{12} !

- HQE works for the decay $b \rightarrow c \bar{c} s$
- Energy release $M_{B_s} 2M_{D_s} \approx 1.4 \text{ GeV}$ (momentum release: 3.5 GeV)
- Violation quark hadron duality: Theoreticians were fighting for 35 years

How precise does it work? 20%? 10%?

Still more accurate data needed! LHCb, ATLAS, CMS?, TeVatron, Super-Belle

1. Apply HQE also to $b \rightarrow c\bar{c}s$ transitions 2. Apply HQE to quantities that are sensitive to NP 3. Apply HQE also to quantities in the charm system?

Search for New Physics in B-mixing

HQE works! SM predictions: A.L., U. Nierste, 1102.4274; A.L. 1108.1218

$$\begin{aligned} a_{fs}^{s} &= (1.9 \pm 0.3) \cdot 10^{-5} & \phi_{s} &= 0.22^{\circ} \pm 0.06^{\circ} \\ a_{fs}^{d} &= -(4.1 \pm 0.6) \cdot 10^{-4} & \phi_{d} &= -4.3^{\circ} \pm 1.4^{\circ} \\ A_{sl}^{b} &= 0.406a_{sl}^{s} + 0.594a_{sl}^{d} &= (-2.3 \pm 0.4) \cdot 10^{-4} \\ \left| \frac{\Delta \Gamma_{d}}{\Gamma_{d}} \right| &= (4.2 \pm 0.8) \cdot 10^{-3} \end{aligned}$$

Older experimental bounds:

$$\begin{array}{lll} \phi_{s} &=& -51.6^{\circ} \pm 12^{\circ} & (\text{A.L., Nierste, CKMfitter, 1008.1593}) \\ \left| \frac{\Delta \Gamma_{d}}{\Gamma_{d}} \right| &=& (1 \pm 10) \cdot 10^{-3} & (\text{HFAG 14}) \\ A^{b}_{sl} &=& -(7.87 \pm 1.72 \pm 0.93) \cdot 10^{-3} & (\text{D0,1106.6308}) \end{array}$$

$$A^{b}_{sl}(Exp.)/A^{b}_{sl}(Theory) = \mathbf{34} & 3.9 - \sigma \text{-effect} \end{array}$$

(CP)

Search for New Physics in B-Mixing

Model independent analysis: A.L., Nierste, '06

$$\Gamma_{12,s} = \Gamma_{12,s}^{\mathrm{SM}}, \qquad M_{12,s} = M_{12,s}^{\mathrm{SM}} \cdot \Delta_s; \qquad \Delta_s = |\Delta_s| e^{i\phi_s^{\Delta}}$$

$$\Delta M_s = 2|M_{12,s}^{\rm SM}| \cdot |\Delta_s|$$

$$\Delta \Gamma_s = 2|\Gamma_{12,s}| \cdot \cos\left(\phi_s^{\rm SM} + \phi_s^{\Delta}\right)$$

$$\frac{\Delta \Gamma_s}{\Delta M_s} = \frac{|\Gamma_{12,s}|}{|M_{12,s}^{\rm SM}|} \cdot \frac{\cos\left(\phi_s^{\rm SM} + \phi_s^{\Delta}\right)}{|\Delta_s|}$$

$$a_{fs}^s = \frac{|\Gamma_{12,s}|}{|M_{12,s}^{\rm SM}|} \cdot \frac{\sin\left(\phi_s^{\rm SM} + \phi_s^{\Delta}\right)}{|\Delta_s|}$$

$$\sin(\phi_s^{\rm SM}) \approx 1/240$$

For $|\Delta_s| = 0.9$ and $\phi_s^{\Delta} = -\pi/4$ one gets the following bounds in the complex Δ -plane:

Search for New Physics in B-Mixing

Combine all data before summer 2010 and neglect penguins fit of Δ_A and Δ_c A.L.. Nierste. CKMfitter 1008.1593

- \blacksquare large new physics effects in the B_s -system
- **some new physics effects in the** B_d -system

3

Search for New Physics in B-Mixing

Combine all data till FPCP 2013 and neglect penguins fit of Δ_d and Δ_s ; update of A.L., Nierste, CKMfitter 1203.0238v2

SM seems to be perfect

Still quite some room for NP

Search for NP in B-Mixing: A_{sl}^b ?

BUT: The experimental number is larger than "possible"! A.L. 1205.1444, 1106.3200

- 1. Huge (= several 100 %) duality violations in Γ_{12}^s ? \rightarrow NO! see $\Delta \Gamma_s$
- 2. Huge NP in Γ_{12} ? \rightarrow NO! this also affects observables like τ_{B_s}/τ_{B_d} , n_c , ... But still some sizable NP possible - investigate e.g. n_c Bobeth, Haisch 1109.1826
- 3. Look at experimental side
 - Statistical fluctuation D0 update 1310.0447
 - Cross-check via individual asymmetries LHCb, D0, BaBar
 - \Rightarrow consistent with SM, but not yet in conflict with A^b_{sl}
 - Some systematics neglected Borissov, Hoeneisen 1303.0175 Discrepancy still more than 3σ - also dependence on $\Delta\Gamma_d$

 $\Rightarrow A^b_{sl}$ points towards effects in a^d_{sl}, a^s_{sl} and $\Delta \Gamma_d$ - look also somewhere else

New measurements for the individual semi leptonic CP asymmetries

a_{sl}^s	=	$-0.06\pm 0.50\pm 0.36\%$	LHCb 1308.1048
a_{sl}^s	=	$-1.12\pm0.74\pm0.17\%$	D0 1207.1769
a^d_{sl}	=	$0.68 \pm 0.45 \pm 0.14\%$	D0 1208.5813
a_{sl}^d	=	$0.06\pm0.17^{+0.38}_{-0.32}\%$	BaBar 1305.1575

All numbers are consistent with the SM (no confirmation of large new physics effects) but also consistent with the value of the dimuon asymmetry more data urgently needed

New interpretation of the dimuon asymmetry Borissov, Hoeneisen 1303.0175

$$A_{sl}^b = C_d a_{sl}^d + C_s a_{sl}^s + C_\Gamma \frac{\Delta \Gamma_d}{\Gamma_d}$$

There is still sizable space for NP in $\Delta\Gamma_d$

New physics in $\Delta\Gamma_d$

- $\Delta \Gamma_s$ cannot be enhanced dramatically by new physics Bobeth, Haisch 2011
- $\Delta \Gamma_d$ could in principle be enhanced dramatically Bobeth, Haisch, A.L., Pecjak, Tetlalmatzi-Xolocotzi 2014

Comparison

- $\Delta\Gamma_s$ dominated by $b \to c\bar{c}s$: $B(b \to c\bar{c}s) = (23.7 \pm 1.3)\%$ Krinner, A.L., Rauh 2013
- $\Delta \Gamma_d$ dominated by $b \to c\bar{c}d$: $B(b \to c\bar{c}d) = (1.31 \pm 0.07)\%$ Krinner, A.L., Rauh 2013
- $\Delta \Gamma_s$ is completely dominated by $b \to c\bar{c}s$, $\Delta \Gamma_d$ has also sizable contributions from $b \to c\bar{u}d$ and $b \to u\bar{u}d$, which cancel to some extent

Enhancement

- Violations of CKM duality
- New $bd\tau\tau$ operators
- New physics in current-current operators Q_1 and Q_2

A class of (almost) invisible decays

- $b \rightarrow s \tau \tau$ can enhance $\Delta \Gamma_s$ and a_{sl}^s . It is constrained by
 - $B_s \rightarrow \tau \tau < 2.7\%$ indirect from $\tau(B_s)/\tau(B_d)$
 - $B \to X_s \tau \tau < 2.7\%$ indirect from $\tau(B_s)/\tau(B_d)$
 - $\bullet~B^+ \to K^+ \tau \tau < 3.3 \cdot 10^{-3}$ direct from BaBar 2010
 - \Rightarrow Enhancement of up to 35% in $\Delta\Gamma_s$ possible (\approx hadronic uncertainties)
 - \Rightarrow Improve bounds on $b \rightarrow s au au$!

 Γ_{12}^s is dominated by the CKM favoured decay $b \to c\bar{c}s$, a huge effect would be seen everywhere - Γ_{12}^d looks more promising

- $b \to d\tau \tau$ can enhance $\Delta \Gamma_d$ and a_{sl}^d . It is constrained by
 - $B_d \rightarrow au au < 4.1 \cdot 10^{-3}$ direct from BaBar 2006
 - $B \rightarrow X_d \tau \tau < 2.7\%$ indirect from $\tau(B_s)/\tau(B_d)$
 - $B^+ \to \pi^+ \tau \tau < 2.7\%$ indirect from $\tau(B_s)/\tau(B_d)$
 - \Rightarrow Enhancement of up to 270% in $\Delta\Gamma_d$ possible

This might solve the dimuon asymmetry! \Rightarrow Improve bounds on $b \rightarrow d au au$!

Bobeth, Haisch, AL, Pecjak, Tetlalmatzi-Xolocotzi, 2014

Bobeth, Haisch 2011

Search for enhanced $b \rightarrow d, s \tau \tau$ transitions II

Bobeth, Haisch, AL, Pecjak, Tetlalmatzi-Xolocotz, 2014

New physics in $\Delta \Gamma_d$

New physics contributions to the current-current operators Q_1 and Q_2

The decays $b \rightarrow c\bar{c}d, c\bar{u}d, u\bar{c}d, u\bar{u}d$ can get different new physics contributions to the Wilson coefficients (the SM-one is universal)

Constraints from $B \to \pi\pi, \rho\pi, \rho\rho, D^*\pi, B \to X_d\gamma$, $\sin 2\beta$ still allow enhancements of $\Delta\Gamma_d$ by more than a factor of five

Theory Prediction for $\Delta \Gamma_s$

Calculating the following diagrams

Theory Prediction for $\Delta \Gamma_s$

one gets Wilson coefficients of the following operators

$$Q = (\bar{b}_{i}s_{i})_{V-A} \cdot (\bar{b}_{j}s_{j})_{V-A}$$
$$\tilde{Q}_{s} = (\bar{b}_{i}s_{j})_{S-P} \cdot (\bar{b}_{i}s_{j})_{S-P}$$
$$\langle \bar{B}_{s}|Q|B_{s}\rangle = \frac{8}{3}f_{B_{s}}^{2}M_{B_{s}}^{2}B$$
$$\langle \bar{B}_{s}|\tilde{Q}_{S}|B_{s}\rangle = \frac{1}{3}f_{B_{s}}^{2}M_{B_{s}}^{2}\tilde{B}_{s}' = \frac{1}{3}f_{B_{s}}^{2}M_{B_{s}}^{2}\frac{M_{B_{s}}^{2}}{(\bar{m}_{b}+\bar{m}_{s})^{2}}\tilde{B}_{s}$$

 f_{B_s} , B and \tilde{B}_S have to be determined non-perturbatively!

Theory Prediction for $\Delta\Gamma_s$

Expanding also in the small *s* momenta one get contributions of dimension 7

$$R_{0} = Q_{s} + \tilde{Q}_{S} + \frac{1}{2}Q$$

$$R_{1} = \frac{m_{s}}{m_{b}}(\bar{b}_{i}s_{i})_{S-P}(\bar{b}_{j}s_{j})_{S+P}$$

$$R_{2} = \frac{1}{m_{b}^{2}}(\bar{b}_{i}\overleftarrow{D}_{\rho}\gamma^{\mu}(1-\gamma_{5})D^{\rho}s_{i})(\bar{b}_{j}\gamma_{\mu}(1-\gamma_{5})s_{j})$$

$$R_{3} = \frac{1}{m_{b}^{2}}(\bar{b}_{i}\overleftarrow{D}_{\rho}(1-\gamma_{5})D^{\rho}s_{i})(\bar{b}_{j}(1-\gamma_{5})s_{j})$$

$$\tilde{R}_{i} = \tilde{R}_{i}(R_{j})$$

There exist no non-perturbative determinations of these operators A first estimate with QCD sum rules was made by Mannel, Pecjak, Pivovarov Current estimates rely on vacuum insertion approximation

Theory Prediction for $\Delta\Gamma_s$

$\Delta \Gamma_s^{\mathrm{SM}}$	2011	2006
Central Value	$0.087{\rm ps}^{-1}$	$0.096{ m ps}^{-1}$
$\delta(\mathcal{B}_{\widetilde{R}_2})$	17.2%	15.7%
$\delta(f_{B_s})$	13.2%	33.4%
$\delta(\mu)$	7.8%	13.7%
$\delta(\widetilde{\mathcal{B}}_{S,B_s})$	4.8%	3.1%
$\delta(\mathcal{B}_{R_0})$	3.4%	3.0%
$\delta(V_{cb})$	3.4%	4.9%
$\delta(\mathcal{B}_{B_s})$	2.7%	6.6%
• • •	••••	•••
$\sum \delta$	24.5%	40.5%

- Additional Bag parameters at dimension 6 and 7 for Γ_{12}
- α_s/m_b corrections for Γ_{12}
- α_s^2 corrections for Γ_{12} first step: Asatrian, Hovhannisyan, Yeghiazaryan, arXiv:1210.7939

- Test of our theoretical Understanding
 - SM and CKM work perfectly
 - HQE work also perfectly

	HQE	HFAG 2014	Ref.
$\frac{\Delta\Gamma_s}{\Delta M_s}$	$0.0050 \cdot (1 \pm 0.19)$	$0.0051 \cdot (1 \pm 0.09)$	A.L., Nierstel102.4274
$rac{ au(\Lambda_b)}{ au(B_d)}$	0.935 ± 0.054	0.955 ± 0.009	A.L., 1405.3601

No space for sizable duality violations

- Search for NP
 - No huge effects seen, but still some sizable space left

 $\Delta\Gamma_d, B \rightarrow \tau\tau, \dots$ seem to be promising candidates for further searches

- Life becomes harder: higher precision in experiment and theory needed
 - Non-perturbative parameters lattice corrent limitation of progress in HQE
 - Higher order perturbative corrections
 - Experimentally more difficult observables
 - Alternative non-perturbative methods (LCSR,...)

Coming UK Flavour Events

- July 10th July 11th: 50 Years of CP violation London
- July 14th July 18th: BEAUTY 2014
 Edinburgh
- July 21st July 26th: BEACH 2014
 Birmingham
- XX.XX.2015: Heavy Flavour 2015 Distillery in Scotland?

More info: "Workshops" on IPPP webpage