New Perspectives to Probe New Physics with $B_s^0 o \mu^+\mu^-$

Robert Fleischer

Nikhef & Vrije Universiteit Amsterdam

FLASY 2014

University of Sussex, Brighton, United Kingdom, 17–21 June 2014

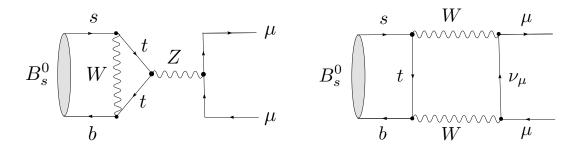
- Setting the Stage
- Recent Development: $\Delta\Gamma_s \neq 0 \rightarrow \text{affects BR}(B_s)$ in a subtle way ...
- Impact on $B_s \to \mu^+\mu^-$ (?): \Rightarrow BR + new window for New Physics:
 - \rightarrow illustration in specific NP scenarios
- Conclusions



Setting the Stage

General Features of $B^0_s o \mu^+\mu^-$

Situation in the Standard Model (SM): → only loop contributions:



- Moreover: helicity suppression ightarrow BR $\propto m_{\mu}^2$

 \Rightarrow strongly suppressed decay

• Hadronic sector: \rightarrow very simple, only the B_s decay constant F_{B_s} enters:

$$\langle 0|\bar{b}\gamma_5\gamma_\mu s|B_s^0(p)\rangle = iF_{B_s}p_\mu$$

 \Rightarrow $B_s^0 \to \mu^+\mu^-$ belongs to the cleanest rare B decays

SM Prediction of the $B_s o \mu^+\mu^-$ Branching Ratio

• Parametric dependence on the relevant input parameters:

[Refers to the "theoretical" branching ratio, see discussion below]

$$BR(B_s \to \mu^+ \mu^-)_{SM} = 3.25 \times 10^{-9}$$

$$\times \left[\frac{M_t}{173.2 \,\text{GeV}} \right]^{3.07} \left[\frac{F_{B_s}}{225 \,\text{MeV}} \right]^2 \left[\frac{\tau_{B_s}}{1.500 \,\text{ps}} \right] \left| \frac{V_{tb}^* V_{ts}}{0.0405} \right|^2$$

[Buras, Girrbach, Guadagnoli & Isidori (2012); address also soft photon corrections]

- Most relevant recent changes:
 - Lattice QCD progress [FLAG]: $F_{B_s} = (227.7 \pm 4.5) \ \mathrm{MeV}$
 - Experiment [HFAG]: $\tau_{B_s} = (1.516 \pm 0.011) \, \mathrm{ps}$
 - Theory: [Bobeth et al., arXiv:1311.0903]

NLO electroweak effects [Bobeth *et al.*, arXiv:1311.1348] and NNLO QCD matching corrections [Herman *et al.*, arXiv:1311.1347]:

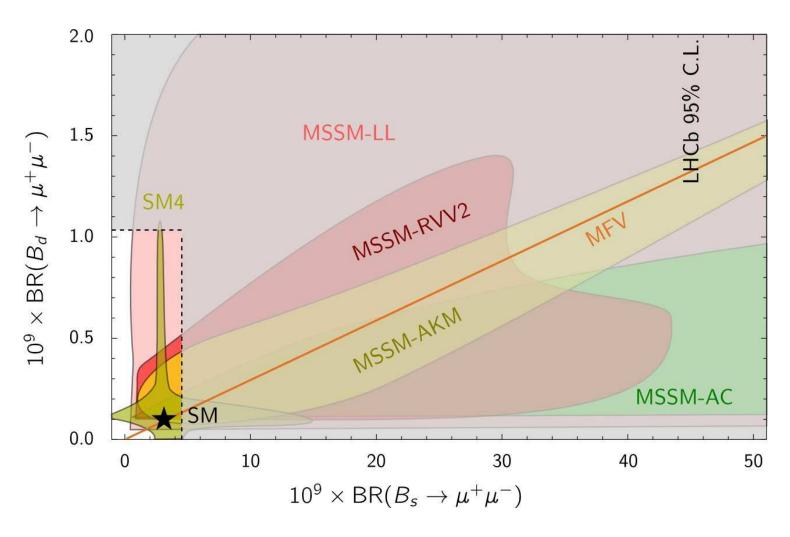
$$\Rightarrow$$
 BR($B_s \to \mu^+ \mu^-$)_{SM} = $(3.38 \pm 0.22) \times 10^{-9}$

1.5% T_{B_s} 2.7% (2013)]

[supersedes prediction by Buras, R.F., Girrbach & Knegjens (2013)]

Impact of NP on the $B_{s(d)} o \mu^+ \mu^-$ Branching Ratios

- May (in principle ...) enhance the branching ratios significantly:
 - → illustration in different supersymmetric flavour models:



[D. Straub (2010); A.J. Buras & J. Girrbach (2012)]

Current Experimental Status of $B_s o \mu^+\mu^-$

- Tevatron: \rightarrow "legacy" ...
 - DØ (2013): BR $(B_s \to \mu^+ \mu^-) < 15 \times 10^{-9}$ (95% C.L.)
 - CDF (2013): BR($B_s \to \mu^+ \mu^-$) < 31 × 10⁻⁹ (95% C.L.)
- ullet Large Hardon Collider: $o future \ ... \ [o talk \ by \ Patrick \ Spradlin]$
 - ATLAS (2013): BR $(B_s \to \mu^+ \mu^-) < 15 \times 10^{-9}$ (95% C.L.)

... and finally evidence for $B_s \to \mu^+\mu^-$ @ CMS and LHCb:

- CMS (2013): $BR(B_s \to \mu^+ \mu^-) = (3.0^{+1.0}_{-0.9}) \times 10^{-9}$
- LHCb (2013): BR($B_s \to \mu^+ \mu^-$) = $(2.9^{+1.1}_{-1.0}) \times 10^{-9}$

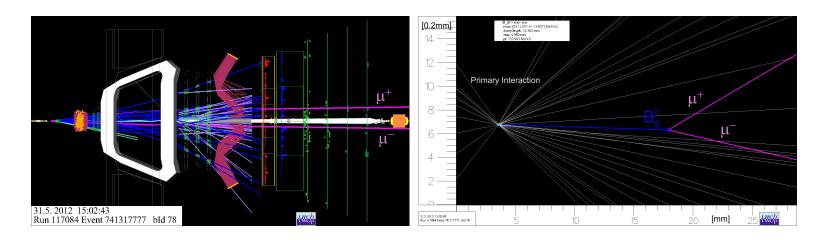
 \Rightarrow average: $BR(B_s \to \mu^+ \mu^-) = (2.9 \pm 0.7) \times 10^{-9}$

[CMS-PAS-BPH-13-007, LHCb-CONF-2013-012]

• Note: the limiting factor for the BR $(B_s \to \mu^+ \mu^-)$ measurement – and all B_s branching ratios – is the ratio of f_s/f_d fragmentation functions.

[Details: R.F., Serra & Tuning (2010); Fermilab Lattice & MILC Collaborations (2012)]

• Candidate $B_s \to \mu^+\mu^-$ signal event @ LHCb:



• It will be interesting to keep an eye on $B_d \to \mu^+ \mu^-$:

- BR
$$(B_d \to \mu^+ \mu^-)|_{\text{CMS}} = (3.5^{+2.1}_{-1.8}) \times 10^{-10} < 11 \times 10^{-10}$$
 (95% C.L.)

- BR
$$(B_d \to \mu^+ \mu^-)|_{LHCb} = (3.7^{+2.4}_{-2.1}) \times 10^{-10} < 7.4 \times 10^{-10}$$
 (95% C.L.)

$$\Rightarrow$$
 average: $\mathsf{BR}(B_d \to \mu^+ \mu^-) = (3.6^{+1.6}_{-1.4}) \times 10^{-10}$

[CMS-PAS-BPH-13-007, LHCb-CONF-2013-012]

- Standard Model prediction [Bobeth et al., arXiv:1311.0903]:

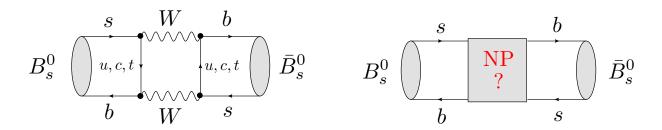
$$BR(B_d \to \mu^+ \mu^-)_{SM} = (1.06 \pm 0.09) \times 10^{-10}$$
 \Rightarrow !? ...

Recent Development:

$$\Delta\Gamma_s \neq 0$$

♦ Seemingly unrelated topic, but ...

$B_s^0 ext{-} ar{B}_s^0$ Mixing & Decay Width Difference $\Delta \Gamma_s$



- Quantum mechanics: $\Rightarrow |B_s(t)\rangle = a(t)|B_s^0\rangle + b(t)|\bar{B}_s^0\rangle$
 - Mass eigenstates: $\Delta M_s \equiv M_{\rm H}^{(s)} M_{\rm L}^{(s)}, \quad \Delta \Gamma_s \equiv \Gamma_{\rm L}^{(s)} \Gamma_{\rm H}^{(s)}$
 - Time-dependent decay rates: $\Gamma(B^0_s(t) \to f)$, $\Gamma(\bar{B}^0_s(t) \to f)$
- Key feature of the B_s -meson system: $\Delta\Gamma_s \neq 0$
 - Expected theoretically since decades [Recent review: A. Lenz (2012)].
 - Now established at the 6σ level [LHCb: arXiv:1304.2600]:

$$y_s \equiv \frac{\Delta \Gamma_s}{2 \Gamma_s} \equiv \frac{\Gamma_L^{(s)} - \Gamma_H^{(s)}}{2 \Gamma_s} = 0.075 \pm 0.012$$

$\rightarrow B_s$ Branching Ratios:

- $\Delta\Gamma_s \neq 0 \Rightarrow special\ care$ has to be taken when dealing with the concept of a branching ratio ...
- How to convert measured "experimental" B_s branching ratios into "theoretical" B_s branching ratios?

De Bruyn, R.F., Knegjens, Koppenburg, Merk and Tuning Phys. Rev. **D 86** (2012) 014027 [arXiv:1204.1735 [hep-ph]]

Experiment vs. Theory

• Untagged B_s decay rate: $\rightarrow sum \ of \ two \ exponentials$:

$$\langle \Gamma(B_s(t) \to f) \rangle \equiv \Gamma(B_s^0(t) \to f) + \Gamma(\bar{B}_s^0(t) \to f) = R_{\mathrm{H}}^f e^{-\Gamma_{\mathrm{H}}^{(s)} t} + R_{\mathrm{L}}^f e^{-\Gamma_{\mathrm{L}}^{(s)} t}$$
$$= \left(R_{\mathrm{H}}^f + R_{\mathrm{L}}^f \right) e^{-\Gamma_s t} \left[\cosh\left(\frac{y_s t}{\tau_{B_s}}\right) + \mathcal{A}_{\Delta\Gamma}^f \sinh\left(\frac{y_s t}{\tau_{B_s}}\right) \right]$$

• "Experimental" branching ratio: [I. Dunietz, R.F. & U. Nierste (2001)]

$$BR (B_s \to f)_{\text{exp}} \equiv \overline{BR} (B_s \to f) \equiv \frac{1}{2} \int_0^\infty \langle \Gamma(B_s(t) \to f) \rangle dt$$

$$= \frac{1}{2} \left[\frac{R_{\text{H}}^f}{\Gamma_{\text{H}}^{(s)}} + \frac{R_{\text{L}}^f}{\Gamma_{\text{L}}^{(s)}} \right] = \frac{\tau_{B_s}}{2} \left(R_{\text{H}}^f + R_{\text{L}}^f \right) \left[\frac{1 + \mathcal{A}_{\Delta\Gamma}^f y_s}{1 - y_s^2} \right]$$
(6)

• "Theoretical" branching ratio: [R.F. (1999); S. Faller, R.F. & T. Mannel (2008); ...]

$$BR(B_s \to f) \equiv \frac{\tau_{B_s}}{2} \langle \Gamma(B_s^0(t) \to f) \rangle \Big|_{t=0} = \frac{\tau_{B_s}}{2} \left(R_H^f + R_L^f \right)$$
 (8)

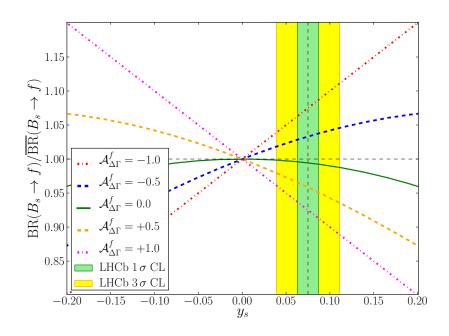
- By considering t=0, the effect of B^0_s - \bar{B}^0_s mixing is "switched off".
- The advantage of this definition is that it allows a straightforward comparison with the BRs of B_d^0 or B_u^+ mesons by means of $SU(3)_F$.

Conversion of B_s Decay Branching Ratios

• Relation between BR $(B_s \to f)$ and the measured $\overline{BR} (B_s \to f)$:

$$BR(B_s \to f) = \left[\frac{1 - y_s^2}{1 + \mathcal{A}_{\Delta\Gamma}^f y_s} \right] \overline{BR}(B_s \to f)$$
 (9)

• While $y_s = 0.075 \pm 0.012$ has been measured, $\mathcal{A}_{\Delta\Gamma}^f$ depends on the considered decay and generally involves non-perturbative parameters:



 \Rightarrow differences as large as $\mathcal{O}(10\%)$ for the measured value of y_s

• Compilation of theoretical estimates for specific B_s decays:

$B_s \to f$	${ m BR}(B_s o f)_{ m exp}$	$\mathcal{A}^f_{\Delta\Gamma}(\mathrm{SM})$	$\mathrm{BR}\left(B_s \to f\right)_{\mathrm{theo}}/\mathrm{BR}\left(B_s \to f\right)_{\mathrm{exp}}$	
			From Eq. (9)	From Eq. (11)
$J/\psi f_0(980)$	$(1.29^{+0.40}_{-0.28}) \times 10^{-4} [18]$	0.9984 ± 0.0021 [14]	0.912 ± 0.014	0.890 ± 0.082 [6]
$J/\psi K_{ m S}$	$(3.5 \pm 0.8) \times 10^{-5} [7]$	0.84 ± 0.17 [15]	0.924 ± 0.018	N/A
$D_s^-\pi^+$	$(3.01 \pm 0.34) \times 10^{-3} [9]$	0 (exact)	0.992 ± 0.003	N/A
K^+K^-	$(3.5 \pm 0.7) \times 10^{-5} [18]$	-0.972 ± 0.012 [13]	1.085 ± 0.014	1.042 ± 0.033 [19]
$D_s^+ D_s^-$	$(1.04^{+0.29}_{-0.26}) \times 10^{-2} [18]$	-0.995 ± 0.013 [16]	1.088 ± 0.014	N/A

TABLE I: Factors for converting BR $(B_s \to f)_{\text{exp}}$ (see (6)) into BR $(B_s \to f)_{\text{theo}}$ (see (8)) by means of Eq. (9) with theoretical estimates for $\mathcal{A}_{\Delta\Gamma}^f$. Whenever effective lifetime information is available, the corrections are also calculated using Eq. (11).

How can we avoid theoretical input? \rightarrow

• Effective B_s decay lifetimes:

$$\tau_f \equiv \frac{\int_0^\infty t \left\langle \Gamma(B_s(t) \to f) \right\rangle dt}{\int_0^\infty \left\langle \Gamma(B_s(t) \to f) \right\rangle dt} = \frac{\tau_{B_s}}{1 - y_s^2} \left[\frac{1 + 2 \mathcal{A}_{\Delta \Gamma}^f y_s + y_s^2}{1 + \mathcal{A}_{\Delta \Gamma}^f y_s} \right]$$

$$\Rightarrow \left| \operatorname{BR} (B_s \to f) = \left[2 - \left(1 - y_s^2 \right) \tau_f / \tau_{B_s} \right] \overline{\operatorname{BR}} (B_s \to f) \right| \tag{11}$$

 \rightarrow advocate the use of this relation for Particle Listings (PDG, HFAG)

Key B_s Decay: $B_s \to \mu^+ \mu^-$

- Experimental BR falls into the SM regime ...
- What is the impact of $\Delta\Gamma_s \neq 0$ on these analyses?
 - → Opens actually a new window for New Physics

De Bruyn, R.F., Knegjens, Koppenburg, Merk, Pellegrino and Tuning Phys. Rev. Lett. **109** (2012) 041801 [arXiv:1204.1737 [hep-ph]]

The General $B_s o \mu^+ \mu^-$ Amplitudes

• Low-energy effective Hamiltonian for $\bar{B}^0_s \to \mu^+\mu^-$: SM \oplus NP

$$\mathcal{H}_{\text{eff}} = -\frac{G_{\text{F}}}{\sqrt{2}\pi} V_{ts}^* V_{tb} \alpha \left[C_{10} O_{10} + C_S O_S + C_P O_P + C_{10}' O_{10}' + C_S' O_S' + C_P' O_P' \right]$$

[$G_{
m F}$: Fermi's constant, $V_{qq'}$: CKM matrix elements, lpha: QED fine structure constant]

• Four-fermion operators, with $P_{L,R} \equiv (1 \mp \gamma_5)/2$ and b-quark mass m_b :

$$\begin{array}{lcl} O_{10} & = & (\bar{s}\gamma_{\mu}P_{L}b)(\bar{\ell}\gamma^{\mu}\gamma_{5}\ell), & O_{10}' & = & (\bar{s}\gamma_{\mu}P_{R}b)(\bar{\ell}\gamma^{\mu}\gamma_{5}\ell) \\ O_{S} & = & m_{b}(\bar{s}P_{R}b)(\bar{\ell}\ell), & O_{S}' & = & m_{b}(\bar{s}P_{L}b)(\bar{\ell}\ell) \\ O_{P} & = & m_{b}(\bar{s}P_{R}b)(\bar{\ell}\gamma_{5}\ell), & O_{P}' & = & m_{b}(\bar{s}P_{L}b)(\bar{\ell}\gamma_{5}\ell) \end{array}$$

[Only operators with non-vanishing $\bar{B}^0_s \to \mu^+\mu^-$ matrix elements are included]

- The Wilson coefficients C_i , C'_i encode the short-distance physics:
 - SM case: only $C_{10} \neq 0$, and is given by the real coefficient C_{10}^{SM} .
 - Outstanding feature of $\bar{B}^0_s \to \mu^+\mu^-$: sensitivity to (pseudo-)scalar lepton densities $\to O_{(P)S}$, $O'_{(P)S}$; WCs are still largely unconstrained.

[Altmannshofer, Paradisi & Straub (2011); ... \rightarrow model-independent NP analyses]

- \rightarrow convenient to go to the rest frame of the decaying \bar{B}^0_s meson:
- Distinguish between the $\mu_L^+\mu_L^-$ and $\mu_R^+\mu_R^-$ helicity configurations:

$$|(\mu_{\rm L}^+\mu_{\rm L}^-)_{\rm CP}\rangle \equiv (\mathcal{CP})|\mu_{\rm L}^+\mu_{\rm L}^-\rangle = e^{i\phi_{\rm CP}(\mu\mu)}|\mu_{\rm R}^+\mu_{\rm R}^-\rangle$$

 $[e^{i\phi_{
m CP}(\mu\mu)}$ is a convention-dependent phase factor ightarrow cancels in observables]

• General expression for the decay amplitude $[\eta_{\rm L}=+1,\ \eta_{
m R}=-1]$:

$$A(\bar{B}_s^0 \to \mu_{\lambda}^+ \mu_{\lambda}^-) = \langle \mu_{\lambda}^- \mu_{\lambda}^+ | \mathcal{H}_{\text{eff}} | \bar{B}_s^0 \rangle = -\frac{G_F}{\sqrt{2}\pi} V_{ts}^* V_{tb} \alpha$$
$$\times F_{B_s} M_{B_s} m_{\mu} C_{10}^{\text{SM}} e^{i\phi_{\text{CP}}(\mu\mu)(1-\eta_{\lambda})/2} \left[\eta_{\lambda} P + S \right]$$

• Combination of Wilson coefficient functions [CP-violating phases $\varphi_{P,S}$]:

$$P \equiv |P|e^{i\varphi_P} \equiv \frac{C_{10} - C'_{10}}{C_{10}^{\rm SM}} + \frac{M_{B_s}^2}{2 \, m_{\mu}} \left(\frac{m_b}{m_b + m_s}\right) \left(\frac{C_P - C'_P}{C_{10}^{\rm SM}}\right) \xrightarrow{\rm SM} 1$$

$$S \equiv |S|e^{i\varphi_S} \equiv \sqrt{1 - 4\frac{m_\mu^2}{M_{B_s}^2}} \frac{M_{B_s}^2}{2m_\mu} \left(\frac{m_b}{m_b + m_s}\right) \left(\frac{C_S - C_S'}{C_{10}^{\rm SM}}\right) \xrightarrow{\rm SM} 0$$

 $[F_{B_s}$: B_s decay constant, M_{B_s} : B_s mass, m_μ : muon mass, m_s : strange-quark mass]

The $B_s o \mu^+\mu^-$ Observables

Key quantity for calculating the CP asymmetries and the untagged rate:

$$\xi_{\lambda} \equiv -e^{-i\phi_s} \left[e^{i\phi_{\rm CP}(B_s)} \frac{A(\bar{B}_s^0 \to \mu_{\lambda}^+ \mu_{\lambda}^-)}{A(B_s^0 \to \mu_{\lambda}^+ \mu_{\lambda}^-)} \right]$$

$$\Rightarrow A(B_s^0 \to \mu_\lambda^+ \mu_\lambda^-) = \langle \mu_\lambda^- \mu_\lambda^+ | \mathcal{H}_{\text{eff}}^\dagger | B_s^0 \rangle$$
 is also needed ...

• Using $(\mathcal{CP})^\dagger(\mathcal{CP})=\hat{1}$ and $(\mathcal{CP})|B^0_s\rangle=e^{i\phi_{\mathrm{CP}}(B_s)}|\bar{B}^0_s\rangle$ yields:

$$A(B_s^0 \to \mu_{\lambda}^+ \mu_{\lambda}^-) = -\frac{G_F}{\sqrt{2}\pi} V_{ts} V_{tb}^* \alpha f_{B_s} M_{B_s} m_{\mu} C_{10}^{SM}$$

$$\times e^{i[\phi_{\rm CP}(B_s) + \phi_{\rm CP}(\mu\mu)(1-\eta_{\lambda})/2]} [-\eta_{\lambda}P^* + S^*]$$

• The convention-dependent phases cancel in ξ_{λ} [$\eta_{\rm L}=+1$, $\eta_{\rm R}=-1$]:

$$\xi_{\lambda} = -\left[\frac{+\eta_{\lambda}P + S}{-\eta_{\lambda}P^* + S^*}\right] \quad \Rightarrow \quad \left[\xi_{L}\xi_{R}^* = \xi_{R}\xi_{L}^* = 1\right]$$

CP Asymmetries:

• Time-dependent rate asymmetry: \rightarrow requires tagging of B^0_s and \bar{B}^0_s :

$$\frac{\Gamma(B_s^0(t) \to \mu_\lambda^+ \mu_\lambda^-) - \Gamma(\bar{B}_s^0(t) \to \mu_\lambda^+ \mu_\lambda^-)}{\Gamma(B_s^0(t) \to \mu_\lambda^+ \mu_\lambda^-) + \Gamma(\bar{B}_s^0(t) \to \mu_\lambda^+ \mu_\lambda^-)} = \frac{C_\lambda \cos(\Delta M_s t) + S_\lambda \sin(\Delta M_s t)}{\cosh(y_s t / \tau_{B_s}) + \mathcal{A}_{\Delta \Gamma}^\lambda \sinh(y_s t / \tau_{B_s})}$$

• Observables: \rightarrow theoretically clean (no dependence on F_{B_s}):

$$C_{\lambda} \equiv \frac{1 - |\xi_{\lambda}|^2}{1 + |\xi_{\lambda}|^2} = -\eta_{\lambda} \left[\frac{2|PS|\cos(\varphi_P - \varphi_S)}{|P|^2 + |S|^2} \right] \xrightarrow{\text{SM}} 0$$

$$S_{\lambda} \equiv \frac{2 \operatorname{Im} \xi_{\lambda}}{1 + |\xi_{\lambda}|^2} = \frac{|P|^2 \sin(2\varphi_P - \phi_s^{\text{NP}}) - |S|^2 \sin(2\varphi_S - \phi_s^{\text{NP}})}{|P|^2 + |S|^2} \xrightarrow{\text{SM}} \quad \xrightarrow{\text{SM}} \quad (0.15)$$

$$\mathcal{A}_{\Delta\Gamma}^{\lambda} \equiv \frac{2\operatorname{Re}\xi_{\lambda}}{1+|\xi_{\lambda}|^{2}} = \frac{|P|^{2}\cos(2\varphi_{P} - \phi_{s}^{\operatorname{NP}}) - |S|^{2}\cos(2\varphi_{S} - \phi_{s}^{\operatorname{NP}})}{|P|^{2} + |S|^{2}} \xrightarrow{\operatorname{SM}} \mathbf{1}$$

 $[\phi_s^{
m NP}$ is the NP component of the B_s^0 – $\bar B_s^0$ mixing phase $\phi_s=-2\lambda^2\eta+\phi_s^{
m NP}]$

• Note: $S_{\mu\mu} \equiv S_{\lambda}$, $A_{\Delta\Gamma}^{\mu\mu} \equiv A_{\Delta\Gamma}^{\lambda}$ are independent of the muon helicity λ .

• Difficult to measure the muon helicity: \Rightarrow consider the following rates:

$$\Gamma(\stackrel{\frown}{B}_s^0(t) \to \mu^+ \mu^-) \equiv \sum_{\lambda = L, R} \Gamma(\stackrel{\frown}{B}_s^0(t) \to \mu_{\lambda}^+ \mu_{\lambda}^-)$$

• Corresponding CP-violating rate asymmetry: $\rightarrow C_{\lambda} \propto \eta_{\lambda} \ terms \ cancel$:

$$\frac{\Gamma(B_s^0(t) \to \mu^+ \mu^-) - \Gamma(\bar{B}_s^0(t) \to \mu^+ \mu^-)}{\Gamma(B_s^0(t) \to \mu^+ \mu^-) + \Gamma(\bar{B}_s^0(t) \to \mu^+ \mu^-)} = \frac{S_{\mu\mu} \sin(\Delta M_s t)}{\cosh(y_s t / \tau_{B_s}) + \mathcal{A}_{\Delta\Gamma}^{\mu\mu} \sinh(y_s t / \tau_{B_s})}$$

- Practical comments:
 - It would be most interesting to measure this CP asymmetry as a non-zero value would signal CP-violating NP phases [\rightarrow see below].
 - Unfortunately, this is challenging in view of the tiny branching ratio and as B_s^0 , \bar{B}_s^0 tagging and time information are required.

Previous studies of CP asymmetries of $B^0_{s,d} \to \ell^+\ell^-$ (assuming $\Delta\Gamma_s = 0$): Huang and Liao (2002); Dedes and Pilaftsis (2002), Chankowski et~al.~ (2005)

Untagged Rate and Branching Ratio:

• The first measurement concerns the "experimental" branching ratio:

$$\overline{BR}(B_s \to \mu^+ \mu^-) \equiv \frac{1}{2} \int_0^\infty \langle \Gamma(B_s(t) \to \mu^+ \mu^-) \rangle dt$$

→ time-integrated untagged rate, involving

$$\langle \Gamma(B_s(t) \to \mu^+ \mu^-) \rangle \equiv \Gamma(B_s^0(t) \to \mu^+ \mu^-) + \Gamma(\bar{B}_s^0(t) \to \mu^+ \mu^-)$$
$$\propto e^{-t/\tau_{B_s}} \left[\cosh(y_s t/\tau_{B_s}) + \mathcal{A}_{\Delta\Gamma}^{\mu\mu} \sinh(y_s t/\tau_{B_s}) \right]$$

• Conversion into the "theoretical" branching ratio (referring to t = 0):

$$BR(B_s \to \mu^+ \mu^-) = \left[\frac{1 - y_s^2}{1 + \mathcal{A}_{\Delta\Gamma}^{\mu\mu} y_s} \right] \overline{BR}(B_s \to \mu^+ \mu^-)$$

• The observable $\mathcal{A}^{\mu\mu}_{\Delta\Gamma}$ depends on NP and is hence unknown:

$$\mathcal{A}^{\mu\mu}_{\Delta\Gamma} \in [-1, +1] \Rightarrow two options:$$

(i) Add an extra error to the experimental branching ratio:

$$\Delta BR(B_s \to \mu^+ \mu^-)|_{y_s} = \pm y_s \overline{BR}(B_s \to \mu^+ \mu^-).$$

(ii) $\mathcal{A}_{\Delta\Gamma}^{\mu\mu}|_{\mathrm{SM}}=+1$ gives a new~SM~reference~value for the comparison with the time-integrated experimental branching ratio $\overline{\mathrm{BR}}(B_s\to\mu^+\mu^-)$:

$$\Rightarrow$$
 rescale BR $(B_s \to \mu^+ \mu^-)_{\rm SM}$ by $1/(1-y_s)$:

$$\overline{BR}(B_s \to \mu^+ \mu^-)_{SM} = (3.65 \pm 0.23) \times 10^{-9}$$

[Bobeth et al. (2013), supersedes Buras, R.F., Girrbach & Knegjens (2013)]

Effective $B_s \to \mu^+\mu^-$ Lifetime:

- \diamond Collecting more and more data \oplus include decay time information \Rightarrow
- Access to the effective $B_s \to \mu^+ \mu^-$ lifetime:

$$\tau_{\mu\mu} \equiv \frac{\int_0^\infty t \left\langle \Gamma(B_s(t) \to \mu^+ \mu^-) \right\rangle dt}{\int_0^\infty \left\langle \Gamma(B_s(t) \to \mu^+ \mu^-) \right\rangle dt}$$

- $\underline{\mathcal{A}^{\mu\mu}_{\Delta\Gamma} \text{ can then be extracted:}} \quad \mathcal{A}^{\mu\mu}_{\Delta\Gamma} = \frac{1}{y_s} \left[\frac{(1-y_s^2)\tau_{\mu\mu} (1+y_s^2)\tau_{B_s}}{2\tau_{B_s} (1-y_s^2)\tau_{\mu\mu}} \right]$
- ullet Finally, extraction of the "theoretical" BR: $o clean\ expression$:

$$BR(B_s \to \mu^+ \mu^-) = \underbrace{\left[2 - \left(1 - y_s^2\right) \frac{\tau_{\mu\mu}}{\tau_{B_s}}\right] \overline{BR}(B_s \to \mu^+ \mu^-)}_{\rightarrow \text{ only measurable quantities}}$$

- Note: it is crucial that $\mathcal{A}^{\mu\mu}_{\Delta\Gamma}$ does not depend on the muon helicity.
- ⇒ Interesting new measurement for the high-luminosity LHC upgrade!

Probing New Physics:

 $ightarrow \left\{ egin{array}{l} {\cal A}^{\mu\mu}_{\Delta\Gamma} \ {
m and} \ {\cal S}_{\mu\mu} \ {
m exhibit} \ {
m NP} \ {
m sensitivity} \ {
m that} \ {
m is} \ {
m complementary} \ {
m to} \ {
m the} \ {
m BR} \end{array}
ight.$

"Disclaimer":

- Assume that the B_s^0 – \bar{B}_s^0 mixing phase ϕ_s will be precisely known by the time the $B_s \to \mu^+\mu^-$ measurements can be made \Rightarrow fixes $\phi_s^{\rm NP}$.
- LHCb average for CP violation in $B_s^0 \to J/\psi \phi, J/\psi f_0(980)$: $\phi_s = \left[0.57 \pm 4.01 ({\rm stat}) \pm 0.57 ({\rm syst})\right]^\circ \quad \text{[Review: W. Hulsbergen (2013)]}$

Detailed analysis: A.J. Buras, R.F., J. Girrbach & R. Knegjens ('13) thanks to R. Knegjens for updating numerics/plots

Branching Ratio Information

Useful to introduce the following ratio:

$$\overline{R} \equiv \frac{\overline{BR}(B_s \to \mu^+ \mu^-)}{\overline{BR}(B_s \to \mu^+ \mu^-)_{SM}} = \left[\frac{1 + \mathcal{A}_{\Delta\Gamma}^{\mu\mu} y_s}{1 + y_s}\right] (|P|^2 + |S|^2)$$

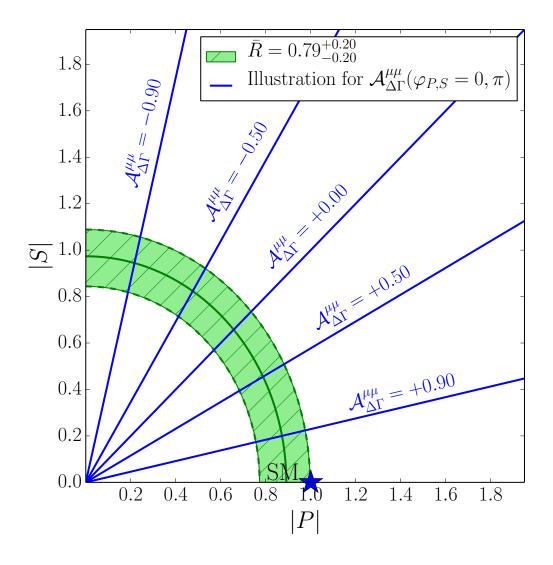
$$= \left[\frac{1 + y_s \cos(2\varphi_P - \phi_s^{NP})}{1 + y_s}\right] |P|^2 + \left[\frac{1 - y_s \cos(2\varphi_S - \phi_s^{NP})}{1 + y_s}\right] |S|^2$$

- Current situation: $\overline{R} = 0.79 \pm 0.20$
- \overline{R} does not allow a separation of the P and S contributions:
 - \Rightarrow large NP could be present, even if \overline{R} is close to $\overline{R}_{\rm SM}=1$.
- Further information from the measurement of $\tau_{\mu\mu}$ yielding $\mathcal{A}^{\mu\mu}_{\Delta\Gamma}$:

$$|S| = |P| \sqrt{\frac{\cos(2\varphi_P - \phi_s^{\text{NP}}) - \mathcal{A}_{\Delta\Gamma}^{\mu\mu}}{\cos(2\varphi_S - \phi_s^{\text{NP}}) + \mathcal{A}_{\Delta\Gamma}^{\mu\mu}}}$$

 \Rightarrow offers a new window for NP in $B_s \to \mu^+\mu^-$

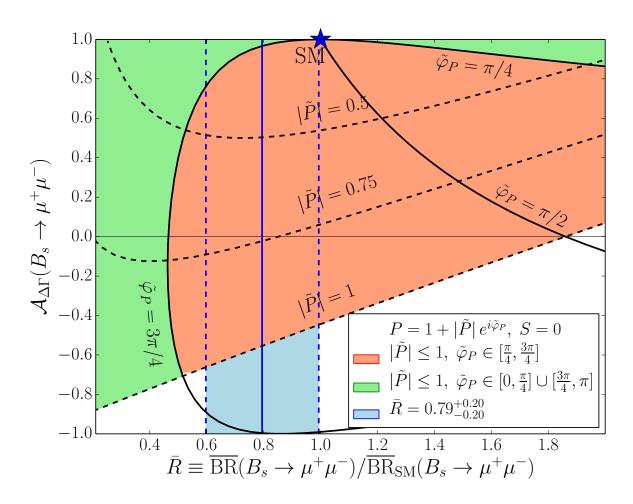
• Current constraints in the |P|-|S| plane and illustration of those following from a future measurement of the $B_s \to \mu^+\mu^-$ lifetime yielding $\mathcal{A}^{\mu\mu}_{\Delta\Gamma}$:



[Assumes no NP phases for the $\mathcal{A}_{\Delta\Gamma}$ curves (e.g. MFV without flavour-blind phases)]

Scenario with $P=1+ ilde{P}$ ($ilde{P}$ Free) and S=0

 \Rightarrow no new scalar operators:

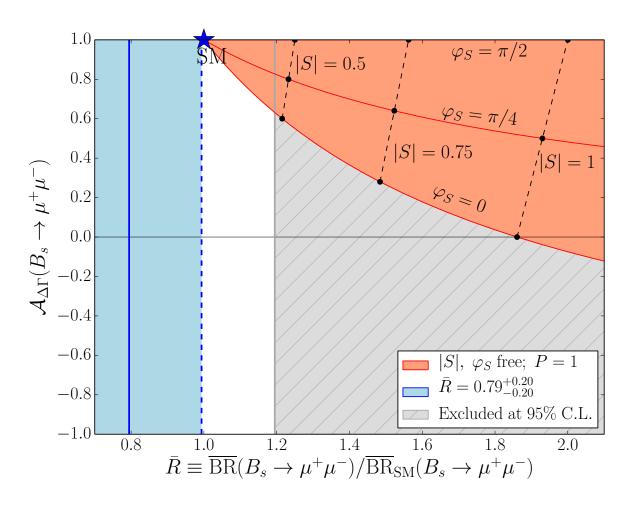


ullet Deviation of $\mathcal{A}_{\Delta\Gamma}^{\mu\mu}$ from SM value +1 requires CP-violating NP phases.

[Examples of specific models: CMFV, LHT, 4G, RSc, Z']

Scenario with P=1 and S Free:

 \Rightarrow only new scalar operators:

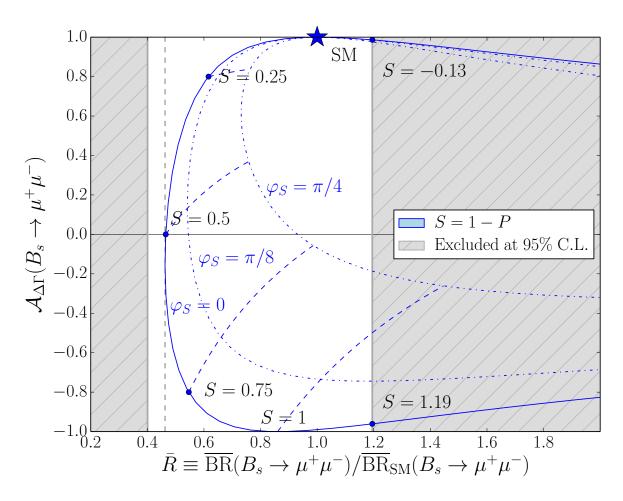


- $\mathcal{A}^{\mu\mu}_{\Delta\Gamma}$ may differ from its SM value +1 without new CP-violating phases.
- $\overline{BR}(B_s \to \mu^+ \mu^-) \ge \overline{BR}(B_s \to \mu^+ \mu^-)_{SM}$
- Experimental data have already quite some impact here ...

[Example of specific model: 2HDM (scalar H^0 dominance)]

Scenario with $P \pm S = 1$

$$\Rightarrow P = 1 + \tilde{P}, S = \pm \tilde{P} \text{ (e.g. } C_S = -C_P)$$
:



- ullet Can access the full range of ${\cal A}^{\mu\mu}_{\Delta\Gamma}$ without new CP-violating phases.
- Lower bound: $\overline{BR}(B_s \to \mu^+ \mu^-) \ge \frac{1}{2} (1 y_s) \overline{BR}(B_s \to \mu^+ \mu^-)_{SM}$

[Examples: Decoupled 2HDM/MSSM $(M_{H^0} \approx M_{A^0} \gg M_{h^0})]$

Detailed Analyses in Specific NP Models

Tree-Level Neutral Gauge Boson Exchange:

$$\mathcal{L}_{\text{FCNC}}(Z') = \left[\Delta_L^{sb}(Z')(\bar{s}\gamma_{\mu}P_Lb) + \Delta_R^{sb}(Z')(\bar{s}\gamma_{\mu}P_Rb) \right] Z'^{\mu}$$

$$\mathcal{L}_{\ell\bar{\ell}}(Z') = \left[\Delta_L^{\ell\ell}(Z')(\bar{\ell}\gamma_{\mu}P_L\ell) + \Delta_R^{\ell\ell}(Z')(\bar{\ell}\gamma_{\mu}P_R\ell) \right] Z'^{\mu}$$

- Left-handed Scheme (LHS) with complex $\Delta_L^{bs} \neq 0$ and $\Delta_R^{bs} = 0$
- Right-handed Scheme (RHS) with complex $\Delta_R^{bs} \neq 0$ and $\Delta_L^{bs} = 0$
- Left-Right symmetric Scheme (LRS) with complex $\Delta_L^{bs} = \Delta_R^{bs} \neq 0$
- Left-Right asymmetric Scheme (ALRS) with complex $\Delta_L^{bs} = -\Delta_R^{bs} \neq 0$
- Tree-Level Neutral (Pseudo)Scalar Exchange:

$$\mathcal{L}_{FCNC}(H) = \left[\Delta_L^{sb}(H)(\bar{s}P_Lb) + \Delta_R^{sb}(H)(\bar{s}P_Rb) \right] H$$

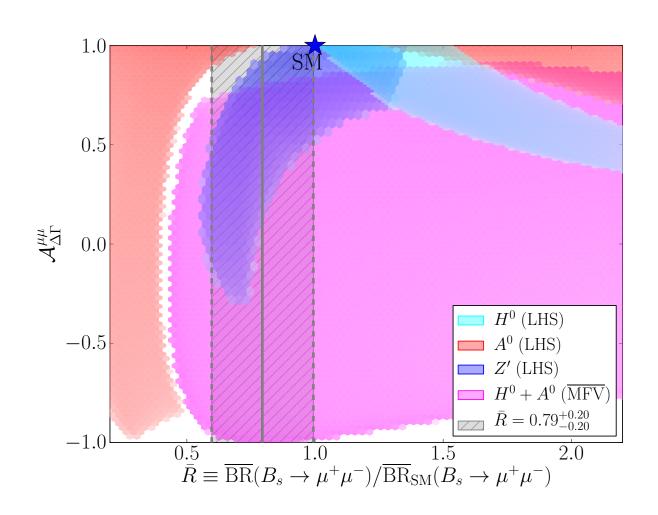
• Tree-Level Neutral Scalar+Pseudoscalar Exchange:

$$\mathcal{L}_{FCNC}(H^0, A^0) = \left[\Delta_L^{sb}(H^0)(\bar{s}P_L b) + \Delta_R^{sb}(H^0)(\bar{s}P_R b) \right] H^0$$
$$+ \left[\Delta_L^{sb}(A^0)(\bar{s}P_L b) + \Delta_R^{sb}(A^0)(\bar{s}P_R b) \right] A^0$$

ightarrow take constraints on B^0_s – $ar{B}^0_s$ mixing into account [Buras et al. (2013)]

Correlations between Observables

ullet \overline{R} – ${\cal A}^{\mu\mu}_{\Delta\Gamma}$ plane: ightarrow only untagged observables



• \overline{R} – $\mathcal{S}_{\mu\mu}$ plane: \to requires tagging for CP asymmetry $\mathcal{S}_{\mu\mu}$



– Interesting relation with $\mathcal{A}^{\mu\mu}_{\Delta\Gamma}$:

$$|\mathcal{S}_{\mu\mu}|^2 + |\mathcal{A}_{\Delta\Gamma}^{\mu\mu}|^2 = 1 - \left[\frac{2|PS|\cos(\varphi_P - \varphi_S)}{|P|^2 + |S|^2}\right]^2$$

Conclusions

Exciting Times for Leptonic Rare B Decays

• $BR(B_d \to \mu^+ \mu^-)$: \to stay tuned ...

CMS+LHCb: BR =
$$(3.6^{+1.6}_{-1.4}) \times 10^{-10}$$
 while BR_{SM} = $(1.06 \pm 0.09) \times 10^{-10}$

• BR $(B_s \to \mu^+ \mu^-)$: \to evidence at CMS and LHCb:

$$\overline{BR}(B_s \to \mu^+ \mu^-) = (2.9 \pm 0.7) \times 10^{-9}$$

- \rightarrow falls into the SM regime although the error is still sizable ...
- Impact of a seemingly unrelated topic:

LHCb has established
$$\Delta\Gamma_s \neq 0$$
 \Rightarrow

- Care has to be taken when dealing with B_s decay branching ratios.
- "Experimental" vs. "theoretical" branching ratios.
- $\Delta\Gamma_s$ offers new observables ...

$$\Rightarrow$$
 enters also the search for NP with $B_s \to \mu^+\mu^-$

Probing NP with $B_s o \mu^+ \mu^-$

• SM reference value for the comparison with the time-integrated (exp) branching ratio including the $\Delta\Gamma_s$ effects:

$$\overline{\rm BR}(B_s \to \mu^+ \mu^-)_{\rm SM} = (3.65 \pm 0.23) \times 10^{-9}$$
 [Bobeth *et al.* (2013)]

- Time-dependent untagged $B_s \to \mu^+\mu^-$ rate:
 - \diamond Sizable $\Delta\Gamma_s$ offers access to $\mathcal{A}^{\mu\mu}_{\Delta\Gamma}$ (effective lifetime $\tau_{\mu\mu}$):
 - New theoretically clean observable $(\mathcal{A}_{\Delta\Gamma}^{\mu\mu}|_{\mathrm{SM}}=+1)$ to search for NP: \diamond in contrast to the BR no dependence on the B_s decay constant F_{B_s} .
 - May reveal NP effects even if the BR is close to the SM prediction: \diamond still largely unconstrained (pseudo-)scalar operators $O_{(P)S}$, $O_{(P)S}'$.
- With additional tagging information: \Rightarrow CP asymmetry $S_{\mu\mu}$
 - Correlations between \overline{R} , $\mathcal{A}^{\mu\mu}_{\Delta\Gamma}$ and $\mathcal{S}_{\mu\mu}$ allow us to distinguish between different NP scenarios (effective operators and CP-violating phases).
- \Rightarrow | Interesting new studies for the LHC upgrade physics programme!