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A new search engine... 



Gives new insights... 



CP Violation and Flavour 

!   CP Violation so far only observed in flavour sector 
!   CP violation in lepton sector within exp. reach 

! flavour symmetries are one possible explanation of the 
flavour puzzle 
!   non-abelian discrete symmetries are motivated by close 

to maximal atmospheric mixing 

!   Goal of this talk: Clear up some issues 
surrounding the compatablility of 
CP and discrete flavour symmetries  

Chapter 2. Discrete Symmetry Groups and Lepton Mixing
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which is explained in section 9.

They are classified by the conjugacy classes as

C
1

: {a
1

}, h = 1,
C

3

: {a
2

, a
3

, a
4

}, h = 2,
C

4

: {b
1

, b
2

, b
3

, b
4

, }, h = 3,
C

4

0 : {c
1

, c
2

, c
3

, c
4

, }, h = 3,

(67)

where we have also shown the orders of each element in the conjugacy class by h. There
are four conjugacy classes and there must be four irreducible representations, i.e. m

1

+
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2
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+ · · · = 4.
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for mi, which satisfy m
1

+ m
2

+ m
3

+ · · · = 4. The solution is obtained as (m
1

, m
2

, m
3

) =
(3, 0, 1). That is, the A

4

group has three singlets, 1, 10, and 100, and a single triplet 3,
where the triplet corresponds to (66).

Another algebraic definition of A
4

is often used in the literature. We denote a
1

= e,
a

2

= s and b
1

= t. They satisfy the following algebraic relations,

s2 = t3 = (st)3 = e. (69)

The closed algebra of these elements, s and t, is defined as the A
4

. It is straightforward
to write all of ai, bi and ci elements by s and t. Then, the conjugacy classes are rewritten
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(b) Geometrical interpretation of A
4

.

Figure 2.3: The symmetry group A
4

.The twelve group elements are connected by the generators S (red) and
T (blue). The picture 2.3b is taken from [88].

can define the semidirect product group N o' H via the multiplication rule
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Note that there can be more than one semidirect product between two groups, but in the
following we will often drop the index ', as long as it is clear which group we are referring
to. (Another equivalent definition we will use is that a group G is a semidirect product of a
subgroup H and normal8 subgroup N if there exists a homomorphism G ! H which is the
identity on H and whose kernel9 is N.)

Let us present in some detail the case of the smallest group in Fig. 2.2, namely the
tetrahedral group A

4

. We will give the details for the other groups in the appendix. The group
A

4

may be written as A
4

⇠= (Z
2

⇥ Z
2

) o Z
3

where the Klein group N ⇠= Z
2

⇥ Z
2

is defined
by

⌦
S, X|X2 = S2 = E, XS = SX

↵
, the group H ⇠= Z

3

is defined by
⌦
T |T 3 = E

↵
and the

semidirect product is given by

'T (S) = TST�1 = XS, 'T (X) = TXT�1 = S. (2.36)

Note that the last relation allows one to replace one generator of N , e.g. X = T 2ST , and we
arrive at the standard presentation of A

4

:
⌦
S, T |S2 = T 3 = E, (ST )3 = E

↵
, (2.37)

that is represented graphically in Fig. 2.3a.
The other small groups in the tree shown in Fig. 2.2 can be represented in a similar way 10:

�(3n2) ⇠= (Zn ⇥ Zn) o Z
3

, �(6n2) ⇠= (Zn ⇥ Zn) o S
3

, Tn
⇠= Zn o Z

3

(2.38)

where S
4

⇠= �(24) and the defining homomorphisms are given in App. A.1. S
3

denotes the
group of permutations of three elements. It is in itself a semi-direct product S

3

⇠= Z
3

o Z
2

=⌦
r, a; r3 = a2 = E, ara�1 = r2

↵
and is not to be confused with the matrix defined in Eq. (2.27).

8A normal subgroup N of a group G, denoted by N C G, is a subgroup, which is invariant under conjugation
by an arbitrary group element of G, i.e. gNg�1 = N .

9The kernel of a representation ⇢ is defined by ker ⇢ = {g 2 G|⇢(g) = }.
10With respect to particle physics, �(3n2) has been studied in [89–92],T

7

has been studied in [93–95]and
�(6n2) has been studied in [88, 96].

22



In terms of the subgroup Z3 = hT i, it decomposes in the direct sum of the representations 12
and 13 of Z3 with the group generator ⇢(T ) = ⇢2((T, id)). The automorphism u is represented

by the matrix U 0 = ⇢2((E, u)) and ⇢(g) ! ⇢(u(g)) = U 0⇢(g)U 0�1 and therefore the non-trivial

CP transformation belonging to the automorphism u is given by ⇢(g) ! ⇢(u(g)) = U⇢(g)⇤U�1

with U = U 0W = 2, as we have found above. Clearly the trivial automorphism corresponds

to (E, id) and is represented by U 0 = 2 or U = W .

4.2 A4
⇠= (Z2 ⇥ Z2) o Z3

⇠= SG(12, 3)

There is a complete classification of automorphism groups for the alternating groups An,

which is shown in Tab. 2a. Most of them have a very similar structure. We will discuss

the specific case of A4 =
⌦

S, T |S2 = T 3 = (ST )3 = E
↵

11 in detail. It is very important for

Z(Sn) Aut(Sn) Inn(Sn) Out(Sn)

n � 4, n 6= 6 Z1 Sn An Z2

n = 1, 2 Zn Z1 Z1 Z1

n = 3 Z3 Z2 Z1 Z2

n = 6 Z1 S6 o Z2 A6 Z2 ⇥ Z2

(a) Structure of the automorphism group of An

E T T 2 S

11 1 1 1 1

12 1 ! !2 1

13 1 !2 ! 1

3 3 0 0 -1

(b) Character Table of A4.

Table 2: Relevant group structure of the alternating groups An.

model building and serves as our first non-trivial example. As it can be seen in Tab. 2a,

only the identity element commutes with all other elements and the natural homomorphism

n : A4 ! Aut(A4) defined by n(g) = conj(g) is therefore injective. There is one non-trivial

outer automorphism u : (S, T ) ! (S, T 2). Here and in the following, we only give the action

of automorphisms on the generators of the group, which uniquely defines an automorphism.

The character table of A4 is given in Tab. 2b and it is easy to verify that the automorphism

u represents a symmetry of the character table, again interchanging the representations 12
and 13. Let us first discuss the case where we have only one real scalar field in the real

representation � ⇠ 31 using the Ma-Rajasekaran[23] basis:

⇢31
(S) = S3 ⌘

0

B

@

1 0 0

0 �1 0

0 0 �1

1

C

A

, ⇢31
(T ) = T3 ⌘

0

B

@

0 1 0

0 0 1

1 0 0

1

C

A

. (4.7)

In this basis both group generators are real (⇢(g)⇤ = ⇢(g) 2 Im⇢) and one might be tempted

to take U = 3 as this fulfils Eq. (2.6). However, the map derived from U = 3 via Eq. (2.8)

is not equal to u : (S, T ) ! (S, T 2), but the trivial automorphism idA4 , which is obviously

not outer and therefore does not lead to additional constraints on the couplings12. One also

11A4 has been introduced as flavour symmetry in the lepton sector in [23].
12Obviously it still acts non-trivially on the space-time symmetry group as well as possibly the gauge group.
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encounters this problem as soon as one considers contractions such as

(��)12
=

1p
3

�

�1�1 + !2�2�2 + !�3�3
�

(4.8)

which transform under this ”CP” � ! U�⇤ = � as

(��)12
! (��)12

⇠ 12 (4.9)

which is in conflict with the expectation that CP should involve complex conjugation such

that

(��)12
! [(��)12

]⇤ ⇠ 13. (4.10)

Just imagine that the theory contains a real scalar triplet � ⇠ 3 and a singlet ⇠ ⇠ 13. If

one defines CP as � ! � and ⇠ ! ⇠⇤ then the invariant (��)12
⇠ under CP is mapped to

(��)12
⇠⇤, which is not invariant under the group and it is forbidden by the combination of

A4 and this definition of CP. Looking at this definition of CP, i.e. � ! �⇤ and ⇠ ! ⇠⇤, we

can easily check that it does not fulfil the consistency condition in Eq. (2.6) and therefore

the true symmetry group of the Lagrangian is not A4, but the group generated by A4 and

this CP transformation. However, it has been (implicitly) used in a number of works [24–

26]13 without properly taking into account the enlarged symmetry group with its additional

restrictions on the Lagrangian.

If we instead use the non-trivial solution of Eq. (2.6), which has been discussed in [12]

U = U3 ⌘

0

B

@

1 0 0

0 0 1

0 1 0

1

C

A

(4.11)

that corresponds to the outer automorphism u : (S, T ) ! (S, T 2) we immediately see that

(��)12
! [(��)12

]⇤ ⇠ 13. (4.12)

Note that this is the only non-trivial definition of CP (up to inner automorphisms) in any

theory that involves the complex representations, since the outer automorphism group is Z2.

Using Eq. (2.6), we can immediately see that the solution U = 3 for ⇢ ⇠ 3 leads to

the trivial automorphism idA4 (up to inner automorphism), when it is extended to the other

representations. Let us consider the vector � = (⇠, ⇠⇤,�)T with ⇠ ⇠ 13 and � ⇠ 31 which

transforms as

⇢(S) = diag(1, 1, S3) ⇢(T ) = diag(!,!2, T3) (4.13)

and clearly fulfils ⇢(S)⇤ = ⇢(S) 2 Im⇢ and ⇢(T )⇤ /2 Im⇢. We are therefore forced to use

U = diag(1, 1, U3), which gives U⇢(T )⇤U�1 = ⇢(T 2) 2 Im⇢ and U⇢(S)⇤U�1 = ⇢(S) 2 Im⇢

and represents the outer automorphism u : (S, T ) ! (S, T 2). The only consistent (meaning

satisfying condition (2.6)) non-trivial CP transformation in this theory is thus ⇠ ! ⇠⇤ and

13The discussion of CP in Ref. [24] has been corrected in Ref. [27].
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Using Eq. (2.6), we can immediately see that the solution U = 3 for ⇢ ⇠ 3 leads to

the trivial automorphism idA4 (up to inner automorphism), when it is extended to the other

representations. Let us consider the vector � = (⇠, ⇠⇤,�)T with ⇠ ⇠ 13 and � ⇠ 31 which

transforms as

⇢(S) = diag(1, 1, S3) ⇢(T ) = diag(!,!2, T3) (4.13)

and clearly fulfils ⇢(S)⇤ = ⇢(S) 2 Im⇢ and ⇢(T )⇤ /2 Im⇢. We are therefore forced to use

U = diag(1, 1, U3), which gives U⇢(T )⇤U�1 = ⇢(T 2) 2 Im⇢ and U⇢(S)⇤U�1 = ⇢(S) 2 Im⇢

and represents the outer automorphism u : (S, T ) ! (S, T 2). The only consistent (meaning

satisfying condition (2.6)) non-trivial CP transformation in this theory is thus ⇠ ! ⇠⇤ and

13The discussion of CP in Ref. [24] has been corrected in Ref. [27].

11

encounters this problem as soon as one considers contractions such as

(��)12
=

1p
3

�

�1�1 + !2�2�2 + !�3�3
�

(4.8)

which transform under this ”CP” � ! U�⇤ = � as

(��)12
! (��)12

⇠ 12 (4.9)

which is in conflict with the expectation that CP should involve complex conjugation such

that

(��)12
! [(��)12

]⇤ ⇠ 13. (4.10)

Just imagine that the theory contains a real scalar triplet � ⇠ 3 and a singlet ⇠ ⇠ 13. If

one defines CP as � ! � and ⇠ ! ⇠⇤ then the invariant (��)12
⇠ under CP is mapped to

(��)12
⇠⇤, which is not invariant under the group and it is forbidden by the combination of

A4 and this definition of CP. Looking at this definition of CP, i.e. � ! �⇤ and ⇠ ! ⇠⇤, we

can easily check that it does not fulfil the consistency condition in Eq. (2.6) and therefore

the true symmetry group of the Lagrangian is not A4, but the group generated by A4 and

this CP transformation. However, it has been (implicitly) used in a number of works [24–

26]13 without properly taking into account the enlarged symmetry group with its additional

restrictions on the Lagrangian.

If we instead use the non-trivial solution of Eq. (2.6), which has been discussed in [12]

U = U3 ⌘

0

B

@

1 0 0

0 0 1

0 1 0

1

C

A

(4.11)

that corresponds to the outer automorphism u : (S, T ) ! (S, T 2) we immediately see that

(��)12
! [(��)12

]⇤ ⇠ 13. (4.12)

Note that this is the only non-trivial definition of CP (up to inner automorphisms) in any

theory that involves the complex representations, since the outer automorphism group is Z2.

Using Eq. (2.6), we can immediately see that the solution U = 3 for ⇢ ⇠ 3 leads to

the trivial automorphism idA4 (up to inner automorphism), when it is extended to the other

representations. Let us consider the vector � = (⇠, ⇠⇤,�)T with ⇠ ⇠ 13 and � ⇠ 31 which

transforms as

⇢(S) = diag(1, 1, S3) ⇢(T ) = diag(!,!2, T3) (4.13)

and clearly fulfils ⇢(S)⇤ = ⇢(S) 2 Im⇢ and ⇢(T )⇤ /2 Im⇢. We are therefore forced to use

U = diag(1, 1, U3), which gives U⇢(T )⇤U�1 = ⇢(T 2) 2 Im⇢ and U⇢(S)⇤U�1 = ⇢(S) 2 Im⇢

and represents the outer automorphism u : (S, T ) ! (S, T 2). The only consistent (meaning

satisfying condition (2.6)) non-trivial CP transformation in this theory is thus ⇠ ! ⇠⇤ and

13The discussion of CP in Ref. [24] has been corrected in Ref. [27].

11

the A4 invariant 

is mapped to sth. not invariant: 

CP [I] = ⇠⇤
�
�⇤
1�

⇤
1 + !2�⇤

2�
⇤
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⇤
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�
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•  CP extends the group A4 and forbids this invariant??  
•  Is it possible to impose CP without forbidding wanted couplings? 
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Motivation 

Chapter 2. Discrete Symmetry Groups and Lepton Mixing
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(a) Cayley Graph of A
4

. Figure 3: The A
4

symmetry of tetrahedron.

From these forms, it is found obviously that A
4

is isomorphic to �(12) ' (Z
2

⇥ Z
2

) o Z
3

,
which is explained in section 9.

They are classified by the conjugacy classes as

C
1

: {a
1

}, h = 1,
C

3

: {a
2

, a
3

, a
4

}, h = 2,
C

4

: {b
1

, b
2

, b
3

, b
4

, }, h = 3,
C

4

0 : {c
1

, c
2

, c
3

, c
4

, }, h = 3,

(67)

where we have also shown the orders of each element in the conjugacy class by h. There
are four conjugacy classes and there must be four irreducible representations, i.e. m

1

+
m

2

+ m
3

+ · · · = 4.
The orthogonality relation (11) requires

X

↵

[�↵(C
1

)]2 =
X

n

mnn2 = m
1

+ 4m
2

+ 9m
3

+ · · · = 12, (68)

for mi, which satisfy m
1

+ m
2

+ m
3

+ · · · = 4. The solution is obtained as (m
1

, m
2

, m
3

) =
(3, 0, 1). That is, the A

4

group has three singlets, 1, 10, and 100, and a single triplet 3,
where the triplet corresponds to (66).

Another algebraic definition of A
4

is often used in the literature. We denote a
1

= e,
a

2

= s and b
1

= t. They satisfy the following algebraic relations,

s2 = t3 = (st)3 = e. (69)

The closed algebra of these elements, s and t, is defined as the A
4

. It is straightforward
to write all of ai, bi and ci elements by s and t. Then, the conjugacy classes are rewritten
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(b) Geometrical interpretation of A
4

.

Figure 2.3: The symmetry group A
4

.The twelve group elements are connected by the generators S (red) and
T (blue). The picture 2.3b is taken from [88].

can define the semidirect product group N o' H via the multiplication rule

(n
1

, h
1

) ⇤ (n
2

, h
2

) = (n
1

'h
1

(n
2

), h
1

h
2

) for n
1,2 2 N and h

1,2 2 H. (2.35)

Note that there can be more than one semidirect product between two groups, but in the
following we will often drop the index ', as long as it is clear which group we are referring
to. (Another equivalent definition we will use is that a group G is a semidirect product of a
subgroup H and normal8 subgroup N if there exists a homomorphism G ! H which is the
identity on H and whose kernel9 is N.)

Let us present in some detail the case of the smallest group in Fig. 2.2, namely the
tetrahedral group A

4

. We will give the details for the other groups in the appendix. The group
A

4

may be written as A
4

⇠= (Z
2

⇥ Z
2

) o Z
3

where the Klein group N ⇠= Z
2

⇥ Z
2

is defined
by

⌦
S, X|X2 = S2 = E, XS = SX

↵
, the group H ⇠= Z

3

is defined by
⌦
T |T 3 = E

↵
and the

semidirect product is given by

'T (S) = TST�1 = XS, 'T (X) = TXT�1 = S. (2.36)

Note that the last relation allows one to replace one generator of N , e.g. X = T 2ST , and we
arrive at the standard presentation of A

4

:
⌦
S, T |S2 = T 3 = E, (ST )3 = E

↵
, (2.37)

that is represented graphically in Fig. 2.3a.
The other small groups in the tree shown in Fig. 2.2 can be represented in a similar way 10:

�(3n2) ⇠= (Zn ⇥ Zn) o Z
3

, �(6n2) ⇠= (Zn ⇥ Zn) o S
3

, Tn
⇠= Zn o Z

3

(2.38)

where S
4

⇠= �(24) and the defining homomorphisms are given in App. A.1. S
3

denotes the
group of permutations of three elements. It is in itself a semi-direct product S

3

⇠= Z
3

o Z
2

=⌦
r, a; r3 = a2 = E, ara�1 = r2

↵
and is not to be confused with the matrix defined in Eq. (2.27).

8A normal subgroup N of a group G, denoted by N C G, is a subgroup, which is invariant under conjugation
by an arbitrary group element of G, i.e. gNg�1 = N .

9The kernel of a representation ⇢ is defined by ker ⇢ = {g 2 G|⇢(g) = }.
10With respect to particle physics, �(3n2) has been studied in [89–92],T

7

has been studied in [93–95]and
�(6n2) has been studied in [88, 96].
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How to define CP consistently 

overlooked in the literature 3.

The outline of the paper is as follows. In sec. 2, we define a generalised CP transfor-

mation and discuss its connection with the outer automorphism group. The implications of

a generalised CP transformation for the physical phases are discussed in sec. 3. In sec. 4,

we apply our general considerations to specific examples. In order to uniquely specify each

group, we denote it by SG(O,N) with O being its order and N , the number in the GAP [16]

SmallGroups catalogue [17]. In particular, we will discuss all groups of order less than 31

with a three-dimensional representation. Finally, we conclude in sec. 5.

For the convenience of the reader, we will briefly define all relevant group theoretical

notions in the text or in a footnote. More detailed knowledge can be gained from standard

group theory text books. See [18] for an overview of discrete groups, which have been used

in the context of flavour symmetries.

2 Generalised CP and the Outer Automorphism Group

In order to simplify the discussion, we will focus on finite discrete groups only. We do not

consider the transformation under the Lorentz group or any continuous symmetry group and

therefore restrict ourselves to scalar multiplets unless stated otherwise. An extension to higher

spin representations of the Lorentz group and continuous groups is straightforward. Let us

consider a scalar multiplet

� =
⇣

'R, 'P , '⇤
P , 'C , '⇤

C

⌘T
(2.1)

that contains fields in real(R), pseudo-real(P) and complex(C) representations of the discrete

group G. Note that � always contains the field and its complex conjugate. The discrete group

G acts on � as

�
G�! ⇢(g)�, g 2 G. (2.2)

where ⇢ is a representation ⇢ : G ! GL(N,C), which is generally reducible. In fact ⇢(G) ⇢
U(N), since we are only considering unitary representations. The representation ⇢ decomposes

in a block diagonal form

⇢ =

0

B

B

B

B

B

@

⇢R
⇢P

⇢⇤P
⇢C

⇢⇤C

1

C

C

C

C

C

A

. (2.3)

A generalised CP transformation has to leave |@�|2 invariant and thus is of the form

�
CP�! U�⇤ (2.4)

3Accidental CP symmetries have also been observed in scalar potentials in models based on dihedral groups

Dn and its double cover Qn [14; 15].
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•  the (reducible) representation                                is assumed to be 
faithful and complex   
•  if not faithful then real symmetry group of theory is 
•   ρis homomorphism: ρ(a*b)=ρ(a)ρ(b)  

•  definition implies the existence of matrix W                     or   

⇢ : G ! U(N)

�

U�⇤

U⇢(g)⇤�⇤

⇢(g0)� = U⇢(g)⇤U�1�

CP g

g0 CP�1

Figure 1: CP definition.

with U being a unitary matrix, which is not necessarily block-diagonal as the representation

matrices, because it generically interchanges representations, not only complex and pseudo-

real representations, but also real representations, which we will discuss later. If the repre-

sentation is real, i.e. ⇢ = ⇢⇤, there is always the trivial CP transformation � ! �⇤, which

acts trivially on the group. In the following, we will take ⇢ to be complex and faithful, i.e. ⇢

is injective. If ⇢ were not faithful then the theory would only be invariant under the smaller

symmetry group isomorphic to G/ ker ⇢ and the restricted representation would be faithful.

Note that Eq. (2.4) in combination with Eq. (2.1) implies the existence of a matrix W

with W 2 = 1 as well as �⇤ = W� and consequently

⇢(g) = W⇢(g)⇤W�1, (2.5)

i.e. W exchanges the complex conjugate components of �. See sec. 4.1 and especially Eq. (4.3)

for a concrete example. Comparing first performing a group transformation and then per-

forming a CP transformation with the inverse order of operations and demanding that the

resulting transformation is contained in the symmetry group G of the theory, as shown in

Fig. 1, one finds the requirement that

U⇢(g)⇤U�1 2 Im⇢ ⌘ ⇢(G) , (2.6)

i.e. the CP transformation maps group elements ⇢(g) onto group elements ⇢(g0). We will

refer to this condition as consistency condition and denote models satisfying this condition

consistent. If the condition (2.6) is not fulfilled, the group G is not the full symmetry group

of the Lagrangian and one would have to consider the larger group, which closes under CP

transformations (2.6). We do not consider this case further and will assume that the groupG is

the full symmetry group of the Lagrangian. Hence, a generalised CP transformation preserves

the group multiplication, i.e. U⇢(g1g2)⇤U�1 = U⇢(g1)⇤U�1U⇢(g2)⇤U�1 and U ⇤U�1 = ,

and therefore is a homomorphism 4. Furthermore the CP transformation is bijective, since

U is unitary and therefore invertible. Hence, CP is an automorphism 5 of the group, as is

depicted in Fig. 2.

4A (group) homomorphism µ : G ! H is a mapping preserving the group structure, i.e. µ(g1g2) =

µ(g1)µ(g2) 8g1,2 2 G, µ(g�1) = µ(g)�1, and µ(EG) = EH , where EG,H denotes the identity elements of G and

H, respectively.
5An automorphism µ of a group G is a bijective homomorphism µ : G ! G.

4

P : '(t, ~x) ! '(t,�~x)

C : '(t, ~x) ! '

⇤(t, ~x)
CP : '(t, ~x) ! '

⇤(t,�~x)

•  here only Lorentz-scalars, generalization 
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Note that Eq. (2.4) in combination with Eq. (2.1) implies the existence of a matrix W

with W 2 = 1 as well as �⇤ = W� and consequently

⇢(g) = W⇢(g)⇤W�1, (2.5)

i.e. W exchanges the complex conjugate components of �. See sec. 4.1 and especially Eq. (4.3)

for a concrete example. Comparing first performing a group transformation and then per-

forming a CP transformation with the inverse order of operations and demanding that the

resulting transformation is contained in the symmetry group G of the theory, as shown in

Fig. 1, one finds the requirement that

U⇢(g)⇤U�1 2 Im⇢ ⌘ ⇢(G) , (2.6)

i.e. the CP transformation maps group elements ⇢(g) onto group elements ⇢(g0). We will

refer to this condition as consistency condition and denote models satisfying this condition

consistent. If the condition (2.6) is not fulfilled, the group G is not the full symmetry group

of the Lagrangian and one would have to consider the larger group, which closes under CP

transformations (2.6). We do not consider this case further and will assume that the groupG is

the full symmetry group of the Lagrangian. Hence, a generalised CP transformation preserves

the group multiplication, i.e. U⇢(g1g2)⇤U�1 = U⇢(g1)⇤U�1U⇢(g2)⇤U�1 and U ⇤U�1 = ,

and therefore is a homomorphism 4. Furthermore the CP transformation is bijective, since

U is unitary and therefore invertible. Hence, CP is an automorphism 5 of the group, as is

depicted in Fig. 2.

4A (group) homomorphism µ : G ! H is a mapping preserving the group structure, i.e. µ(g1g2) =

µ(g1)µ(g2) 8g1,2 2 G, µ(g�1) = µ(g)�1, and µ(EG) = EH , where EG,H denotes the identity elements of G and

H, respectively.
5An automorphism µ of a group G is a bijective homomorphism µ : G ! G.
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Figure 2: The matrix U that appears in the definition of CP defines an automorphism

u : G ! G of the group G.

Indeed, the possible matrices U of Eq. (2.6) form a representation of the automorphism

group 6 Aut(G) of G, which we are showing in the following.

U represents the automorphism u : G ! G given by

u : g 2 G ! ⇢(g) ! U⇢(g)⇤U�1 = ⇢(g0) ! g0 = ⇢�1(U⇢(g)⇤U�1) 2 G (2.7)

or

U⇢(g)⇤U�1 = ⇢(u(g)) . (2.8)

It is straightforward to show that this mapping u : G ! G is an automorphism, indeed.

Vice versa, if u : G ! G is an automorphism, we can explicitly construct a matrix U in

the following way. We first extend G to a group G0 containing G as a normal subgroup and

u(g) = g0gg0�1 8g 2 G with g0 2 G0. This can be achieved as follows. Taking the order of u 7

to be ord(u) = n, we define the homomorphism

✓ : Zn = ({0, .., n� 1},+) ! Aut(G) : 1 ! ✓1 ⌘ u , (2.9)

which has a trivial kernel. This homomorphism thus defines the semi-direct product group

G0 = Go✓ Zn with the group multiplication

(g1, z1) ? (g2, z2) = (g1✓z1(g2), z1 + z2) . (2.10)

Keeping track of the multiplication rules, we find

(E, 1) ? (g, z) ? (E, 1)�1 = (u(g), z) , (2.11)

where E is the identity element of G. The outer 8 automorphism u of G becomes an inner

automorphism ofG0 and we can obtain a matrix representation of u by the standard techniques

for finding matrix representations of groups, for example by using the computer algebra system

GAP [16] .

6The automorphism group Aut(G) is the set of all automorphisms of G with composition as group multi-

plication.
7The order of a group element u of G is given by the smallest n 2 with un = idG.
8An inner automorphism µh of a group G is an automorphism, which is represented by conjugation with

an element h 2 G, i.e. µh ⌘ conj(h) : g ! hgh�1. If an automorphism can not be represented by conjugation

with a group element, it is called an outer automorphism.

5

�

U�⇤

U⇢(g)⇤�⇤

⇢(g0)� = U⇢(g)⇤U�1�

CP g

g0 CP�1

Figure 1: CP definition.

with U being a unitary matrix, which is not necessarily block-diagonal as the representation

matrices, because it generically interchanges representations, not only complex and pseudo-

real representations, but also real representations, which we will discuss later. If the repre-
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is injective. If ⇢ were not faithful then the theory would only be invariant under the smaller
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depicted in Fig. 2.
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Inverse Direction: : Each automorphism u of G may 
be represented by such a matrix U. 
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⇢(g0)U

Hence, there is a unitary matrix U 0 with

U 0⇢(g)U 0�1 = ⇢(u(g)) . (2.12)

The matrix W introduced in Eq. (2.5) allows to write a CP transformation as

� ! U�⇤ = UW� (2.13)

and therefore

U⇢(g)⇤U�1 = ⇢(u(g)) (2.14)

with U = U 0W .

The automorphisms form a group with composition as group multiplication, i.e. u0 = ũ�u
is again an automorphism represented by

U 0⇢(g)⇤U 0�1 = ⇢(u0(g)) (2.15)

with

⇢(u0(g)) = ⇢(ũ(u(g))) = ŨW⇢(u(g))WŨ�1 = ŨWU⇢(g)⇤U�1WŨ�1 (2.16)

and thus

U 0 = ŨWU. (2.17)

The trivial automorphism id(g) = g 8g 2 G is represented by U = W and the inverse

automorphism u�1 is represented by WU�1W . We thus have a homomorphism from the

automorphism group to the group of matrices U defined in Eq. (2.4) with the conjunction

?: (A,B) ! A ? B ⌘ AWB. With respect to this conjunction the matrices U form a

representation of the automorphism group. ⌅
For any solution U of Eq. (2.6) the matrix ⇢(g)U is also a solution for any g 2 G, which

corresponds to performing a CP transformation followed by a group transformation described

by ⇢(g). The group transformation corresponds to an inner homomorphism, which does not

pose any new restrictions 9. It is therefore su�cient to consider automorphisms with inner

automorphisms modded out. Hence the group of generalised CP transformations is given by

the outer automorphism group, which is defined by

Out(G) ⌘ Aut(G)/Inn(G) , (2.18)

where Inn(G) denotes the inner automorphism group 10, the set of all inner automorphisms.

Moreover, since the invariance under a CP transformation leads to the invariance under the

9There are interesting phenomenological consequences for inner automorphisms, if the CP symmetry is

left unbroken in one sector of the theory like the neutrino sector as discussed in [13]. However, we are more

interested in the consistent definition in the unbroken theory and therefore do not further consider inner

automorphisms.
10For every group G there is a natural group homomorphism G ! Aut(G) whose image is Inn(G) and

whose kernel is the centre of G, Z(G), i.e. the subset of G which commutes with all elements of G. In short

Inn(G) ⇠= G/Z(G) . Thus, if G has trivial centre it can be embedded into its own automorphism group.

6

Inn(G) = {u 2 Aut(G)|u(g) = AgA�1
for some A 2 G}where 

Out(G) = E,Z2

•  aside: continuous groups 
except for Out(SO(8)) = S3

•  outer automorphism groups of small groups can be more 
involved: 

For usual spontaneous breaking of CP one would expect the phases of the fields to depend

on potential parameters and therefore not be determined by the group symmetry structure.

The only way to get ’calculable phases’, i.e. phases that do not depend on potential para-

meters, seems to be if this CP breaking vacua is connected to an additional (accidental) CP

symmetry of the potential as is the case for �(27) (see sec. 4.4). For T 0, however, there cannot

be such an additional generalised CP besides the CP transformations which are connected

to the unique non-trivial CP transformation by some group transformation, since the outer

automorphism group is Z2.

4.4 �(27) ⇠= (Z3 ⇥ Z3) o Z3
⇠= SG(27, 3)

The group �(27) =
⌦

A,B|A3 = B3 = (AB)3 = E
↵

21 is another interesting group from the

standpoint of CP violation. Its automorphism structure is quite involved. The centre of

the group is isomorphic to Z3 and generated by the group element X = A2BAB2 with

conj(X) = id and the inner automorphism group has the structure Z3 ⇥ Z3. The outer

automorphism group is generated by

u1 : (A,B) ! (ABA2, B2AB) , u2 : (A,B) ! (ABAB,B2) . (4.41)

It is isomorphic to GL(2, 3), i.e. the general linear group of 2 ⇥ 2 matrices over the field

Z3. The multitude of outer automorphisms can be traced back to the various symmetries

of the character table shown in Tab. 3 that are due to the fact that there are so many

one-dimensional representations. Together with the inner automorphisms these generators

generate the full automorphism group, which is of order 432. In summary the automorphism

structure presents itself as:

Z(�(27)) ⇠= Z3 Aut(�(27)) ⇠= (((Z3 ⇥ Z3)oQ8)o Z3)o Z2 (4.42)

Inn(�(27)) ⇠= Z3 ⇥ Z3 Out(�(27)) ⇠= GL(2, 3) .

The outer automorphism u1 acts on the representations as

12 $ 14, 13 $ 17, 16 $ 18, 3 $ 3⇤ (4.43)

where e.g. 12 ! 14 is to be read as ⇢14
= ⇢12

� u1 etc., and the outer automorphism u2
acts as

12 ! 19 ! 18 ! 13 ! 15 ! 16 ! 12 (4.44)

From this it is trivial to determine the representations of the automorphisms for the one-

dimensional representations. Let us therefore focus on the three dimensional representation

3 generated by

⇢(A) = T3, ⇢(B) = diag(1,!,!2). (4.45)

The two generators of the outer automorphism group act on � ⇠ (3,3⇤) as

U(u1) =

 

Ũ 0

0 Ũ⇤

!

with Ũ =
1p
3

0

B

@

!2 ! 1

! !2 1

1 1 1

1

C

A

(4.46)

21�(27) has been first used in the lepton sector in [35].
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Physical CP Violation 

!   not all gCP transformations correspond to physical CP 
violation 

!   additional requirement: the square of a gCP transformation 
is a symmetry transformation 

!   CP has to map irr r to c.c. irr r* 
!   U block diagonal [Chen et al. 14] 

! u has to be class-inverting 

!   „CP-like“ trafos useful 
! to construct U(u) 
! can be used to predict phases 

[Nishi 13, Chen et al. 14] 

⇢
�
u2(g)

�
= UU⇤⇢(g)⇤(U(a)U⇤)�1 = ⇢(g0)

CP symmetries in settings with G
• CP transformations are outer automorphisms (auts) of G.

[Holthausen et al., 2013]

(this is actually true for all symmetries, not only discrete symmetries)

Out :=
Aut

Inn

Inn: reshuffling of g 2 G within
conjugacy classes

Out: reshuffling of conjugacy classes

and representations

•
But: not all outer auts are CP transformations! [AT, Chen et al., 2014]

CP

Out
Out : r 7! r0

CP: r 7! r⇤

Andreas Trautner, TUM Discrete (flavor) symmetries and CP violation, 27.5.14 7/ 14

t.f. talk by Trautner 

see talk by A. Trautner 



CP in A4 

In terms of the subgroup Z3 = hT i, it decomposes in the direct sum of the representations 12
and 13 of Z3 with the group generator ⇢(T ) = ⇢2((T, id)). The automorphism u is represented

by the matrix U 0 = ⇢2((E, u)) and ⇢(g) ! ⇢(u(g)) = U 0⇢(g)U 0�1 and therefore the non-trivial

CP transformation belonging to the automorphism u is given by ⇢(g) ! ⇢(u(g)) = U⇢(g)⇤U�1

with U = U 0W = 2, as we have found above. Clearly the trivial automorphism corresponds

to (E, id) and is represented by U 0 = 2 or U = W .

4.2 A4
⇠= (Z2 ⇥ Z2) o Z3

⇠= SG(12, 3)

There is a complete classification of automorphism groups for the alternating groups An,

which is shown in Tab. 2a. Most of them have a very similar structure. We will discuss

the specific case of A4 =
⌦

S, T |S2 = T 3 = (ST )3 = E
↵

11 in detail. It is very important for

Z(Sn) Aut(Sn) Inn(Sn) Out(Sn)

n � 4, n 6= 6 Z1 Sn An Z2

n = 1, 2 Zn Z1 Z1 Z1

n = 3 Z3 Z2 Z1 Z2

n = 6 Z1 S6 o Z2 A6 Z2 ⇥ Z2

(a) Structure of the automorphism group of An

E T T 2 S

11 1 1 1 1

12 1 ! !2 1

13 1 !2 ! 1

3 3 0 0 -1

(b) Character Table of A4.

Table 2: Relevant group structure of the alternating groups An.

model building and serves as our first non-trivial example. As it can be seen in Tab. 2a,

only the identity element commutes with all other elements and the natural homomorphism

n : A4 ! Aut(A4) defined by n(g) = conj(g) is therefore injective. There is one non-trivial

outer automorphism u : (S, T ) ! (S, T 2). Here and in the following, we only give the action

of automorphisms on the generators of the group, which uniquely defines an automorphism.

The character table of A4 is given in Tab. 2b and it is easy to verify that the automorphism

u represents a symmetry of the character table, again interchanging the representations 12
and 13. Let us first discuss the case where we have only one real scalar field in the real

representation � ⇠ 31 using the Ma-Rajasekaran[23] basis:

⇢31
(S) = S3 ⌘

0

B

@

1 0 0

0 �1 0

0 0 �1

1

C

A

, ⇢31
(T ) = T3 ⌘

0

B

@

0 1 0

0 0 1

1 0 0

1

C

A

. (4.7)

In this basis both group generators are real (⇢(g)⇤ = ⇢(g) 2 Im⇢) and one might be tempted

to take U = 3 as this fulfils Eq. (2.6). However, the map derived from U = 3 via Eq. (2.8)

is not equal to u : (S, T ) ! (S, T 2), but the trivial automorphism idA4 , which is obviously

not outer and therefore does not lead to additional constraints on the couplings12. One also

11A4 has been introduced as flavour symmetry in the lepton sector in [23].
12Obviously it still acts non-trivially on the space-time symmetry group as well as possibly the gauge group.
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Chapter 2. Discrete Symmetry Groups and Lepton Mixing

1

S
TS

T

ST2

TST

ST

STS

T2

T2S

TST2

T2ST

(a) Cayley Graph of A
4

. Figure 3: The A
4

symmetry of tetrahedron.

From these forms, it is found obviously that A
4

is isomorphic to �(12) ' (Z
2

⇥ Z
2

) o Z
3

,
which is explained in section 9.

They are classified by the conjugacy classes as

C
1

: {a
1

}, h = 1,
C

3

: {a
2

, a
3

, a
4

}, h = 2,
C

4

: {b
1

, b
2

, b
3

, b
4

, }, h = 3,
C

4

0 : {c
1

, c
2

, c
3

, c
4

, }, h = 3,

(67)

where we have also shown the orders of each element in the conjugacy class by h. There
are four conjugacy classes and there must be four irreducible representations, i.e. m

1

+
m

2

+ m
3

+ · · · = 4.
The orthogonality relation (11) requires

X

↵

[�↵(C
1

)]2 =
X

n

mnn2 = m
1

+ 4m
2

+ 9m
3

+ · · · = 12, (68)

for mi, which satisfy m
1

+ m
2

+ m
3

+ · · · = 4. The solution is obtained as (m
1

, m
2

, m
3

) =
(3, 0, 1). That is, the A

4

group has three singlets, 1, 10, and 100, and a single triplet 3,
where the triplet corresponds to (66).

Another algebraic definition of A
4

is often used in the literature. We denote a
1

= e,
a

2

= s and b
1

= t. They satisfy the following algebraic relations,

s2 = t3 = (st)3 = e. (69)

The closed algebra of these elements, s and t, is defined as the A
4

. It is straightforward
to write all of ai, bi and ci elements by s and t. Then, the conjugacy classes are rewritten

19

(b) Geometrical interpretation of A
4

.

Figure 2.3: The symmetry group A
4

.The twelve group elements are connected by the generators S (red) and
T (blue). The picture 2.3b is taken from [88].

can define the semidirect product group N o' H via the multiplication rule

(n
1

, h
1

) ⇤ (n
2

, h
2

) = (n
1

'h
1

(n
2

), h
1

h
2

) for n
1,2 2 N and h

1,2 2 H. (2.35)

Note that there can be more than one semidirect product between two groups, but in the
following we will often drop the index ', as long as it is clear which group we are referring
to. (Another equivalent definition we will use is that a group G is a semidirect product of a
subgroup H and normal8 subgroup N if there exists a homomorphism G ! H which is the
identity on H and whose kernel9 is N.)

Let us present in some detail the case of the smallest group in Fig. 2.2, namely the
tetrahedral group A

4

. We will give the details for the other groups in the appendix. The group
A

4

may be written as A
4

⇠= (Z
2

⇥ Z
2

) o Z
3

where the Klein group N ⇠= Z
2

⇥ Z
2

is defined
by

⌦
S, X|X2 = S2 = E, XS = SX

↵
, the group H ⇠= Z

3

is defined by
⌦
T |T 3 = E

↵
and the

semidirect product is given by

'T (S) = TST�1 = XS, 'T (X) = TXT�1 = S. (2.36)

Note that the last relation allows one to replace one generator of N , e.g. X = T 2ST , and we
arrive at the standard presentation of A

4

:
⌦
S, T |S2 = T 3 = E, (ST )3 = E

↵
, (2.37)

that is represented graphically in Fig. 2.3a.
The other small groups in the tree shown in Fig. 2.2 can be represented in a similar way 10:

�(3n2) ⇠= (Zn ⇥ Zn) o Z
3

, �(6n2) ⇠= (Zn ⇥ Zn) o S
3

, Tn
⇠= Zn o Z

3

(2.38)

where S
4

⇠= �(24) and the defining homomorphisms are given in App. A.1. S
3

denotes the
group of permutations of three elements. It is in itself a semi-direct product S

3

⇠= Z
3

o Z
2

=⌦
r, a; r3 = a2 = E, ara�1 = r2

↵
and is not to be confused with the matrix defined in Eq. (2.27).

8A normal subgroup N of a group G, denoted by N C G, is a subgroup, which is invariant under conjugation
by an arbitrary group element of G, i.e. gNg�1 = N .

9The kernel of a representation ⇢ is defined by ker ⇢ = {g 2 G|⇢(g) = }.
10With respect to particle physics, �(3n2) has been studied in [89–92],T

7

has been studied in [93–95]and
�(6n2) has been studied in [88, 96].
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CP in A4 

In terms of the subgroup Z3 = hT i, it decomposes in the direct sum of the representations 12
and 13 of Z3 with the group generator ⇢(T ) = ⇢2((T, id)). The automorphism u is represented

by the matrix U 0 = ⇢2((E, u)) and ⇢(g) ! ⇢(u(g)) = U 0⇢(g)U 0�1 and therefore the non-trivial

CP transformation belonging to the automorphism u is given by ⇢(g) ! ⇢(u(g)) = U⇢(g)⇤U�1

with U = U 0W = 2, as we have found above. Clearly the trivial automorphism corresponds

to (E, id) and is represented by U 0 = 2 or U = W .

4.2 A4
⇠= (Z2 ⇥ Z2) o Z3

⇠= SG(12, 3)

There is a complete classification of automorphism groups for the alternating groups An,

which is shown in Tab. 2a. Most of them have a very similar structure. We will discuss

the specific case of A4 =
⌦

S, T |S2 = T 3 = (ST )3 = E
↵

11 in detail. It is very important for

Z(Sn) Aut(Sn) Inn(Sn) Out(Sn)

n � 4, n 6= 6 Z1 Sn An Z2

n = 1, 2 Zn Z1 Z1 Z1

n = 3 Z3 Z2 Z1 Z2

n = 6 Z1 S6 o Z2 A6 Z2 ⇥ Z2

(a) Structure of the automorphism group of An

E T T 2 S

11 1 1 1 1

12 1 ! !2 1

13 1 !2 ! 1

3 3 0 0 -1

(b) Character Table of A4.

Table 2: Relevant group structure of the alternating groups An.

model building and serves as our first non-trivial example. As it can be seen in Tab. 2a,

only the identity element commutes with all other elements and the natural homomorphism

n : A4 ! Aut(A4) defined by n(g) = conj(g) is therefore injective. There is one non-trivial

outer automorphism u : (S, T ) ! (S, T 2). Here and in the following, we only give the action

of automorphisms on the generators of the group, which uniquely defines an automorphism.

The character table of A4 is given in Tab. 2b and it is easy to verify that the automorphism

u represents a symmetry of the character table, again interchanging the representations 12
and 13. Let us first discuss the case where we have only one real scalar field in the real

representation � ⇠ 31 using the Ma-Rajasekaran[23] basis:

⇢31
(S) = S3 ⌘

0

B

@

1 0 0

0 �1 0

0 0 �1

1

C

A

, ⇢31
(T ) = T3 ⌘

0

B

@

0 1 0

0 0 1

1 0 0

1

C

A

. (4.7)

In this basis both group generators are real (⇢(g)⇤ = ⇢(g) 2 Im⇢) and one might be tempted

to take U = 3 as this fulfils Eq. (2.6). However, the map derived from U = 3 via Eq. (2.8)

is not equal to u : (S, T ) ! (S, T 2), but the trivial automorphism idA4 , which is obviously

not outer and therefore does not lead to additional constraints on the couplings12. One also

11A4 has been introduced as flavour symmetry in the lepton sector in [23].
12Obviously it still acts non-trivially on the space-time symmetry group as well as possibly the gauge group.
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on 3-dim representation  

the consistency condition 

encounters this problem as soon as one considers contractions such as

(��)12
=

1p
3

�

�1�1 + !2�2�2 + !�3�3
�

(4.8)

which transform under this ”CP” � ! U�⇤ = � as

(��)12
! (��)12

⇠ 12 (4.9)

which is in conflict with the expectation that CP should involve complex conjugation such

that

(��)12
! [(��)12

]⇤ ⇠ 13. (4.10)

Just imagine that the theory contains a real scalar triplet � ⇠ 3 and a singlet ⇠ ⇠ 13. If

one defines CP as � ! � and ⇠ ! ⇠⇤ then the invariant (��)12
⇠ under CP is mapped to

(��)12
⇠⇤, which is not invariant under the group and it is forbidden by the combination of

A4 and this definition of CP. Looking at this definition of CP, i.e. � ! �⇤ and ⇠ ! ⇠⇤, we

can easily check that it does not fulfil the consistency condition in Eq. (2.6) and therefore

the true symmetry group of the Lagrangian is not A4, but the group generated by A4 and

this CP transformation. However, it has been (implicitly) used in a number of works [24–

26]13 without properly taking into account the enlarged symmetry group with its additional

restrictions on the Lagrangian.

If we instead use the non-trivial solution of Eq. (2.6), which has been discussed in [12]

U = U3 ⌘

0

B

@

1 0 0

0 0 1

0 1 0

1

C

A

(4.11)

that corresponds to the outer automorphism u : (S, T ) ! (S, T 2) we immediately see that

(��)12
! [(��)12

]⇤ ⇠ 13. (4.12)

Note that this is the only non-trivial definition of CP (up to inner automorphisms) in any

theory that involves the complex representations, since the outer automorphism group is Z2.

Using Eq. (2.6), we can immediately see that the solution U = 3 for ⇢ ⇠ 3 leads to

the trivial automorphism idA4 (up to inner automorphism), when it is extended to the other

representations. Let us consider the vector � = (⇠, ⇠⇤,�)T with ⇠ ⇠ 13 and � ⇠ 31 which

transforms as

⇢(S) = diag(1, 1, S3) ⇢(T ) = diag(!,!2, T3) (4.13)

and clearly fulfils ⇢(S)⇤ = ⇢(S) 2 Im⇢ and ⇢(T )⇤ /2 Im⇢. We are therefore forced to use

U = diag(1, 1, U3), which gives U⇢(T )⇤U�1 = ⇢(T 2) 2 Im⇢ and U⇢(S)⇤U�1 = ⇢(S) 2 Im⇢

and represents the outer automorphism u : (S, T ) ! (S, T 2). The only consistent (meaning

satisfying condition (2.6)) non-trivial CP transformation in this theory is thus ⇠ ! ⇠⇤ and

13The discussion of CP in Ref. [24] has been corrected in Ref. [27].
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U3⇢(T )
⇤U�1

3 = ⇢(T 2)

can be easily seen to require a 2-3 interchange: 

•  this can be easily read off, for more complicated setups it 
might not be so easy 

•  sketch of formalism described above: 
•  construct group extended by outer automorphism, here S4 

•  extra group element gives matrix U 
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! (��)12

⇠ 12 (4.9)

which is in conflict with the expectation that CP should involve complex conjugation such

that

(��)12
! [(��)12

]⇤ ⇠ 13. (4.10)

Just imagine that the theory contains a real scalar triplet � ⇠ 3 and a singlet ⇠ ⇠ 13. If

one defines CP as � ! � and ⇠ ! ⇠⇤ then the invariant (��)12
⇠ under CP is mapped to

(��)12
⇠⇤, which is not invariant under the group and it is forbidden by the combination of

A4 and this definition of CP. Looking at this definition of CP, i.e. � ! �⇤ and ⇠ ! ⇠⇤, we

can easily check that it does not fulfil the consistency condition in Eq. (2.6) and therefore

the true symmetry group of the Lagrangian is not A4, but the group generated by A4 and

this CP transformation. However, it has been (implicitly) used in a number of works [24–

26]13 without properly taking into account the enlarged symmetry group with its additional

restrictions on the Lagrangian.

If we instead use the non-trivial solution of Eq. (2.6), which has been discussed in [12]
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U⇢(T )⇤U�1 = ⇢(T )⇤ /2 ⇢(G)
! the real flavour group is larger, this has to be 

considered when constructing Lagrangian 

often overlooked in literature 
[Toorop et. al. 2011, Ferreira, 
Lavoura 2011,....] 



Geometric CP violation in Δ (27) 

E BABA ABA A BAB AB A2 B2 B BA2BAB AB2ABA

11 1 1 1 1 1 1 1 1 1 1 1

12 1 ! !2 1 ! !2 1 ! !2 1 1

13 1 !2 ! 1 !2 ! 1 !2 ! 1 1

14 1 ! ! !2 !2 !2 ! 1 1 1 1

15 1 !2 1 !2 1 ! ! ! !2 1 1

16 1 1 !2 !2 ! 1 ! !2 ! 1 1

17 1 !2 !2 ! ! ! !2 1 1 1 1

18 1 1 ! ! !2 1 !2 ! !2 1 1

19 1 ! 1 ! 1 !2 !2 !2 ! 1 1

3 3 . . . . . . . . 3! 3!2

3⇤ 3 . . . . . . . . 3!2 3!

Table 3: Character table of �(27). The first line indicates representatives of the di↵erent

conjugacy classes. Zeroes in the character table are denoted by a dot . and ! is the third root

of unity ! = e2⇡i/3. The arrows illustrate the generators of the outer automorphism group

u1(blue) and u2(red).

and

U(u2) =

 

0 Ũ

Ũ⇤ 0

!

with Ũ =

0

B

@

!2 0 0

0 0 !

0 !2 0

1

C

A

. (4.47)

All automorphisms can be generated from the generators ui by composition and the repre-

sentation matrices U(aut) may be obtained with the help of Eq. (2.17). We have therefore

found a complete classification of possible CP transformations that may be implemented in a

model based on �(27). There are 48 outer automorphisms generated by u1 and u2 that may

in principle give physically distinct CP transformations with distinct physical implications,

however as a model that is invariant under CP will also be invariant under CPn it is su�cient

to consider which subgroups of the automorphism groups is realised.

It is instructive to look at some of these subgroups in detail. Let us for example consider

the CP transformation � ! �⇤ or U(h1) = 3 that corresponds to the outer automorphism

h1 : (A,B) ! (A,B2), which can be expressed in terms of the generators as h1 = u1 � u22 �
u�1
1 � u2 � u�1

1 � u�1
2 � u�1

1 � conj(A)�1 � u�1
1 . This outer automorphism squares to one and

therefore generates a Z2 subgroup of the automorphism group. Contrary to the situation

we have encountered before, where the outer automorphism group was a Z2, this is not

the only solution. As a further example we may consider the Z2 subgroup generated by

u1 � u22 � u
�1
1 � u2 � u�1

1 � u�2
2 with h2 : (A,B) ! (ABA,B) which according to Eq. (2.17) is

represented by

U(h2) =

0

B

@

! 0 0

0 0 1

0 1 0

1

C

A

. (4.48)
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For usual spontaneous breaking of CP one would expect the phases of the fields to depend

on potential parameters and therefore not be determined by the group symmetry structure.

The only way to get ’calculable phases’, i.e. phases that do not depend on potential para-

meters, seems to be if this CP breaking vacua is connected to an additional (accidental) CP

symmetry of the potential as is the case for �(27) (see sec. 4.4). For T 0, however, there cannot

be such an additional generalised CP besides the CP transformations which are connected

to the unique non-trivial CP transformation by some group transformation, since the outer

automorphism group is Z2.

4.4 �(27) ⇠= (Z3 ⇥ Z3) o Z3
⇠= SG(27, 3)

The group �(27) =
⌦

A,B|A3 = B3 = (AB)3 = E
↵

21 is another interesting group from the

standpoint of CP violation. Its automorphism structure is quite involved. The centre of

the group is isomorphic to Z3 and generated by the group element X = A2BAB2 with

conj(X) = id and the inner automorphism group has the structure Z3 ⇥ Z3. The outer

automorphism group is generated by

u1 : (A,B) ! (ABA2, B2AB) , u2 : (A,B) ! (ABAB,B2) . (4.41)

It is isomorphic to GL(2, 3), i.e. the general linear group of 2 ⇥ 2 matrices over the field

Z3. The multitude of outer automorphisms can be traced back to the various symmetries

of the character table shown in Tab. 3 that are due to the fact that there are so many

one-dimensional representations. Together with the inner automorphisms these generators

generate the full automorphism group, which is of order 432. In summary the automorphism

structure presents itself as:

Z(�(27)) ⇠= Z3 Aut(�(27)) ⇠= (((Z3 ⇥ Z3)oQ8)o Z3)o Z2 (4.42)

Inn(�(27)) ⇠= Z3 ⇥ Z3 Out(�(27)) ⇠= GL(2, 3) .

The outer automorphism u1 acts on the representations as

12 $ 14, 13 $ 17, 16 $ 18, 3 $ 3⇤ (4.43)

where e.g. 12 ! 14 is to be read as ⇢14
= ⇢12

� u1 etc., and the outer automorphism u2
acts as

12 ! 19 ! 18 ! 13 ! 15 ! 16 ! 12 (4.44)

From this it is trivial to determine the representations of the automorphisms for the one-

dimensional representations. Let us therefore focus on the three dimensional representation

3 generated by

⇢(A) = T3, ⇢(B) = diag(1,!,!2). (4.45)

The two generators of the outer automorphism group act on � ⇠ (3,3⇤) as

U(u1) =

 

Ũ 0

0 Ũ⇤

!

with Ũ =
1p
3

0

B

@

!2 ! 1

! !2 1

1 1 1

1

C

A

(4.46)

21�(27) has been first used in the lepton sector in [35].
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21�(27) has been first used in the lepton sector in [35].
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21�(27) has been first used in the lepton sector in [35].
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What are calculable phases? 

•  the potential only contains one phase dependent term 

•  if coupling λ4 multiplying I is positive, the global minimum is at 
     (or  a configuration that can be obtained by acting on this vacuum with a group element) 

•  if coupling λ4 is negative, the global minimum is at  
       (or  a configuration that can be obtained by acting on this vacuum with a group element) 

•  These phases do not depend on potential parameters! 
•  can this be used to predict (leptonic) CP phases? 
•  can they be understood in terms of generalized CP? 

We will use this matrix later on. Let us now use this machinery to tackle a physical question,

namely the so-called geometrical CP violation. ’Geometrical’ CP-violation [4] denotes the

following: If one considers a triplet of Higgs doublets H = (H1, H2, H3) ⇠ 3 the only phase

dependent term in the scalar potential is given by

I ⌘
X

i 6=j 6=k

(H†
iHj)(H

†
iHk). (4.49)

Let us now investigate how the term transforms under the two generators u1 and u2 of the

outer automorphism group. We find

CPu1 [I] = �1

3
I⇤ +

2

3
I +

X

i

1

3
(H†

iHi)
2 +

X

i 6=j

(H†
iHi)(H

†
jHj), CPu2 [I] = !2I (4.50)

and we thus find the invariant combinations

CPu1 [I � I⇤] = I � I⇤ CPu3
2
[I] = I (4.51)

Clearly invariance under u1 requires further non-trivial relations among the other couplings

in the scalar potential which do not depend on phases and thus do not concern us here.

Let us investigate the case where the theory is invariant under h1 which corresponds to

the ’usual’ CP transformation � ! �⇤ and forces the coupling �4 multiplying I to be real.

For �4 < 0 one finds the global minimum

hHi = vp
3
(1,!,!2) (4.52)

and for �4 > 0 one finds

hHi = vp
3
(!2, 1, 1). (4.53)

Both VEV configurations correspond to generalised CP transformations H ! UH⇤. For

�4 < 0 it is for example given by U = ⇢(B2) which is clearly part of �(27) and therefore

up to an inner automorphism corresponds to h1. The phases of the VEVs thus do not imply

spontaneous CP violation. For �4 > 0 the VEV configuration leaves the CP transformation

corresponding to the outer automorphism h2 given in Eq. (4.48) invariant. However, there is

something that is much harder to understand about this VEV configuration: the generalised

CP symmetry corresponding to this configuration is not a symmetry of the Lagrangian. It

would be a symmetry if the phase of �4 would be the same as !, as CPh2 [I] = !I⇤. So here

we are confronted with the puzzling situation where a VEV configuration is more symmetric

than the original Lagrangian. This is also denoted as calculable phases.

This conundrum can be solved if there is a generalised CP trafo that is left invariant by

the VEV and is compatible with �4 being real. Since we have a complete classification of

all generalised CP transformations we can answer this question and indeed we find the CP

transformation

 

H

H⇤

!

= U

 

H⇤

H

!

with U =

 

0 Ũ

Ũ⇤ 0

!

, Ũ =

0

B

@

0 0 !2

0 1 0

! 0 0

1

C

A

(4.54)
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I ⌘ (H†
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†
1H3) + (H†

2H3)(H
†
2H1) + (H†

3H1)(H
†
3H2)
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would be a symmetry if the phase of �4 would be the same as !, as CPh2 [I] = !I⇤. So here

we are confronted with the puzzling situation where a VEV configuration is more symmetric

than the original Lagrangian. This is also denoted as calculable phases.

This conundrum can be solved if there is a generalised CP trafo that is left invariant by

the VEV and is compatible with �4 being real. Since we have a complete classification of

all generalised CP transformations we can answer this question and indeed we find the CP

transformation
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We will use this matrix later on. Let us now use this machinery to tackle a physical question,

namely the so-called geometrical CP violation. ’Geometrical’ CP-violation [4] denotes the

following: If one considers a triplet of Higgs doublets H = (H1, H2, H3) ⇠ 3 the only phase

dependent term in the scalar potential is given by

I ⌘
X

i 6=j 6=k

(H†
iHj)(H

†
iHk). (4.49)
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jHj), CPu2 [I] = !2I (4.50)

and we thus find the invariant combinations

CPu1 [I � I⇤] = I � I⇤ CPu3
2
[I] = I (4.51)

Clearly invariance under u1 requires further non-trivial relations among the other couplings

in the scalar potential which do not depend on phases and thus do not concern us here.

Let us investigate the case where the theory is invariant under h1 which corresponds to

the ’usual’ CP transformation � ! �⇤ and forces the coupling �4 multiplying I to be real.

For �4 < 0 one finds the global minimum

hHi = vp
3
(1,!,!2) (4.52)

and for �4 > 0 one finds

hHi = vp
3
(!2, 1, 1). (4.53)

Both VEV configurations correspond to generalised CP transformations H ! UH⇤. For

�4 < 0 it is for example given by U = ⇢(B2) which is clearly part of �(27) and therefore

up to an inner automorphism corresponds to h1. The phases of the VEVs thus do not imply

spontaneous CP violation. For �4 > 0 the VEV configuration leaves the CP transformation

corresponding to the outer automorphism h2 given in Eq. (4.48) invariant. However, there is

something that is much harder to understand about this VEV configuration: the generalised

CP symmetry corresponding to this configuration is not a symmetry of the Lagrangian. It

would be a symmetry if the phase of �4 would be the same as !, as CPh2 [I] = !I⇤. So here

we are confronted with the puzzling situation where a VEV configuration is more symmetric

than the original Lagrangian. This is also denoted as calculable phases.

This conundrum can be solved if there is a generalised CP trafo that is left invariant by

the VEV and is compatible with �4 being real. Since we have a complete classification of

all generalised CP transformations we can answer this question and indeed we find the CP
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⇢(A) =

0
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0 1 0
0 0 1
1 0 0
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A ⇢(B) =
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1 0 0
0 ! 0
0 0 !2

1

A

•  consider again a triplet of Higgs doublets 
    which transforms as 



Potential Dependence of Phases 
!   in general you expect two different kinds of vacua of a CP 

conserving potential 
! either VEV is real, conserves CP and phase does not depend 

on potential parameters 
! or VEV is complex, breaks CP and phase depends on 

potential parameters 
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What are calculable phases? 
•  The vacuum of the form                                leaves invariant the gCP 
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We will use this matrix later on. Let us now use this machinery to tackle a physical question,

namely the so-called geometrical CP violation. ’Geometrical’ CP-violation [4] denotes the

following: If one considers a triplet of Higgs doublets H = (H1, H2, H3) ⇠ 3 the only phase

dependent term in the scalar potential is given by
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the ’usual’ CP transformation � ! �⇤ and forces the coupling �4 multiplying I to be real.

For �4 < 0 one finds the global minimum

hHi = vp
3
(1,!,!2) (4.52)

and for �4 > 0 one finds

hHi = vp
3
(!2, 1, 1). (4.53)

Both VEV configurations correspond to generalised CP transformations H ! UH⇤. For

�4 < 0 it is for example given by U = ⇢(B2) which is clearly part of �(27) and therefore

up to an inner automorphism corresponds to h1. The phases of the VEVs thus do not imply

spontaneous CP violation. For �4 > 0 the VEV configuration leaves the CP transformation

corresponding to the outer automorphism h2 given in Eq. (4.48) invariant. However, there is

something that is much harder to understand about this VEV configuration: the generalised

CP symmetry corresponding to this configuration is not a symmetry of the Lagrangian. It

would be a symmetry if the phase of �4 would be the same as !, as CPh2 [I] = !I⇤. So here

we are confronted with the puzzling situation where a VEV configuration is more symmetric

than the original Lagrangian. This is also denoted as calculable phases.

This conundrum can be solved if there is a generalised CP trafo that is left invariant by

the VEV and is compatible with �4 being real. Since we have a complete classification of

all generalised CP transformations we can answer this question and indeed we find the CP
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H ! ⇢(B2)H⇤ =

0

@
1 0 0
0 !2 0
0 0 !

1

AH⇤

•  which is a symmetry of I+I* 
•  no surprise there, CP symmetric potential has CP symmetric ground 

state 
•  for the other solution                           there is no group element that 

leaves H invariant 
•  this was interpreted as geometrical CP violation 

hHi = ⇢(g)hHi⇤

We will use this matrix later on. Let us now use this machinery to tackle a physical question,

namely the so-called geometrical CP violation. ’Geometrical’ CP-violation [4] denotes the

following: If one considers a triplet of Higgs doublets H = (H1, H2, H3) ⇠ 3 the only phase

dependent term in the scalar potential is given by
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CPu1 [I � I⇤] = I � I⇤ CPu3
2
[I] = I (4.51)

Clearly invariance under u1 requires further non-trivial relations among the other couplings

in the scalar potential which do not depend on phases and thus do not concern us here.

Let us investigate the case where the theory is invariant under h1 which corresponds to

the ’usual’ CP transformation � ! �⇤ and forces the coupling �4 multiplying I to be real.

For �4 < 0 one finds the global minimum

hHi = vp
3
(1,!,!2) (4.52)

and for �4 > 0 one finds

hHi = vp
3
(!2, 1, 1). (4.53)

Both VEV configurations correspond to generalised CP transformations H ! UH⇤. For

�4 < 0 it is for example given by U = ⇢(B2) which is clearly part of �(27) and therefore

up to an inner automorphism corresponds to h1. The phases of the VEVs thus do not imply

spontaneous CP violation. For �4 > 0 the VEV configuration leaves the CP transformation

corresponding to the outer automorphism h2 given in Eq. (4.48) invariant. However, there is

something that is much harder to understand about this VEV configuration: the generalised

CP symmetry corresponding to this configuration is not a symmetry of the Lagrangian. It

would be a symmetry if the phase of �4 would be the same as !, as CPh2 [I] = !I⇤. So here

we are confronted with the puzzling situation where a VEV configuration is more symmetric

than the original Lagrangian. This is also denoted as calculable phases.

This conundrum can be solved if there is a generalised CP trafo that is left invariant by

the VEV and is compatible with �4 being real. Since we have a complete classification of

all generalised CP transformations we can answer this question and indeed we find the CP

transformation
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We investigate the possibility of having spontaneous T violation arising from complex vacuum expectation values with 
calculable phases, assuming geometrical values, entirely determined by the symmetry of the scalar potential. 

It is well known [1 ] that in a theory with spon- 
taneous T violation, the breaking of this discrete sym- 
metry originates in phases coming from complex vac- 
uum expectation values (VEV's) of neutral scalars. In 
general, these phases depend on the values of the ar- 
bitrary parameters of the scalar potential. In this paper, 
we analyse the possibility of having these vacuum 
phases as "calculable quantities", assuming geometri- 
cal values entirely determined by some extra symme- 
try present in the scalar potential. We are particularly 
interested in investigating whether VEV's of this type 
can indeed cause a genuine breaking of T invariance. 
At this point it is worthwhile to dwell on the motiva- 
tion for investigating the above question. Obviously, 
having a calculable T-violating phase would represent 
one less free parameter in the theory. The desirability 
of having "geometrical values" for T-violating vacuum 
angles stems also from a phenomenological reason. 
The recently obtained constraints on the quark mix- 
ing angles [2] suggest that for a not very heavy top 
quark mass the Kobayashi-Maskawa (KM) phase 
(6KM) could be rather large [3]. However, a large val- 
ue for t~KM is hard to understand within the class of 
models which attempt to express t~KM , together with 
the other quark mixing angles, in terms of quark mass 
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ratios. Typically [4], one obtains too small values for 
tSKM , incompatible with the observed strength of CP 
breaking. The hope is then that in the class of theories 
considered here ~iKM can be both calculable and natu- 
rally large. 

Next, we shall search for a minimal model with cal- 
culable T-violating vacuum angles. We restrict our- 
selves to the Glashow-Weinberg-Salam model with n 
scalar multiplets ¢i transforming as SU(2) doublets. 
We will start by deriving some general conditions 
which have to be satisfied in order to have a T-invari- 
ant vacuum. Since we will consider theories which 
may be invariant under linear transformations which 
mix the various ~i's, we will assume the most general 
T transformation, defined by: 

T~i T -  I = Ui]¢~ / . (1) 

If the vacuum is T-invariant, then the following rela- 
tion can be easily derived: 

Ui~(Ol~]lO)* = (01~il0). (2) 

Given a particular set of VEV's, the simplest way of 
investigating whether they correspond to a T-breaking 
solution, is to construct an unitary matrix U satisfying 
eq. (2). If  there is no matrix Uwhich satisfies eq. (2) 
and corresponds at the same time to a symmetry of 
the lagrangian, namely: 

383 
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Calculable Phases as a Result of an 
accidental generalized CP transformation 

! every automorphism corresponds to a generalized CP 
transformation 

!   this allows one to search for gCP transformation that 
leaves                           invariant and gives a real λ4  

! indeed there is such a gCP transformation: 
 
 
 

!   potential invariant under a larger symmetry 
! this CP-like trafo does not correspond to physical CP 

!   still fixes phases 

 

 

We will use this matrix later on. Let us now use this machinery to tackle a physical question,

namely the so-called geometrical CP violation. ’Geometrical’ CP-violation [4] denotes the

following: If one considers a triplet of Higgs doublets H = (H1, H2, H3) ⇠ 3 the only phase

dependent term in the scalar potential is given by

I ⌘
X

i 6=j 6=k

(H†
iHj)(H

†
iHk). (4.49)

Let us now investigate how the term transforms under the two generators u1 and u2 of the

outer automorphism group. We find

CPu1 [I] = �1

3
I⇤ +

2

3
I +

X

i

1

3
(H†

iHi)
2 +

X

i 6=j

(H†
iHi)(H

†
jHj), CPu2 [I] = !2I (4.50)

and we thus find the invariant combinations

CPu1 [I � I⇤] = I � I⇤ CPu3
2
[I] = I (4.51)

Clearly invariance under u1 requires further non-trivial relations among the other couplings

in the scalar potential which do not depend on phases and thus do not concern us here.

Let us investigate the case where the theory is invariant under h1 which corresponds to

the ’usual’ CP transformation � ! �⇤ and forces the coupling �4 multiplying I to be real.

For �4 < 0 one finds the global minimum

hHi = vp
3
(1,!,!2) (4.52)

and for �4 > 0 one finds

hHi = vp
3
(!2, 1, 1). (4.53)

Both VEV configurations correspond to generalised CP transformations H ! UH⇤. For

�4 < 0 it is for example given by U = ⇢(B2) which is clearly part of �(27) and therefore

up to an inner automorphism corresponds to h1. The phases of the VEVs thus do not imply

spontaneous CP violation. For �4 > 0 the VEV configuration leaves the CP transformation

corresponding to the outer automorphism h2 given in Eq. (4.48) invariant. However, there is

something that is much harder to understand about this VEV configuration: the generalised

CP symmetry corresponding to this configuration is not a symmetry of the Lagrangian. It

would be a symmetry if the phase of �4 would be the same as !, as CPh2 [I] = !I⇤. So here

we are confronted with the puzzling situation where a VEV configuration is more symmetric

than the original Lagrangian. This is also denoted as calculable phases.

This conundrum can be solved if there is a generalised CP trafo that is left invariant by

the VEV and is compatible with �4 being real. Since we have a complete classification of

all generalised CP transformations we can answer this question and indeed we find the CP

transformation
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which represents the outer automorphism u : (A,B) ! (AB2AB,AB2A2) via Eq. (2.8),

where u = u32 � conj(A) and that gives

CPu[hHi] = hHi for hHi = vp
3
(!2, 1, 1), CPu[I] = I (4.55)

Note that this CP transformation acts as H ! ŨH, which is not something you would

naively expect, but it is an outer automorphism and therefore it is justified to call it a

CP transformation. Furthermore, this becomes apparent when one looks at how the outer

automorphism u acts on representations. It interchanges the one-dimensional representations

12 $ 13, 15 $ 19, 16 $ 18, (4.56)

making the ”CP-character” of the transformation more apparent. An alternative independent

explanation of geometric CP violation has been given in Ref. [31].

4.5 Z9 o Z3
⇠= SG(27, 4)

Similarly to �(27), the group Z9 o Z3 = SG(27, 4) =
⌦

A,B|A9 = B3 = BAB2A2 = E
↵

22 has

a more complicated automorphism group structure. The group is the semi-direct product

of Z9 generated by A (with A9 = E) with Z3 generated by B (with B3 = E) defined by

BAB�1 = A7. The centre of the group is isomorphic to Z3 and generated by A3. Hence,

the inner automorphism group has the structure Z3 ⇥ Z3. The outer automorphism group is

generated by

u1 :(A,B) ! (AB,B2A6B2A3) (4.57)

u2 :(A,B) ! (AB4AB4A6, B2A6B2A6) .

and the structure of the automorphism group may be summarised as

Z(G) ⇠= Z3 Aut(G) ⇠= ((Z3 ⇥ Z3)o Z3)o Z2 (4.58)

Inn(G) ⇠= Z3 ⇥ Z3 Out(G) ⇠= S3 .

There is a faithful three dimensional representation given by

⇢(A) =

0

B

@

0 1 0

0 0 !2

!2 0 0

1

C

A

, ⇢(B) =

0

B

@

!2 0 0

0 1 0

0 0 !

1

C

A

. (4.59)

The generators of the outer automorphisms can be obtained in the same way as before and

act on (3,3⇤) as

U(u1) =

 

0 Ũ

Ũ⇤ 0

!

with Ũ = diag(1, 1,!2) (4.60)

22The possibility of having Z9 o Z3 as a flavour group in the lepton sector has been first mentioned in

Ref. [36].
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(!2, 1, 1), CPu[I] = I (4.55)

Note that this CP transformation acts as H ! ŨH, which is not something you would
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CP transformation. Furthermore, this becomes apparent when one looks at how the outer
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We will use this matrix later on. Let us now use this machinery to tackle a physical question,

namely the so-called geometrical CP violation. ’Geometrical’ CP-violation [4] denotes the

following: If one considers a triplet of Higgs doublets H = (H1, H2, H3) ⇠ 3 the only phase

dependent term in the scalar potential is given by

I ⌘
X

i 6=j 6=k

(H†
iHj)(H

†
iHk). (4.49)

Let us now investigate how the term transforms under the two generators u1 and u2 of the

outer automorphism group. We find
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2 +
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jHj), CPu2 [I] = !2I (4.50)

and we thus find the invariant combinations

CPu1 [I � I⇤] = I � I⇤ CPu3
2
[I] = I (4.51)

Clearly invariance under u1 requires further non-trivial relations among the other couplings

in the scalar potential which do not depend on phases and thus do not concern us here.

Let us investigate the case where the theory is invariant under h1 which corresponds to

the ’usual’ CP transformation � ! �⇤ and forces the coupling �4 multiplying I to be real.

For �4 < 0 one finds the global minimum

hHi = vp
3
(1,!,!2) (4.52)

and for �4 > 0 one finds

hHi = vp
3
(!2, 1, 1). (4.53)

Both VEV configurations correspond to generalised CP transformations H ! UH⇤. For

�4 < 0 it is for example given by U = ⇢(B2) which is clearly part of �(27) and therefore

up to an inner automorphism corresponds to h1. The phases of the VEVs thus do not imply

spontaneous CP violation. For �4 > 0 the VEV configuration leaves the CP transformation

corresponding to the outer automorphism h2 given in Eq. (4.48) invariant. However, there is

something that is much harder to understand about this VEV configuration: the generalised

CP symmetry corresponding to this configuration is not a symmetry of the Lagrangian. It

would be a symmetry if the phase of �4 would be the same as !, as CPh2 [I] = !I⇤. So here

we are confronted with the puzzling situation where a VEV configuration is more symmetric

than the original Lagrangian. This is also denoted as calculable phases.

This conundrum can be solved if there is a generalised CP trafo that is left invariant by

the VEV and is compatible with �4 being real. Since we have a complete classification of

all generalised CP transformations we can answer this question and indeed we find the CP

transformation
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which represents the outer automorphism u : (A,B) ! (AB2AB,AB2A2) via Eq. (2.8),

where u = u32 � conj(A) and that gives

CPu[hHi] = hHi for hHi = vp
3
(!2, 1, 1), CPu[I] = I (4.55)

Note that this CP transformation acts as H ! ŨH, which is not something you would

naively expect, but it is an outer automorphism and therefore it is justified to call it a

CP transformation. Furthermore, this becomes apparent when one looks at how the outer

automorphism u acts on representations. It interchanges the one-dimensional representations

12 $ 13, 15 $ 19, 16 $ 18, (4.56)

making the ”CP-character” of the transformation more apparent. An alternative independent

explanation of geometric CP violation has been given in Ref. [31].
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⌦
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↵

22 has

a more complicated automorphism group structure. The group is the semi-direct product

of Z9 generated by A (with A9 = E) with Z3 generated by B (with B3 = E) defined by

BAB�1 = A7. The centre of the group is isomorphic to Z3 and generated by A3. Hence,
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generated by
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1

C

A

, ⇢(B) =
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B
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0 1 0

0 0 !

1

C

A

. (4.59)

The generators of the outer automorphisms can be obtained in the same way as before and

act on (3,3⇤) as

U(u1) =

 

0 Ũ

Ũ⇤ 0

!

with Ũ = diag(1, 1,!2) (4.60)

22The possibility of having Z9 o Z3 as a flavour group in the lepton sector has been first mentioned in

Ref. [36].
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which represents the outer automorphism u : (A,B) ! (AB2AB,AB2A2) via Eq. (2.8),
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Calculable Phases as a Result of an 
accidental generalized CP transformation 

!   a symmetric potential can have a symmetric ground 
state 
! phases are dictated by accidental gCP symmetry 
! explains the independence from potential parameters 

! this setup is interesting for phenomenlogy: 
! if accidental symmetry only of potential, not of 

Yukawas, it can be used to predict phases etc. 

! need groups with large outer automorphism group 
! notice that shaping symmetries have large outer 

automorphism groups 

! mechanism similar to vacuum alignment mechanisms 
|OutZ4

4 | = 1321205760



T‘ and CP 
!   T‘ double cover of A4: 

! complex Clebsch-Gordon coeffients as a possible new origin of CP 
violation?[Chen, Mahanthappa 09 ] 
! vague notions of CP = reality of couplings were used 

!   VEVs assumed real 

 

It can be easily checked that the generalised CP transformation � ! U3�⇤ acts as

I ⌘


⇣

�†
1�2

⌘2
+

⇣

�†
2�3

⌘2
+

⇣

�†
3�1

⌘2
�

!


⇣

�†
1�2

⌘2
+

⇣

�†
2�3

⌘2
+

⇣

�†
3�1

⌘2
�

= I (4.20)

and thus does not give a restriction on the phase of �5. Note that the naive CP transformation

� ! �⇤ transforms the group invariant I into I⇤ and therefore restricts �5 to be real as was

e.g. done in Ref. [25]. However, we have seen that this naive CP transformation cannot

be consistently implemented on the Lagrangian level if there are complex representations,

unless it is either the trivial generalised CP transformation, idA4 , or the symmetry group

A4 is extended such that it is closed under this naive CP transformation. Therefore it is

inappropriate to call the phase of �5 a CP phase. This also explains an observation made in

Ref. [24], where it was shown that even for arg �5 6= 0 the VEV configuration

h�i = V (1, 1, 1), h�i = V (1, 0, 0) V 2 , (4.21)

which of course respects both, the trivial as well as the non-trivial, generalised CP transfor-

mations, can be obtained without fine-tuning. This would have been somewhat surprising, as

usually symmetry conserving solutions cannot be obtained from explicitly symmetry breaking

potentials. However, the phase of �5 does not break the consistent definition of generalised

CP, i.e. does not violate condition (2.6), as does the VEV configuration (4.21), therefore

everything is consistent.

4.3 T 0 ⇠= SG(24, 3)

The group T 0 =
⌦

S, T |S4 = T 3 = (ST )3 = E
↵ ⇠= SL(2, 3) 15, is also an important group in

the context of CP violation [6; 7]. It has two elements Z(T 0) = {E,S2} ⇠= Z2 that commute

with all group elements and therefore Inn(T 0) ⇠= T 0/Z(T 0) ⇠= A4. There is one non-trivial

outer automorphism (up to inner automorphisms) u : (S, T ) ! (S3, T 2). Therefore the

automorphism structure can be summarised as:

Z(T 0) ⇠= Z2 Aut(T 0) ⇠= S4 (4.22)

Inn(T 0) ⇠= A4 Out(T 0) ⇠= Z2

A non-trivial CP transformation therefore has to be a representation of u in the sense of

Eq. (2.6). Let us now see how it is represented for the various representations of T 0.

There is a faithful pseudo-real representation

21 : S = A1, T = !A2 (4.23)

with �†
2S�2 = S⇤ and �†

2T�2 = T ⇤ and the two faithful complex representations

22 : S = A1 T = !2A2; 23 : S = A1, T = A2 (4.24)

15T 0 has been first discussed in a particle physics context in [32].
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with �†
2S20�2 = S⇤

200 and �†
2T20�2 = T ⇤

200 where

A1 =
�1p
3

 

i !̃
p
2

�!̃�1
p
2 �i

!

, A2 =

 

! 0

0 1

!

(4.25)

with !̃ = e2⇡i/24. For all two-dimensional representations, we find the matrix

U = U2 ⌘ diag(!̃�5, !̃5) (4.26)

which represents the automorphism u via U⇢(g)⇤U�1 = ⇢(u(g)). For the three-dimensional

representation

⇢(S) =
1

3

0

B

@

�1 2! 2!2

2!2 �1 2!

2! 2!2 �1

1

C

A

, ⇢(T ) =

0

B

@

1 0 0

0 ! 0

0 0 !2

1

C

A

(4.27)

the matrix U of Eq. (2.4) is given by U = ⇢(T ) with again U⇢(T )⇤U�1 = ⇢(T 2), U⇢(S)⇤U =

⇢(S3), for the one dimensional representations we take U = ⇢(T ) as for the three-dimensional

representations.

In summary, we have thus found the one unique non-trivial outer automorphism (up to

inner automorphisms) of T 0 and thus the unique CP transformation

1i ! !i�11⇤i 2i ! diag(!̃�5, !̃5)2⇤i 3 ! diag(1,!,!2)3⇤. (4.28)

Let us now use this insight to investigate a claim that there is geometrical CP violation in

grand unified models based on T 0[6; 7]. We consider the model discussed in [6] and introduce

(T1, T2) ⇠ 21 which transforms as 10 of SU(5) and includes the first two generations of up-

type quarks and the flavons � ⇠ 3 and �0 ⇠ 3. Auxiliary Z12⇥Z12 symmetries are introduced

such that the one-two sector of the mass matrix is described by16

�LTT = ycTT�
2 + yuTT�

03 + h.c. (4.29)

⌘ yc
3

2

2� i

2
(TT )3(�

2)3 + yu
1

3
[(TT )3�

0]13
(�02)12

+ h.c.

= yc
3

2

2� i

2

�

(1� i)T1T2 (�
2
1 � �2�3) + i T 2
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�

�2
2 � �1�3

�

+ T 2
2

�

�2
3 � �1�2

� 

+

+ yu
1

3

n⇣

2�0
1�

0
3 + �0

2
2
⌘

�

iT 2
1 �

0
1 + (1� i)T1T2�

0
2 + T 2

2 �
0
3

�

o

+ h.c. ,

where we have omitted (Higgs-) fields that do not transform under the flavour symmetry and

a suppression by some high-energy scale of a su�cient power to make yi dimensionless is

understood.

It is assumed that the VEVs

⌦

�0↵ = (1, 1, 1)V 0, h�i = (0, 0, 1)V V, V 0 2 (4.30)

16We use the Clebsch-Gordan coe�cients given in App. A of [33] for the Kronecker products.
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T‘ and CP 
! Only predictive scenario:  

! impose CP  on Lagrangian, break it spontaneously 

!   explicit breaking is basis dependent and thus not 
predictive 

! Using the generalized CP formalism we can see that 
there is exactly one CP transformation which forces 
VEVs of triplets to be real 

are real, which may be justified by a CP transformation. There is only one CP trans-

formation17 left invariant, namely the one corresponding to the outer automorphism u0 =

conj(T 2) � u represented on the three dimensional representation by the identity matrix

1i ! 1⇤i 2i ! diag(!!̃�5,!�1!̃5)2⇤i 3 ! 3⇤. (4.31)

and therefore h�0i ! h�0i⇤ and h�i ! h�i⇤.
This results in the following 1-2 block of the up-type quark mass matrix Mu:

yu

 

i 1�i
2

1�i
2 1

!

V 03 + yc

 

0 0

0 1� i
2

!

V 2 . (4.32)

At this point the parameters yu,c and VEVs are chosen real and it is claimed that the phases

emerging from the complex Clebsch-Gordon coe�cients explain CP violation. Therefore it is

natural to ask whether this choice of parameters can be justified by a symmetry. The only

candidate symmetry is a generalised CP symmetry of type (2.6), which we explicitly state in

Eq. (4.31). As we have shown how the various fields have to transform under the generalised

CP symmetry we can now easily determine how the invariants of Eq. (4.29) transform 18:

CP [TT�2] = �4 + 3i

5
(TT�2)⇤ CP [TT�03] = �i(TT�03)⇤. (4.33)

Therefore invariance under CP requires arg(yc) = �1
2 arg(�4�3i) = �1

2 arctan
3
4 and arg yu =

⇡
4 and the generalised CP (4.31) is explicitly broken by real couplings yu, yc, which was

assumed in Ref. [6]. Note that also the relative phase between the two couplings does not

agree with ’geometrical’ CP violation. This also shows that the results obtained in Ref. [6]

are completely basis dependent and therefore unphysical.

Although the VEVs (4.30) are invariant under the generalised CP transformation (4.31),

in the full model [6] there are additional scalar fields e.g.  ⇠ 22 with h i ⇠ (1, 0) which

are not invariant under the generalised CP transformation (4.31). Hence, if the phases of the

couplings are changed in accordance with the consistent CP transformation (4.31), CP will be

broken spontaneously. Obviously, all predictions depend on the VEV alignment. In Ref. [6],

no dynamical mechanism was given to generate the VEV configuration.

Di↵erent invariants were used in the other grand unified T 0 model [7] claiming a geometric

origin of CP violation. In the following, we argue that the CP phases in this model do not

have a geometric origin as well. The argument is done in two steps: 1) We choose a CP

transformation, which is not broken by the VEVs. 2) CP is explicitly broken by two di↵erent

couplings in the superpotential.

1) As the CP transformation defined in Eq. (4.31) is not broken by real VEVs of the

singlet and triplet flavons, it is enough to consider the four doublets  0(0) = ( 0(0)
1 , 0(0)

2 )T and

17Note that this also determines the global phase of U .
18Note that inner automorphisms correspond to group transformations and therefore only outer automor-

phism can give non-trivial constraints when acting on group invariants. Here there is only one non-trivial outer

automorphism(up to inner automorphisms).
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It can be easily checked that the generalised CP transformation � ! U3�⇤ acts as
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= I (4.20)

and thus does not give a restriction on the phase of �5. Note that the naive CP transformation

� ! �⇤ transforms the group invariant I into I⇤ and therefore restricts �5 to be real as was

e.g. done in Ref. [25]. However, we have seen that this naive CP transformation cannot

be consistently implemented on the Lagrangian level if there are complex representations,

unless it is either the trivial generalised CP transformation, idA4 , or the symmetry group

A4 is extended such that it is closed under this naive CP transformation. Therefore it is

inappropriate to call the phase of �5 a CP phase. This also explains an observation made in

Ref. [24], where it was shown that even for arg �5 6= 0 the VEV configuration

h�i = V (1, 1, 1), h�i = V (1, 0, 0) V 2 , (4.21)

which of course respects both, the trivial as well as the non-trivial, generalised CP transfor-

mations, can be obtained without fine-tuning. This would have been somewhat surprising, as

usually symmetry conserving solutions cannot be obtained from explicitly symmetry breaking

potentials. However, the phase of �5 does not break the consistent definition of generalised

CP, i.e. does not violate condition (2.6), as does the VEV configuration (4.21), therefore

everything is consistent.

4.3 T 0 ⇠= SG(24, 3)

The group T 0 =
⌦

S, T |S4 = T 3 = (ST )3 = E
↵ ⇠= SL(2, 3) 15, is also an important group in

the context of CP violation [6; 7]. It has two elements Z(T 0) = {E,S2} ⇠= Z2 that commute

with all group elements and therefore Inn(T 0) ⇠= T 0/Z(T 0) ⇠= A4. There is one non-trivial

outer automorphism (up to inner automorphisms) u : (S, T ) ! (S3, T 2). Therefore the

automorphism structure can be summarised as:

Z(T 0) ⇠= Z2 Aut(T 0) ⇠= S4 (4.22)

Inn(T 0) ⇠= A4 Out(T 0) ⇠= Z2

A non-trivial CP transformation therefore has to be a representation of u in the sense of

Eq. (2.6). Let us now see how it is represented for the various representations of T 0.

There is a faithful pseudo-real representation

21 : S = A1, T = !A2 (4.23)

with �†
2S�2 = S⇤ and �†

2T�2 = T ⇤ and the two faithful complex representations

22 : S = A1 T = !2A2; 23 : S = A1, T = A2 (4.24)

15T 0 has been first discussed in a particle physics context in [32].
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unless it is either the trivial generalised CP transformation, idA4 , or the symmetry group

A4 is extended such that it is closed under this naive CP transformation. Therefore it is

inappropriate to call the phase of �5 a CP phase. This also explains an observation made in

Ref. [24], where it was shown that even for arg �5 6= 0 the VEV configuration

h�i = V (1, 1, 1), h�i = V (1, 0, 0) V 2 , (4.21)

which of course respects both, the trivial as well as the non-trivial, generalised CP transfor-

mations, can be obtained without fine-tuning. This would have been somewhat surprising, as

usually symmetry conserving solutions cannot be obtained from explicitly symmetry breaking

potentials. However, the phase of �5 does not break the consistent definition of generalised

CP, i.e. does not violate condition (2.6), as does the VEV configuration (4.21), therefore

everything is consistent.

4.3 T 0 ⇠= SG(24, 3)

The group T 0 =
⌦

S, T |S4 = T 3 = (ST )3 = E
↵ ⇠= SL(2, 3) 15, is also an important group in

the context of CP violation [6; 7]. It has two elements Z(T 0) = {E,S2} ⇠= Z2 that commute

with all group elements and therefore Inn(T 0) ⇠= T 0/Z(T 0) ⇠= A4. There is one non-trivial

outer automorphism (up to inner automorphisms) u : (S, T ) ! (S3, T 2). Therefore the

automorphism structure can be summarised as:

Z(T 0) ⇠= Z2 Aut(T 0) ⇠= S4 (4.22)

Inn(T 0) ⇠= A4 Out(T 0) ⇠= Z2

A non-trivial CP transformation therefore has to be a representation of u in the sense of

Eq. (2.6). Let us now see how it is represented for the various representations of T 0.

There is a faithful pseudo-real representation

21 : S = A1, T = !A2 (4.23)

with �†
2S�2 = S⇤ and �†

2T�2 = T ⇤ and the two faithful complex representations

22 : S = A1 T = !2A2; 23 : S = A1, T = A2 (4.24)

15T 0 has been first discussed in a particle physics context in [32].
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and thus does not give a restriction on the phase of �5. Note that the naive CP transformation
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e.g. done in Ref. [25]. However, we have seen that this naive CP transformation cannot

be consistently implemented on the Lagrangian level if there are complex representations,
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with all group elements and therefore Inn(T 0) ⇠= T 0/Z(T 0) ⇠= A4. There is one non-trivial
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Inn(T 0) ⇠= A4 Out(T 0) ⇠= Z2
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with !̃ = e2⇡i/24. For all two-dimensional representations, we find the matrix

U = U2 ⌘ diag(!̃�5, !̃5) (4.26)

which represents the automorphism u via U⇢(g)⇤U�1 = ⇢(u(g)). For the three-dimensional

representation

⇢(S) =
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2!2 �1 2!
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(4.27)

the matrix U of Eq. (2.4) is given by U = ⇢(T ) with again U⇢(T )⇤U�1 = ⇢(T 2), U⇢(S)⇤U =

⇢(S3), for the one dimensional representations we take U = ⇢(T ) as for the three-dimensional

representations.

In summary, we have thus found the one unique non-trivial outer automorphism (up to

inner automorphisms) of T 0 and thus the unique CP transformation

1i ! !i�11⇤i 2i ! diag(!̃�5, !̃5)2⇤i 3 ! diag(1,!,!2)3⇤. (4.28)

Let us now use this insight to investigate a claim that there is geometrical CP violation in

grand unified models based on T 0[6; 7]. We consider the model discussed in [6] and introduce

(T1, T2) ⇠ 21 which transforms as 10 of SU(5) and includes the first two generations of up-

type quarks and the flavons � ⇠ 3 and �0 ⇠ 3. Auxiliary Z12⇥Z12 symmetries are introduced
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where we have omitted (Higgs-) fields that do not transform under the flavour symmetry and

a suppression by some high-energy scale of a su�cient power to make yi dimensionless is

understood.
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with !̃ = e2⇡i/24. For all two-dimensional representations, we find the matrix

U = U2 ⌘ diag(!̃�5, !̃5) (4.26)

which represents the automorphism u via U⇢(g)⇤U�1 = ⇢(u(g)). For the three-dimensional

representation

⇢(S) =
1

3

0

B

@

�1 2! 2!2

2!2 �1 2!

2! 2!2 �1

1

C

A

, ⇢(T ) =

0

B

@

1 0 0

0 ! 0

0 0 !2

1

C

A

(4.27)

the matrix U of Eq. (2.4) is given by U = ⇢(T ) with again U⇢(T )⇤U�1 = ⇢(T 2), U⇢(S)⇤U =

⇢(S3), for the one dimensional representations we take U = ⇢(T ) as for the three-dimensional

representations.
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where we have omitted (Higgs-) fields that do not transform under the flavour symmetry and
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where we have omitted (Higgs-) fields that do not transform under the flavour symmetry and

a suppression by some high-energy scale of a su�cient power to make yi dimensionless is

understood.

It is assumed that the VEVs
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16We use the Clebsch-Gordan coe�cients given in App. A of [33] for the Kronecker products.
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where we have omitted (Higgs-) fields that do not transform under the flavour symmetry and

a suppression by some high-energy scale of a su�cient power to make yi dimensionless is

understood.

It is assumed that the VEVs

⌦

�0↵ = (1, 1, 1)V 0, h�i = (0, 0, 1)V V, V 0 2 (4.30)

16We use the Clebsch-Gordan coe�cients given in App. A of [33] for the Kronecker products.

14

E T T 2

11 1 1 1

12 1 ! !2

13 1 !2 !

Table 1: Character table of Z3 with ! = e2⇡i/3. The outer automorphism u : T ! T 2 is

indicated in blue.

Looking at the character table in Tab. 1, we see that the outer automorphism u : T ! T 2 in-

dicated in blue acts on the character table by interchanging the conjugacy classes represented

by T and u(T ) = T 2 and the representations 12 $ 12 �u = 13, i.e. the rows and columns of

the character table, such that the table stays invariant, as an outer automorphism should do.

Let us consider a theory that contains the complex representation ' ⇠ 12. The vector

� = (','⇤)T is acted upon by the group generator T as

⇢(T ) =

 

! 0

0 !2

!

(4.2)

and we have ⇢(T )⇤ = ⇢(T 2) = ⇢(u(T )) 2 Im⇢ and therefore U = 2 is a representation of the

outer automorphism u : T ! T 2. The generalised CP transformation (2.4) is therefore just

the usual ' ! '⇤.

The matrix W relating the representation 12�13 with its complex conjugate is given by

W =

 

0 1

1 0

!

(4.3)

and U = W represents the trivial automorphism, or ' ! '.

While here it is trivial to find a matrix U representing the outer automorphism u, it is

instructive to demonstrate the general method of constructing the semi-direct product group

G0 = Z3 o CP introduced in sec. 2 explicitly . It is given by Z3 o Z2, where Z3 is generated

by T and Z2 by the automorphism u. Hence, its elements are

�

(E, id), (T, id), (T 2, id), (E, u), (T, u), (T 2, u)
 

(4.4)

and the multiplication is defined by

(g1, u1) ? (g2, u2) ⌘ (g1u1(g2), u1 � u2) , (4.5)

which defines a non-abelian group of order 6 and it is isomorphic to S3 being the only non-

abelian group of order 6. It has two generators: (T, id) and (E, u). The outer automorphism

u : T ! T 2 of Z3 corresponds to the inner automorphism conj((E, u)) : Z3 o Z2 3 g !
(E, u) ? g ? (E, u)�1 of Z3 o Z2

⇠= S3. The group S3 has four representations: 11,2 and 2;

only the 2-dimensional representation is faithful and the generators are given by

⇢2((T, id)) =

 

! 0

0 !2

!

, and ⇢2((E, u)) =

 

0 1

1 0

!

. (4.6)
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T‘ and CP 
are real, which may be justified by a CP transformation. There is only one CP trans-

formation17 left invariant, namely the one corresponding to the outer automorphism u0 =

conj(T 2) � u represented on the three dimensional representation by the identity matrix

1i ! 1⇤i 2i ! diag(!!̃�5,!�1!̃5)2⇤i 3 ! 3⇤. (4.31)

and therefore h�0i ! h�0i⇤ and h�i ! h�i⇤.
This results in the following 1-2 block of the up-type quark mass matrix Mu:

yu

 

i 1�i
2

1�i
2 1

!

V 03 + yc

 

0 0

0 1� i
2

!

V 2 . (4.32)

At this point the parameters yu,c and VEVs are chosen real and it is claimed that the phases

emerging from the complex Clebsch-Gordon coe�cients explain CP violation. Therefore it is

natural to ask whether this choice of parameters can be justified by a symmetry. The only

candidate symmetry is a generalised CP symmetry of type (2.6), which we explicitly state in

Eq. (4.31). As we have shown how the various fields have to transform under the generalised

CP symmetry we can now easily determine how the invariants of Eq. (4.29) transform 18:

CP [TT�2] = �4 + 3i

5
(TT�2)⇤ CP [TT�03] = �i(TT�03)⇤. (4.33)

Therefore invariance under CP requires arg(yc) = �1
2 arg(�4�3i) = �1

2 arctan
3
4 and arg yu =

⇡
4 and the generalised CP (4.31) is explicitly broken by real couplings yu, yc, which was

assumed in Ref. [6]. Note that also the relative phase between the two couplings does not

agree with ’geometrical’ CP violation. This also shows that the results obtained in Ref. [6]

are completely basis dependent and therefore unphysical.

Although the VEVs (4.30) are invariant under the generalised CP transformation (4.31),

in the full model [6] there are additional scalar fields e.g.  ⇠ 22 with h i ⇠ (1, 0) which

are not invariant under the generalised CP transformation (4.31). Hence, if the phases of the

couplings are changed in accordance with the consistent CP transformation (4.31), CP will be

broken spontaneously. Obviously, all predictions depend on the VEV alignment. In Ref. [6],

no dynamical mechanism was given to generate the VEV configuration.

Di↵erent invariants were used in the other grand unified T 0 model [7] claiming a geometric

origin of CP violation. In the following, we argue that the CP phases in this model do not

have a geometric origin as well. The argument is done in two steps: 1) We choose a CP

transformation, which is not broken by the VEVs. 2) CP is explicitly broken by two di↵erent

couplings in the superpotential.

1) As the CP transformation defined in Eq. (4.31) is not broken by real VEVs of the

singlet and triplet flavons, it is enough to consider the four doublets  0(0) = ( 0(0)
1 , 0(0)

2 )T and

17Note that this also determines the global phase of U .
18Note that inner automorphisms correspond to group transformations and therefore only outer automor-

phism can give non-trivial constraints when acting on group invariants. Here there is only one non-trivial outer

automorphism(up to inner automorphisms).
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•  even if you phase rotate T you can only make one of the 
couplings real, therefore explicit breaking of CP 

•  agrees with recent finding of [Chen et al. 14] 
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Conclusions 

! Consistency Conditions should be kept in mind when 
constructing models that contain CP and Flavour 
Symmetries 

! generalized CP transformations may be interpreted as 
furnishing a representation of the automorphism 
group 
! physical CP depends on field content 

! geometrical CP violation seems to be a consequence of 
(accidental) generalized CP symmetries of the potential 

! maybe automorphisms may be used in model building 
more generally 


