CP in Models with Discrete Flavour Symmetries

based on JHEP 1304 (2013) 122 [arXiv:1211.6953] with Manfred Lindner (HD) and Michael A. Schmidt (Melbourne)

FLASY 2014, Brighton
Martin Holthausen
Max-Planck-Institut für Kernphysik
Heidelberg

A new search engine...

S flasy 2014 - Google-Such \times

GOOgle	flasy 2014
	Web Bilder Shopping Videos News Mehr ₹ Suchoptic

Ungefähr 5.560.000.000 Ergebnisse (0,26 Sekunden)
FLASY 2014 - Fourth workshop on flavour symmetries and https://indico.cern.ch/event/289204/ ~Diese Seite übersetzen
The FLASY Workshops are intended to bring together researchers in the field of f symmetries, neutrino physics, CP violation, accelerator physics and ...
Sie haben diese Seite 2 Mal aufgerufen. Letzter Besuch: 03.06.14

Timetable

FLASY 2014 - Fourth workshop on flavour symmetries and ...

Excursion and dinner

FLASY 2014 - Fourth workshop on flavour symmetries and ..

Conference Fee and ...
Vnur ranictratinn and anonmmoration

Registration Form

FLASY 2014 - Fourth workshop flavour symmetries and ...

Scientific Programme

Scientific Programme. Flavour Symmetries: Discrete ..

Directions
Tha 1 Inivareity of Sussex camf mer, on the ... t für Kernphy
the world's most private search engine

Web Bilder Videos Telefonbuch

flasy 2014

Ungefahr 7.872 Ergebnisse
Meinten Sie: flash 2014

Flash Player | Adobe Flash Player 12 | Überblick \star
04/30/2014: AIR app installs cross a billion: 04/21/2014: Adobe AIR now sup Flash Player and AIR 13 Released: Anwendungsbeispiele: Mehr: www.adobe.com/de/products/flashplayer.html - Proxy - Markieren

Adobe - Adobe Flash Player installieren \star
Copyright © 2014 Adobe Systems Software Ireland Ltd. All rights reserved. für den Datenschutz | Cookies
get.adobe.com/de/flashplayer/ - Proxy - Markieren

Adobe Flash - Wikipedia \star

Juni 2014: Legende: Ältere Version; nicht mehr unterstützt. Ältere Version; r Zukünftige Version. Datenschutz ..
https://de.wikipedia.org/wiki/Adobe_Flash - Proxy - Markieren
2014 Nisan eflasyon rakamları ve borsaya satış getirdi
2014 Nisan eflasyon rakamları ve borsaya satıs getirdi 2014 Nisan eflasyon www.borsaajans.com/ haber/ 2014-nisan-eflasyon-rakamlari-ve-borsaya-sati

Urban Dictionary: Flasy \star

Flasy. Fucking lame ass shit, yo. "Dude, this is flasy. It snowed 2 feet in th crib with the mom and ... 1999-2014 Urban Dictionary ..
www.urbandictionary.com/define.php?term=Flasy - Proxy - Markieren

Security Check Required |Facebook \star
 Facebook © $2014 \cdot$ English (US) .
 https://www.facebook.com/layaly.flasy - Proxy - Markieren

Jesus - Intensify Your Intent and Determination to Awaken! - A Jesus via John Smallman: Intensify Your Intent and Determination to Awak https://www.youtube.com/watch?v=_vWMCfIASyw - Proxy - Markieren

Gives new insights...

\bigcirc © flasy $2014-$ Ixquick Web $\times \times$ and Urban Dictionary: Flasy
 C.

random ABCDEFGHIJKLMNOPQRSTUVWXYZ \# new
trending
thot
bae
\$30,000 millionaire
ratchet
taint
dingleberry
pussy
sapiosexual
sex
wcw
categories
gaming
sports
food
sex
tv
film
celebrities
military
music weather
insults
alphabetical
flassy
flast
Flastard
flasted
Flasterbate
Flasterbate
Flasterbation
Flasterbat
flastered
flaster-like
Flastibating
flastic

1. Flasy

0
Fucking lame ass shit, yo.
"Dude, this is flasy. It snowed 2 feet in two days, and now I'm stuck in da crib with the mom and pops."
by chia-like December 22, 2009

- ${ }^{+}$+

16 2 昰 2

Words related to Flasy

CP Violation and Flavour

○ CP Violation so far only observed in flavour sector

- CP violation in lepton sector within exp. reach

○ flavour symmetries are one possible explanation of the flavour puzzle
O non-abelian discrete symmetries are motivated by close to maximal atmospheric mixing

○ Goal of this talk: Clear up some issues surrounding the compatablility of CP and discrete flavour symmetries

Motivation

consider the group A_{4} :

$$
A_{4}=\left\langle S, T \mid S^{2}=T^{3}=(S T)^{3}=E\right\rangle
$$

	E	T	T^{2}	S
$\underline{\mathbf{1}}_{\mathbf{1}}$	1	1	1	1
$\mathbf{1}_{\mathbf{2}}$	1	ω	ω^{2}	1
$\mathbf{1}_{\mathbf{3}}$	1	ω^{2}	ω	1
$\underline{\mathbf{3}}$	3	0	0	-1

consider a triplet $\chi \sim \underline{\mathbf{3}}$ transforming as

$$
\omega=e^{i \frac{2 \pi}{3}}
$$

$$
\rho_{\mathbf{3}_{\mathbf{1}}}(S)=S_{3} \equiv\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right){ }_{\rho} \underline{\mathbf{3}}_{\mathbf{1}}(T)=T_{3} \equiv\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right)
$$

and a non-trivial singlet $\xi \sim \underline{\mathbf{1}}_{\mathbf{3}}\left(\rho_{\mathbf{1}_{\mathbf{3}}}(S)=1 \quad \rho_{\mathbf{1}_{\mathbf{3}}}(T)=\omega^{2}\right)$
under the CP transformation $\chi \rightarrow \chi^{*} \quad \xi \rightarrow \xi^{*}$

the A4 invariant

$$
I=\xi\left(\chi_{1} \chi_{1}+\omega^{2} \chi_{2} \chi_{2}+\omega \chi_{3} \chi_{3}\right) \sim \underline{1}_{\mathbf{1}}
$$

is mapped to sth. not invariant:

$$
C P[I]=\xi^{*}\left(\chi_{1}^{*} \chi_{1}^{*}+\omega^{2} \chi_{2}^{*} \chi_{2}^{*}+\omega \chi_{3}^{*} \chi_{3}^{*}\right) \sim \underline{1}_{\mathbf{2}}
$$

- CP extends the group A4 and forbids this invariant??
- Is it possible to impose CP without forbidding wanted couplings?

How to define CP consistently

- Consider the vector made up out of all real(R), pseudo-real (P) and complex (C) representations of a given model

$$
\phi=\left(\begin{array}{lllll}
\varphi_{R}, & \varphi_{P}, & \varphi_{P}^{*}, & \varphi_{C}, & \varphi_{C}^{*}
\end{array}\right)^{T}
$$

- under the group G it transforms as $\quad \phi \xrightarrow{G} \rho(g) \phi, \quad g \in G$.
- the (reducible) representation $\rho: G \rightarrow U(N)$ is assumed to be faithful and complex
- if not faithful then real symmetry group of theory is $G / \operatorname{ker} \rho$
- $\quad \rho$ is homomorphism: $\rho\left(\mathrm{a}^{*} \mathrm{~b}\right)=\rho$ (a) ρ (b)
- definition implies the existence of matrix W

$$
\begin{aligned}
& \phi^{*}=W \phi \text { or } \\
& \rho(g)=W \rho(g)^{*} W^{-1}
\end{aligned}
$$

$P: \varphi(t, \vec{x}) \rightarrow \varphi(t,-\vec{x})$
$C: \varphi(t, \vec{x}) \rightarrow \varphi^{*}(t, \vec{x})$

$$
C P: \varphi(t, \vec{x}) \rightarrow \varphi^{*}(t,-\vec{x})
$$

- here only Lorentz-scalars, generalization straightforward

How to define CP consistently

- A generalized CP (gCP) acts upon the vector

$$
\phi \xrightarrow{C P} U \phi^{*}
$$

[Bernabeu, Branco,
Gronau 86]
where U is unitary, to leave the kinetic term invariant.

CONSISTENCY CONDITION:

for gauge groups this has been investigated by
[Grimus, Rebelo 95]

- If G is the complete symmetry group, gCP has to close in G : $C P$
g

gCP and the automorphism group

- The consistency condition $U \rho(g)^{*} U^{-1} \in \operatorname{Im} \rho$ defines an automorphism

$$
U \rho(g)^{*} U^{-1}=\rho(u(g))
$$

- the matrcies $\{\mathrm{U}\}$ furnish a representation of the automorphism group

$$
\begin{aligned}
\rho((a \circ b)(g)) & =\rho(a(b(g)))=U(a) \rho(b(g))^{*} U(a)^{-1} \\
& =U(a) W \rho(b(g)) W^{-1} U(a)^{-1} \\
& =U(a) W U(b) \rho(g)^{*} U(b)^{-1} W^{-1} U^{-1}(a)
\end{aligned}
$$

$$
U(a \circ b)=U(a) W U(b)
$$

remember $\rho(g)=W \rho(g)^{*} W^{-1}$
neutral:

$$
U(i d)=W
$$

inverse:
$U\left(u^{-1}\right)=W U^{-1}(u) W^{-1}$

gCP and the automorphism group

Inverse Direction: : Each automorphism u of G may be represented by such a matrix U .

$$
U \rho(g)^{*} U^{-1}=\rho(u(g))
$$

Proof:

- Construct group extended by automorphism u ($\mathrm{u}^{\mathrm{n}}=\mathrm{id}$)

$$
G^{\prime}=G \rtimes_{\theta} Z_{n}^{\theta:\{0, \ldots, n-1\} \rightarrow \operatorname{Aut}(G)} \begin{gathered}
\theta(1)=u \\
\left(g_{1}, z_{1}\right) \star\left(g_{2}, z_{2}\right)=\left(g_{1} \theta_{z_{1}}\left(g_{2}\right), z_{1}+z_{2}\right)
\end{gathered}
$$

- u acts as conjugation within this group

$$
(E, 1) \star(g, 0) \star(E, 1)^{-1}=(u(g), 0)
$$

- Consider representation $\rho^{\prime}: G^{\prime} \rightarrow U(M)$ induced via $\rho^{\prime}(g, 0)=\rho(g)$
- automorphism u is represented by matrix

$$
\left.\begin{array}{l}
\begin{array}{l}
\rho(u(g))
\end{array}=\rho^{\prime}(u(g), 0) \\
\\
\\
\text { automorphism } \mathrm{u} \text { is } \\
\text { represented by matrix }
\end{array} \quad \begin{array}{l}
\rho^{\prime}\left((E, 1) \star(g, 0) \star(E, 1)^{-1}\right) \\
U(u)=\rho^{\prime}((E, 1)) W
\end{array}=\rho^{\prime}((E, 1)) \rho^{\prime}((g, 0)) \rho^{\prime}((E, 1))^{-1}\right)
$$

Outer automorphism group

- if U is solution of $U \rho(g)^{*} U^{-1}=\rho(u(g))$ then so is $\rho\left(g^{\prime}\right) U$
- corresponds to performing a gCP transformation followed by a group transformation described by $\rho(\mathrm{g})$
- The group transformation corresponds to an inner homomorphism, which does not pose any new restrictions
- therefore interesting gCP transformations correspond to

$$
\operatorname{Out}(G) \equiv \operatorname{Aut}(G) / \operatorname{Inn}(G)
$$

where

$$
\operatorname{Inn}(G)=\left\{u \in \operatorname{Aut}(G) \mid u(g)=A g A^{-1} \text { for some } A \in G\right\}
$$

- aside: continuous groups

$$
\operatorname{Out}(G)=E, Z_{2} \quad \text { except for } \quad \operatorname{Out}(\mathrm{SO}(8))=S_{3}
$$

- outer automorphism groups of small groups can be more involved:

$$
\operatorname{Out}(\Delta(27)) \cong \mathrm{GL}(2,3)
$$

Physical CP Violation

see talk by A. Trautner

○ not all gCP transformations correspond to physical CP violation
[Nishi 13, Chen et al. 14]
○ additional requirement: the square of a gCP transformation is a symmetry transformation

$$
\rho\left(u^{2}(g)\right)=U U^{*} \rho(g)^{*}\left(U(a) U^{*}\right)^{-1}=\rho\left(g^{\prime}\right)
$$

○ CP has to map irr r to c.c. irr r^{*}
○ U block diagonal [Chen et al. 14]
$\bigcirc \mathrm{u}$ has to be class-inverting
○ "CP-like" trafos useful
\bigcirc to construct $\mathrm{U}(\mathrm{u})$
○ can be used to predict phases

t.f. talk by Trautner

CP in A_{4}

outer automorphism group is Z_{2}, generated by

$$
\begin{aligned}
& u:(S, T) \rightarrow\left(S, T^{2}\right) \text {. } \\
& \begin{array}{c|cccc}
& E & T & T^{2} & S \\
\hline \mathbf{1}_{\mathbf{1}} & 1 & 1 & 1 & 1 \\
\imath & \mathbf{1}_{\mathbf{2}} & 1 & \omega & \omega^{2} \\
\mathbf{1}_{\mathbf{3}} & 1 & \omega^{2} & \omega & 1 \\
\underline{\mathbf{3}} & 3 & 0 & 0 & -1
\end{array} \\
& A_{4}=\left\langle S, T \mid S^{2}=T^{3}=(S T)^{3}=E\right\rangle \\
& \text { outer automorphisms } \\
& \text { interchange } \\
& \text { representations and } \\
& \text { conjugacy classes }
\end{aligned}
$$

CP in A_{4}

on 3-dim representation
$\rho_{\mathbf{3}_{\mathbf{1}}}(S)=S_{3} \equiv\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1\end{array}\right) \quad \rho_{\mathbf{3}}(T)=T_{3} \equiv\left(\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right)$
the consistency condition $U_{3} \rho(T)^{*} U_{3}^{-1}=\rho\left(T^{2}\right)$
can be easily seen to require a 2-3 interchange: $U=U_{3} \equiv\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right)$

- this can be easily read off, for more complicated setups it might not be so easy
- sketch of formalism described above:
- construct group extended by outer automorphism, here S_{4}
- extra group element gives matrix U

CP in A_{4}

\bigcirc the , CP transformation' that is trivial with regard to A_{4} runs into trouble if one considers a non-trivial singlet $\xi \sim \underline{1}_{\mathbf{3}}$ in addition to the triplet $\chi \sim \underline{\mathbf{3}}$
\cap if one would use $\chi \rightarrow \chi^{*}$ and $\xi \rightarrow \xi^{*}$ one finds that the invariant is mapped to sth. non-invariant

$$
\begin{aligned}
& \underline{\mathbf{1}}_{\mathbf{1}} \sim(\chi \chi)_{\mathbf{1}_{\mathbf{2}}} \xi \rightarrow\left(\chi^{*} \chi^{*}\right)_{\mathbf{1}_{\mathbf{2}}} \xi^{*} \sim \underline{\mathbf{1}}_{\mathbf{2}} \\
& \text { with } \underset{(\phi \phi)_{\mathbf{1}}=\frac{1}{\sqrt{3}}\left(\phi_{1} \phi_{1}+\omega^{2} \phi_{2} \phi_{2}+\omega \phi_{3} \phi_{3}\right)}{ }
\end{aligned}
$$

\bigcirc this can be readily understood if one looks at how this ,CP transformation' $\phi \rightarrow \mathrm{U} \phi^{*}$ acts upon $\phi=\left(\xi, \xi^{*}, \chi\right)^{T}$

- naive CP corresponds to $\mathrm{U}=1_{5}$

○ A_{4} does not close under this CP :

$$
U \rho(T)^{*} U^{-1}=\rho(T)^{*} \notin \rho(G)
$$

\bigcirc the real flavour group is larger, this has to be considered when constructing Lagrangian

$$
\begin{aligned}
& \rho(T)=\operatorname{diag}\left(\omega, \omega^{2}, T_{3}\right. \\
& \rho(S)=\operatorname{diag}\left(1,1, S_{3}\right)
\end{aligned}
$$

often overlooked in literature [Toorop et. al. 2011, Ferreira, Lavoura 2011,....]

Geometric CP violation in Δ (27)

$\Delta(27)=\left\langle A, B \mid A^{3}=B^{3}=(A B)^{3}=E\right\rangle$
outer automorphism group generated by $u_{2}:(A, B) \rightarrow\left(A B A B, B^{2}\right) \quad u_{1}:(A, B) \rightarrow\left(A B A^{2}, B^{2} A B\right)$ red

	E	$B A B A$	$A B A$	A	$B A B$	$A B$	A^{2}	B^{2}	B	$B A^{2} B A B$	$A B^{2} A B A$
$\underline{1}_{1}$	1	1	1	1	1	1	1	1	1	1	1
1_{2}	1	ω	ω^{2}	1	ω	ω^{2}	1	ω	ω^{2}	1	1
1_{3}	1	ω^{2}	ω	1	ω^{2}	ω	1	ω^{2}	ω	1	1
$1_{4}{ }^{1}$	1	ω	ω	ω^{2}	ω^{2}	ω^{2}	ω	1	1	1	1
${ }^{1}$	1	ω^{2}	1	ω^{2}	1	ω	ω	ω	ω^{2}	1	1
${ }^{1} \underline{1}_{6}$	1	1	ω^{2}	ω^{2}	ω	1	ω	ω^{2}	ω	1	1
($\underline{17}_{7}{ }^{1}$	1	ω^{2}	ω^{2}	ω	ω	ω	ω^{2}	1	1	1	1
1_{8}	1	1	ω	ω	ω^{2}	1	ω^{2}	ω	ω^{2}	1	1
${ }^{1} 9$	1	ω	1	ω	1	ω^{2}	ω^{2}	ω^{2}	ω	1	1
$\underline{3}$	3			.						3ω	$3 \omega^{2}$
$\underline{3}^{*}$	3			.						$3 \omega^{2}$	3ω

What are calculable phases?

- consider again a triplet of Higgs doublets $H=\left(H_{1}, H_{2}, H_{3}\right) \sim \underline{\mathbf{3}}$ which transforms as

$$
\rho(A)=\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right) \quad \rho(B)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \omega & 0 \\
0 & 0 & \omega^{2}
\end{array}\right)
$$

- the potential only contains one phase dependent term

$$
I \equiv\left(H_{1}^{\dagger} H_{2}\right)\left(H_{1}^{\dagger} H_{3}\right)+\left(H_{2}^{\dagger} H_{3}\right)\left(H_{2}^{\dagger} H_{1}\right)+\left(H_{3}^{\dagger} H_{1}\right)\left(H_{3}^{\dagger} H_{2}\right)
$$

- if coupling λ_{4} multiplying I is positive, the global minimum is at (or a configuration that can be obtained by acting on this vacuum with a group element) $\langle H\rangle=\frac{v}{\sqrt{3}}\left(\omega^{2}, 1,1\right)$

- These phases do not depend on potential parameters!
- can this be used to predict (leptonic) CP phases?
- can they be understood in terms of generalized CP?

Potential Dependence of Phases

\bigcirc in general you expect two different kinds of vacua of a CP conserving potential

- either VEV is real, conserves CP and phase does not depend on potential parameters
\bigcirc or VEV is complex, breaks CP and phase depends on potential parameters
Example:
all parameters real

$$
\begin{aligned}
V & =m_{1}^{2} \varphi^{*} \varphi+m_{2}^{2}\left(\varphi^{2}+\varphi^{* 2}\right)+\lambda_{1}\left(\varphi^{*} \varphi\right)^{2}+\lambda_{2}\left(\varphi^{4}+\varphi^{* 4}\right) \\
& =m_{1}^{2} A^{2}+m_{2}^{2} A^{2} \cos 2 \alpha+\lambda_{1} A^{4}+\lambda_{2} A^{4} \cos 4 \alpha
\end{aligned}
$$

invariant under $\varphi \rightarrow \varphi^{*}$

$$
\varphi=A e^{\mathrm{i} \alpha}
$$

$$
\begin{gathered}
\cos ^{2} \alpha=\frac{2 \lambda_{2} m_{1}^{2}+\lambda_{1} m_{2}^{2}-2 \lambda_{2} m_{2}^{2}}{4 \lambda_{2} m_{1}^{2}} \\
A=\frac{m_{1}}{\sqrt{2} \sqrt{2 \lambda_{2}-\lambda 1}}
\end{gathered}
$$

What are calculable phases?

- The vacuum of the form $\langle H\rangle=\frac{v}{\sqrt{3}}\left(1, \omega, \omega^{2}\right)$ leaves invariant the gCP transformation

$$
H \rightarrow \rho\left(B^{2}\right) H^{*}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \omega^{2} & 0 \\
0 & 0 & \omega
\end{array}\right) H^{*}
$$

- which is a symmetry of $\mathrm{I}+\mathrm{I}^{*}$
- no surprise there, CP symmetric potential has CP symmetric ground state
- for the other solution $\langle H\rangle=\frac{v}{\sqrt{3}}\left(\omega^{2}, 1,1\right)$ there is no group element that leaves H invariant $\langle H\rangle=\rho(g)\langle H\rangle^{*}$
- this was interpreted as geometrical CP violation

GEOMETRICAL T-VIOLATION
G.C. BRANCO

Instituto Nacional de Investigação Científica, Av. do Prof. Gama Pinto 2, Lisbon, Portugal
and
J.-M. GERARD ${ }^{1}$ and W. GRIMUS

CERN, Theory Division, Geneva, Switzerland
[Branco, Gerard and Grimus 1984; de Medeiros Varzielas, Emmanuel-Costa 2011; Battacharyya, de Medeir Varzielas, Leser 2012

Calculable Phases as a Result of an accidental generalized CP transformation

○ every automorphism corresponds to a generalized CP transformation

○ this allows one to search for gCP transformation that leaves $\langle H\rangle=\frac{v}{\sqrt{3}}\left(\omega^{2}, 1,1\right)$ invariant and gives a real λ_{4}
○ indeed there is such a gCP transformation:

$$
\begin{gathered}
H \rightarrow \tilde{U} H \\
\tilde{U}=\left(\begin{array}{ccc}
0 & 0 & \omega^{2} \\
0 & 1 & 0 \\
\omega & 0 & 0
\end{array}\right)
\end{gathered}
$$

$$
\begin{gathered}
C P_{u}[\langle H\rangle]=\langle H\rangle \\
C P_{u}[I]=I \\
\underbrace{:(A, B) \rightarrow\left(A B^{2} A B, A B^{2} A^{2}\right)}
\end{gathered}
$$

○ potential invariant under a larger symmetry
\bigcirc this CP-like trafo does not correspond to physical CP
○ still fixes phases

Calculable Phases as a Result of an accidental generalized CP transformation

○ a symmetric potential can have a symmetric ground state
○ phases are dictated by accidental gCP symmetry
○ explains the independence from potential parameters
○ this setup is interesting for phenomenlogy:
○ if accidental symmetry only of potential, not of Yukawas, it can be used to predict phases etc.

○ need groups with large outer automorphism group
O notice that shaping symmetries have large outer automorphism groups

$$
\mid \text { Out } Z_{4}^{4} \mid=1321205760
$$

○ mechanism similar to vacuum alignment mechanisms

T‘ and CP

$\cap \quad \mathrm{T}^{\prime}$ double cover of $\mathrm{A}_{4}: T^{\prime}=\left\langle S, T \mid S^{4}=T^{3}=(S T)^{3}=E\right\rangle$
○ complex Clebsch-Gordon coeffients as a possible new origin of CP violation? [Chen, Mahanthappa 09]

- vague notions of $\mathrm{CP}=$ reality of couplings were used

○ VEVs assumed real $\left\langle\phi^{\prime}\right\rangle=(1,1,1) V^{\prime}, \quad\langle\phi\rangle=(0,0,1) V \quad V, V^{\prime} \in \mathbb{R}$

$$
\begin{aligned}
-\mathcal{L}_{T T} & =y_{c} T T \phi^{2}+y_{u} T T \phi^{\prime 3}+\text { h.c. } \\
& =y_{c} \frac{3}{2} \frac{2-i}{2}\left\{(1-i) T_{1} T_{2}\left(\phi_{1}^{2}-\phi_{2} \phi_{3}\right)+i T_{1}^{2}\left(\phi_{2}^{2}-\phi_{1} \phi_{3}\right)+T_{2}^{2}\left(\phi_{3}^{2}-\phi_{1} \phi_{2}\right)\right\}+ \\
& +y_{u} \frac{1}{3}\left\{\left(2 \phi_{1}^{\prime} \phi_{3}^{\prime}+\phi_{2}^{\prime 2}\right)\left(i T_{1}^{2} \phi_{1}^{\prime}+(1-i) T_{1} T_{2} \phi_{2}^{\prime}+T_{2}^{2} \phi_{3}^{\prime}\right)\right\}+\text { h.c. },
\end{aligned}
$$

$$
M_{u}=y_{u}\left(\begin{array}{cc}
\mathrm{i} & \frac{1-\mathrm{i}}{2} \\
\frac{1-\mathrm{i}}{2} & 1
\end{array}\right) V^{\prime 3}+y_{c}\left(\begin{array}{cc}
0 & 0 \\
0 & 1-\frac{\mathrm{i}}{2}
\end{array}\right) V^{2} .
$$

T' and CP

○ Only predictive scenario:
○ impose CP on Lagrangian, break it spontaneously
○ explicit breaking is basis dependent and thus not predictive

○ Using the generalized CP formalism we can see that there is exactly one CP transformation which forces VEVs of triplets to be real

$$
\underline{\mathbf{1}}_{\mathbf{i}} \rightarrow \underline{1}_{\mathbf{i}}^{*} \quad \underline{\mathbf{2}}_{\mathbf{i}} \rightarrow \operatorname{diag}\left(\omega \tilde{\omega}^{-5}, \omega^{-1} \tilde{\omega}^{5}\right) \underline{\mathbf{2}}_{\mathbf{i}}^{*} \quad \underline{\mathbf{3}} \rightarrow \underline{\mathbf{3}}^{*} \quad \begin{gathered}
u^{\prime}=\operatorname{conj}\left(T^{2}\right) \circ u \\
u:(S, T) \rightarrow\left(S^{3}, T^{2}\right)
\end{gathered}
$$

$$
\begin{array}{lll}
\underline{\mathbf{2}}_{\mathbf{1}}: S=A_{1}, & T=\omega A_{2} & A_{1}=\frac{-1}{\sqrt{3}}\left(\begin{array}{cc}
i & \tilde{\omega} \sqrt{2} \\
-\tilde{\omega}_{\mathbf{2}}^{-1} \sqrt{2} & -i
\end{array}\right) \\
\underline{\mathbf{2}}_{\mathbf{3}}: S=A_{1} & T=\omega^{2} A_{2} ; & \tilde{\omega}=e^{2 \pi \mathrm{i} / 24}, \\
T=A_{2} & A_{2}=\left(\begin{array}{cc}
\omega & 0 \\
0 & 1
\end{array}\right) & \left.\rho(S)=\frac{1}{3}\left(\begin{array}{ccc}
-1 & 2 \omega & 2 \omega^{2} \\
2 \omega^{2} & -1 & 2 \omega \\
2 \omega & 2 \omega^{2} & -1
\end{array}\right) \quad \rho(T)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \omega & 0 \\
0 & 0 & \omega^{2}
\end{array}\right) \quad \begin{array}{l}
\text { (}
\end{array}\right)
\end{array}
$$

$\mathrm{T}^{‘}$ and CP

what does the CP trafo

$$
\underline{1}_{\mathbf{i}} \rightarrow \underline{\mathbf{1}}_{\mathbf{i}}^{*} \quad \underline{\mathbf{2}}_{\mathbf{i}} \rightarrow \operatorname{diag}\left(\omega \tilde{\omega}^{-5}, \omega^{-1} \tilde{\omega}^{5}\right) \underline{\mathbf{2}}_{\mathbf{i}}^{*} \quad \underline{\mathbf{3}} \rightarrow \underline{\mathbf{3}}^{*}
$$

imply $-\mathcal{L}_{T T}=y_{c} T T \phi^{2}+y_{u} T T \phi^{\prime 3}+$ h.c.
for

$$
\begin{aligned}
& =y_{c} \frac{3}{2} \frac{2-i}{2}\left\{(1-i) T_{1} T_{2}\left(\phi_{1}^{2}-\phi_{2} \phi_{3}\right)+i T_{1}^{2}\left(\phi_{2}^{2}-\phi_{1} \phi_{3}\right)+T_{2}^{2}\left(\phi_{3}^{2}-\phi_{1} \phi_{2}\right)\right\}+ \\
& +y_{u} \frac{1}{3}\left\{\left(2 \phi_{1}^{\prime} \phi_{3}^{\prime}+{\phi_{2}^{\prime}}^{2}\right)\left(i T_{1}^{2} \phi_{1}^{\prime}+(1-i) T_{1} T_{2} \phi_{2}^{\prime}+T_{2}^{2} \phi_{3}^{\prime}\right)\right\}+\text { h.c. }
\end{aligned}
$$

$$
C P\left[T T \phi^{2}\right]=-\frac{4+3 \mathrm{i}}{5}\left(T T \phi^{2}\right)^{*} \quad C P\left[T T \phi^{\prime 3}\right]=-\mathrm{i}\left(T T \phi^{\prime 3}\right)^{*} .
$$

- even if you phase rotate T you can only make one of the couplings real, therefore explicit breaking of CP

$$
\begin{aligned}
\arg \left(y_{c}\right) & =-\frac{1}{2} \arg (-4-3 \mathrm{i}) \\
& =-\frac{1}{2} \arctan \frac{3}{4} \\
\arg \left(y_{u}\right) & =\pi / 4
\end{aligned}
$$

- agrees with recent finding of [Chen et al. 14]

Conclusions

○ Consistency Conditions should be kept in mind when constructing models that contain CP and Flavour Symmetries

○ generalized CP transformations may be interpreted as furnishing a representation of the automorphism group
○ physical CP depends on field content
○ geometrical CP violation seems to be a consequence of (accidental) generalized CP symmetries of the potential

○ maybe automorphisms may be used in model building more generally

