

CP in Models with Discrete Flavour Symmetries

based on JHEP 1304 (2013) 122 [arXiv:1211.6953] with Manfred Lindner (HD) and Michael A. Schmidt (Melbourne)

FLASY 2014, Brighton

Martin Holthausen Max-Planck-Institut für Kernphysik Heidelberg

A new search engine									
Google	flasy 2014		Web Bilder Videos	Telefonbuch					
	Web Bilder Shopping Videos	News Mehr - Suchoptic	ixquick	flasy 2014 Ungefähr 7.872 Ergebnisse					
	Ungefähr 5.560.000.000 Ergebnisse (0,26 Sek	unden)		Meinten Sie: flash 2014					
	FLASY 2014 - Fourth workshop of https://indico.cern.ch/event/289204/ Diese S The FLASY Workshops are intended to bring to symmetries, neutrino physics, CP violation, and Sie haben diese Seite 2 Mal aufgerufen. Letzte	In flavour symmetries and Seite übersetzen logether researchers in the field of f ccelerator physics and er Besuch: 03.06.14	 Alle Letzte 24 Std. Letzte Woche Letzter Monat 	Flash Player Adobe Flash Player 12 Überblick ★ 04/30/2014: AIR app installs cross a billion: 04/21/2014: Adobe AIR now su Flash Player and AIR 13 Released: Anwendungsbeispiele: Mehr: www.adobe.com/de/products/flashplayer.html - Proxy - Markieren Adobe - Adobe Flash Player installieren ★					
	Timetable FLASY 2014 - Fourth workshop on flavour symmetries and	Registration Form FLASY 2014 - Fourth workshor flavour symmetries and	Letztes Jahr	Copyright © 2014 Adobe Systems Software Ireland Ltd. All rights reserved. für den Datenschutz Cookies get.adobe.com/de/flashplayer/ - <u>Proxy</u> - <u>Markieren</u>					
	Excursion and dinner FLASY 2014 - Fourth workshop on flavour symmetries and	Scientific Programme Scientific Programme. Flavour Symmetries: Discrete		Adobe Flash – Wikipedia ★ Juni 2014: Legende: Ältere Version; nicht mehr unterstützt. Ältere Version; Zukünftige Version. Datenschutz https://de.wikipedia.org/wiki/Adobe_Flash - Proxy - Markieren					
	Conference Fee and	Directions The University of Sussex camp mer, on the		2014 Nisan eflasyon rakamları ve borsaya satış getirdi 2014 Nisan eflasyon rakamları ve borsaya satış getirdi 2014 Nisan eflasyor www.borsaajans.com/ haber/ 2014-nisan-eflasyon-rakamlari-ve-borsaya-sat					
	ixquick™	t für Kernphy		Urban Dictionary: Flasy ★ Flasy. Fucking lame ass shit, yo. "Dude, this is flasy. It snowed 2 feet in tw crib with the mom and 1999-2014 Urban Dictionary www.urbandictionary.com/define.php?term=Flasy - Proxy - Markieren					

Security Check Required | Facebook ★ Facebook © 2014 · English (US) ... https://www.facebook.com/layaly.flasy - Proxy - Markieren

Jesus - Intensify Your Intent and Determination to Awaken! - Ap Jesus via John Smallman: Intensify Your Intent and Determination to Awake https://www.youtube.com/watch?v=_vWMCflASyw - <u>Proxy</u> - <u>Markieren</u>

New flasy 14 - Sepatu Sendal Batik Handmade *

Bilder zu flasy 2014

the world's most private search engine

Unangemessene Bilder

14

Q

on Old and New T I4 [Link] ...

CP Violation and Flavour

- CP Violation so far only observed in flavour sector
 - CP violation in lepton sector within exp. reach
- flavour symmetries are one possible explanation of the flavour puzzle
 - non-abelian discrete symmetries are motivated by close to maximal atmospheric mixing
- Goal of this talk: Clear up some issues surrounding the compatablility of ^t CP and discrete flavour symmetries

$$I = \xi \left(\chi_1 \chi_1 + \omega^2 \chi_2 \chi_2 + \omega \chi_3 \chi_3 \right) \sim \underline{\mathbf{1}}_{\mathbf{1}}$$

is mapped to sth. not invariant:

$$CP[I] = \xi^* \left(\chi_1^* \chi_1^* + \omega^2 \chi_2^* \chi_2^* + \omega \chi_3^* \chi_3^* \right) \sim \underline{\mathbf{1}}_{\mathbf{2}}$$

- CP extends the group A4 and forbids this invariant??
- Is it possible to impose CP without forbidding wanted couplings?

How to define CP consistently

• Consider the vector made up out of all real(R), pseudo-real (P) and complex (C) representations of a given model

$$\phi = \left(\begin{array}{ccc} \varphi_R, & \varphi_P, & \varphi_P^*, & \varphi_C, & \varphi_C^* \end{array} \right)^T$$

- under the group G it transforms as $\phi \xrightarrow{G} \rho(g)\phi$, $g \in G$.
- the (reducible) representation $\,\rho:G\to U(N)\,\,$ is assumed to be faithful and complex
 - if not faithful then real symmetry group of theory is $\,G/\ker
 ho\,$
 - ρ is homomorphism: $\rho(a^*b) = \rho(a)\rho(b)$
- definition implies the existence of matrix W

$$\phi^* = W\phi \text{ or }$$
$$\rho(g) = W\rho(g)^*W^{-1}$$

$$P:\varphi(t,\vec{x})\to\varphi(t,-\vec{x})$$

$$C: \varphi(t, \vec{x}) \to \varphi^*(t, \vec{x})$$

 $CP: \varphi(t, \vec{x}) \to \varphi^*(t, -\vec{x})$

 here only Lorentz-scalars, generalization straightforward

How to define CP consistently

• A generalized CP (gCP) acts upon the vector

$$\phi \xrightarrow{CP} U\phi^*$$

[Bernabeu, Branco, Gronau 86]

for gauge groups this has

been investigated by

[Grimus, Rebelo 95]

where U is unitary, to leave the kinetic term invariant.

CONSISTENCY CONDITION:

• If G is the complete symmetry group, gCP has to close in G: CP

gCP and the automorphism group

• The consistency condition $U\rho(g)^*U^{-1} \in \mathrm{Im}\rho$ defines an automorphism

• the matrcies {U} furnish a representation of the automorphism group

$$\rho ((a \circ b)(g)) = \rho(a(b(g))) = U(a)\rho(b(g))^*U(a)^{-1}
= U(a)W\rho(b(g))W^{-1}U(a)^{-1}
= U(a)WU(b)\rho(g)^*U(b)^{-1}W^{-1}U^{-1}(a)
\text{remember } \rho(g) = W\rho(g)^*W^{-1} \qquad \text{neutral:}
U(id) = W \qquad \text{inverse:}
U(u^{-1}) = WU^{-1}(u)W^{-1}$$

gCP and the automorphism group

Inverse Direction: : Each automorphism u of G may be represented by such a matrix U.

$$U\rho(g)^*U^{-1} = \rho(u(g))$$

Proof:

Construct group extended by automorphism u (uⁿ=id)

$$G' = G \rtimes_{\theta} Z_n \quad \begin{array}{l} \theta : \{0, \dots, n-1\} \to Aut(G) & \theta(1) = u \\ (g_1, z_1) \star (g_2, z_2) = (g_1 \theta_{z_1}(g_2), z_1 + z_2) \end{array}$$

• u acts as conjugation within this group

$$(E,1) \star (g,0) \star (E,1)^{-1} = (u(g),0)$$

• Consider representation ho':G'
ightarrow U(M) induced via ho'(g,0)=
ho(g)

automorphism u is
represented by matrix
$$\rho(u(g)) = \rho'(u(g), 0)$$
$$= \rho'((E, 1) \star (g, 0) \star (E, 1)^{-1})$$
$$= \rho'((E, 1))\rho'((g, 0))\rho'((E, 1))^{-1}$$
$$= \rho'((E, 1))W\rho(g)^*W^{-1}\rho'((E, 1))^{-1}$$

Outer automorphism group

- if U is solution of $U\rho(g)^*U^{-1} = \rho(u(g))$ then so is $\rho(g')U$
 - corresponds to performing a gCP transformation followed by a group transformation described by ρ (g)
 - The group transformation corresponds to an inner homomorphism, which does not pose any new restrictions
- therefore interesting gCP transformations correspond to

$$\operatorname{Out}(G) \equiv \operatorname{Aut}(G) / \operatorname{Inn}(G)$$

where

 $Inn(G) = \{ u \in Aut(G) | u(g) = AgA^{-1} \text{ for some } A \in G \}$

• aside: continuous groups

 $\operatorname{Out}(\operatorname{SO}(8)) = S_3$ $\operatorname{Out}(G) = E, Z_2$ except for

• outer automorphism groups of small groups can be more involved: $\operatorname{Out}(\Delta(27)) \cong \operatorname{GL}(2,3)$

Physical CP Violation see talk by A. Trautner

- not all gCP transformations correspond to physical CP violation
 [Nishi 13, Chen et al. 14]
- additional requirement: the square of a gCP transformation is a symmetry transformation

$$\rho\left(u^{2}(g)\right) = UU^{*}\rho(g)^{*}(U(a)U^{*})^{-1} = \rho(g')$$

- CP has to map irr r to c.c. irr r^*
 - U block diagonal [Chen et al. 14]
 - u has to be class-inverting
- "CP-like" trafos useful
 - to construct U(u)
 - can be used to predict phases

$CP in A_4$

outer automorphism group is $Z_{2,}$ generated by

 $u: (S,T) \to (S,T^2).$

 $A_4 = \left\langle S, T | S^2 = T^3 = (ST)^3 = E \right\rangle$

outer automorphisms interchange representations and conjugacy classes

CP in A₄

on 3-dim representation

$$\rho_{\underline{\mathbf{3}}_{\mathbf{1}}}(S) = S_3 \equiv \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \qquad \rho_{\underline{\mathbf{3}}_{\mathbf{1}}}(T) = T_3 \equiv \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$

the consistency condition $U_3\rho(T)^*U_3^{-1} = \rho(T^2)$ can be easily seen to require a 2-3 interchange: $U = U_3 \equiv \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$

- this can be easily read off, for more complicated setups it might not be so easy
- sketch of formalism described above:
 - construct group extended by outer automorphism, here S_4
 - extra group element gives matrix U

CP in A₄

- the ,CP transformation' that is trivial with regard to A_4 runs into trouble if one considers a non-trivial singlet $\xi \sim \underline{1}_3$ in addition to the triplet $\chi \sim \underline{3}$
- if one would use $\chi \to \chi^*$ and $\xi \to \xi^*$ one finds that the invariant is mapped to sth. non-invariant

$$\underbrace{\mathbf{\underline{1}}_{1} \sim (\chi \chi)}_{\text{with } (\phi \phi)_{\underline{1}_{2}}} \xi \rightarrow (\chi^{*} \chi^{*})_{\underline{1}_{2}} \xi^{*} \sim \underline{1}_{2}$$

- this can be readily understood if one looks at how this ,CP transformation $\phi \rightarrow U \phi^*$ acts upon $\phi = (\xi, \xi^*, \chi)^T$
 - naive CP corresponds to $U=1_5$
 - A_4 does not close under this CP:

 $U\rho(T)^*U^{-1} = \rho(T)^* \notin \rho(G)$

• the real flavour group is larger, this has to be considered when constructing Lagrangian

$$\begin{pmatrix}
\rho(T) = \operatorname{diag}(\omega, \omega^2, T_3) \\
\rho(S) = \operatorname{diag}(1, 1, S_3)
\end{pmatrix}$$

often overlooked in literature [Toorop et. al. 2011, Ferreira, Lavoura 2011,....]

Geometric CP violation in Δ (27) Δ (27) = $\langle A, B | A^3 = B^3 = (AB)^3 = E \rangle$

outer automorphism group generated by

 $u_2: (A, B) \to (ABAB, B^2)$

 $u_1: (A, B) \to (ABA^2, B^2AB)$ blue

red

			h_			< K	- Ar			K	
	E	BABA	ABA	A	BAB	AB	A^2	B^2	B	BA^2BAB	AB^2ABA
$\underline{1}_1$	1	1	1	1	1	1	1	1	1	1	1
	1	ω	ω^2	1	ω	ω^2	1	ω	ω^2	1	1
	1	ω^2	ω	1	ω^2	ω	1	ω^2	ω	1	1
14	1	ω	ω	ω^2	ω^2	ω^2	ω	1	1	1	1
$\frac{1}{5}$	1	ω^2	1	ω^2	1	ω	ω	ω	ω^2	1	1
	/1	1	ω^2	ω^2	ω	1	ω	ω^2	ω	1	1
17	1	ω^2	ω^2	ω	ω	ω	ω^2	1	1	1	1
18	1	1	ω	ω	ω^2	1	ω^2	ω	ω^2	1	1
<u>1</u> 9	1	ω	1	ω	1	ω^2	ω^2	ω^2	ω	1	1
<u>3</u>	3						•	•	•	3ω	$3\omega^2$
$\underline{3}^*$	3	•	•		•					$3\omega^2$	3ω

What are calculable phases?

• consider again a triplet of Higgs doublets $H = (H_1, H_2, H_3) \sim \underline{3}$ which transforms as

$$\rho(A) = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} \qquad \qquad \rho(B) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \omega & 0 \\ 0 & 0 & \omega^2 \end{pmatrix}$$

• the potential only contains one phase dependent term $I \equiv (H_1^{\dagger}H_2)(H_1^{\dagger}H_3) + (H_2^{\dagger}H_3)(H_2^{\dagger}H_1) + (H_3^{\dagger}H_1)(H_3^{\dagger}H_2)$

- if coupling λ_4 multiplying I is positive, the global minimum is at (or a configuration that can be obtained by acting on this vacuum with a group element) $\langle H \rangle = \frac{v}{\sqrt{3}}(\omega^2, 1, 1)$
- if coupling λ_4 is negative, the global minimum is at (or a configuration that can be obtained by acting on this vacuum with a group element) $\langle H \rangle = \frac{v}{\sqrt{3}}(1, \omega, \omega^2)$
- These phases do not depend on potential parameters!
 - can this be used to predict (leptonic) CP phases?
 - can they be understood in terms of generalized CP?

Potential Dependence of Phases

- in general you expect two different kinds of vacua of a CP conserving potential
 - either VEV is real, conserves CP and phase does not depend on potential parameters
 - or VEV is complex, breaks CP and phase depends on potential parameters

Example:

all parameters real

$$V = m_1^2 \varphi^* \varphi + m_2^2 (\varphi^2 + \varphi^{*2}) + \lambda_1 (\varphi^* \varphi)^2 + \lambda_2 (\varphi^4 + \varphi^{*4})$$

$$= m_1^2 A^2 + m_2^2 A^2 \cos 2\alpha + \lambda_1 A^4 + \lambda_2 A^4 \cos 4\alpha$$

invariant under $\varphi \rightarrow \varphi^*$
$$\varphi = A e^{i\alpha}$$

$$Q = 0$$

$$A = -\frac{\sqrt{-m1^2 - 2m2^2}}{\sqrt{2}\sqrt{\lambda 1 + 2\lambda 2}}$$

$$\varphi = A e^{i\alpha}$$

$$Gos^2 \alpha = \frac{2\lambda_2 m_1^2 + \lambda_1 m_2^2 - 2\lambda_2 m_2^2}{4\lambda_2 m_1^2}$$

$$A = \frac{m_1}{\sqrt{2}\sqrt{2\lambda_2 - \lambda_1}}$$

What are calculable phases?

• The vacuum of the form $\langle H \rangle = \frac{v}{\sqrt{3}}(1, \omega, \omega^2)$ leaves invariant the gCP transformation

$$H \to \rho(B^2) H^* = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \omega^2 & 0 \\ 0 & 0 & \omega \end{pmatrix} H^*$$

- which is a symmetry of I+I*
 - no surprise there, CP symmetric potential has CP symmetric ground state
- for the other solution $\langle H \rangle = \frac{v}{\sqrt{3}}(\omega^2, 1, 1)$ there is no group element that leaves H invariant $\langle H \rangle = \rho(g) \langle H \rangle^*$
 - this was interpreted as geometrical CP violation

GEOMETRICAL *T*-VIOLATION

G.C. BRANCO

and

Instituto Nacional de Investigação Científica, Av. do Prof. Gama Pinto 2, Lisbon, Portugal

[Branco, Gerard and Grimus 1984; de Medeiros Varzielas, Emmanuel-Costa 2011; Battacharyya, de Medeiros Varzielas, Leser 2012]

J.-M. GERARD¹ and W. GRIMUS CERN, Theory Division, Geneva, Switzerland

Calculable Phases as a Result of an accidental generalized CP transformation

- every automorphism corresponds to a generalized CP transformation
- this allows one to search for gCP transformation that leaves $\langle H \rangle = \frac{v}{\sqrt{3}}(\omega^2, 1, 1)$ invariant and gives a real λ_4
 - indeed there is such a gCP transformation:

H	\rightarrow	Ũ	ΓH	
$\tilde{U} =$	$ \left(\begin{array}{c} 0\\ 0\\ \omega \end{array}\right) $	$egin{array}{c} 0 \\ 1 \\ 0 \end{array}$	$\left.\begin{array}{c}\omega^2\\0\\0\end{array}\right)$	

$$CP_u[\langle H
angle] = \langle H
angle$$

 $CP_u[I] = I$
 $u: (A,B)
ightarrow (AB^2AB, AB^2A^2)$

- potential invariant under a larger symmetry
 - this CP-like trafo does not correspond to physical CP
 - still fixes phases

Calculable Phases as a Result of an accidental generalized CP transformation

- a symmetric potential can have a symmetric ground state
 - phases are dictated by accidental gCP symmetry
 - explains the independence from potential parameters
- this setup is interesting for phenomenlogy:
 - if accidental symmetry only of potential, not of Yukawas, it can be used to predict phases etc.
- need groups with large outer automorphism group
 - notice that shaping symmetries have large outer automorphism groups $|OutZ_4^4| = 1321205760$
- mechanism similar to vacuum alignment mechanisms

T' and CP

- T' double cover of A₄: $T' = \langle S, T | S^4 = T^3 = (ST)^3 = E \rangle$
- complex Clebsch-Gordon coefficients as a possible new origin of CP violation?[Chen, Mahanthappa 09]
 - vague notions of CP = reality of couplings were used
 - VEVs assumed real $\langle \phi' \rangle = (1, 1, 1)V', \quad \langle \phi \rangle = (0, 0, 1)V \quad V, V' \in \mathbb{R}$

$$\begin{aligned} -\mathcal{L}_{TT} &= y_c T T \phi^2 + y_u T T {\phi'}^3 + \text{h.c.} \\ &= y_c \frac{3}{2} \frac{2-i}{2} \left\{ (1-i) T_1 T_2 \left(\phi_1^2 - \phi_2 \phi_3 \right) + i T_1^2 \left(\phi_2^2 - \phi_1 \phi_3 \right) + T_2^2 \left(\phi_3^2 - \phi_1 \phi_2 \right) \right\} + \\ &+ y_u \frac{1}{3} \left\{ \left(2 \phi_1' \phi_3' + {\phi_2'}^2 \right) \left(i T_1^2 \phi_1' + (1-i) T_1 T_2 \phi_2' + T_2^2 \phi_3' \right) \right\} + \text{h.c.} , \end{aligned}$$

$$y_u \begin{pmatrix} i & \frac{1-i}{2} \\ \frac{1-i}{2} & 1 \end{pmatrix} V'^3 + y_c \begin{pmatrix} 0 & 0 \\ 0 & 1-\frac{i}{2} \end{pmatrix} V^2 \quad CP \text{ violation}$$

 $M_u =$

T' and CP

- Only predictive scenario:
 - impose CP on Lagrangian, break it spontaneously
 - explicit breaking is basis dependent and thus not predictive
- Using the generalized CP formalism we can see that there is exactly one CP transformation which forces VEVs of triplets to be real

$$\underline{\mathbf{l}}_{\mathbf{i}} \to \underline{\mathbf{1}}_{\mathbf{i}}^* \qquad \underline{\mathbf{2}}_{\mathbf{i}} \to \operatorname{diag}(\omega \tilde{\omega}^{-5}, \omega^{-1} \tilde{\omega}^5) \underline{\mathbf{2}}_{\mathbf{i}}^* \qquad \underline{\mathbf{3}} \to \underline{\mathbf{3}}$$

$$u' = \operatorname{conj}(T^2) \circ u$$
$$u : (S, T) \to (S^3, T^2)$$

$$\begin{aligned} \mathbf{2_1} : S &= A_1, & T = \omega A_2 \quad A_1 = \frac{-1}{\sqrt{3}} \begin{pmatrix} i & \tilde{\omega}\sqrt{2} \\ -\tilde{\omega}^{-1}\sqrt{2} & -i \end{pmatrix} & \tilde{\omega} = e^{2\pi i/24} \quad \omega = e^{2\pi i/3} \\ \mathbf{2_2} : S &= A_1 & T = \omega^2 A_2; \\ \mathbf{2_3} : S &= A_1, & T = A_2 & A_2 = \begin{pmatrix} \omega & 0 \\ 0 & 1 \end{pmatrix} & \rho(S) = \frac{1}{3} \begin{pmatrix} -1 & 2\omega & 2\omega^2 \\ 2\omega^2 & -1 & 2\omega \\ 2\omega & 2\omega^2 & -1 \end{pmatrix} & \rho(T) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \omega & 0 \\ 0 & 0 & \omega^2 \end{pmatrix} \end{aligned}$$

T' and CP

what does the CP trafo

 $\underline{\mathbf{1}}_{\mathbf{i}} \to \underline{\mathbf{1}}_{\mathbf{i}}^* \qquad \underline{\mathbf{2}}_{\mathbf{i}} \to \operatorname{diag}(\omega \tilde{\omega}^{-5}, \omega^{-1} \tilde{\omega}^5) \underline{\mathbf{2}}_{\mathbf{i}}^* \qquad \underline{\mathbf{3}} \to \underline{\mathbf{3}}^*$

$$\begin{aligned} & \text{imply} \\ \hline \mathcal{L}_{TT} = y_c TT \phi^2 + y_u TT {\phi'}^3 + \text{h.c.} \\ &= y_c \frac{3}{2} \frac{2-i}{2} \left\{ (1-i) T_1 T_2 \left(\phi_1^2 - \phi_2 \phi_3 \right) + i T_1^2 \left(\phi_2^2 - \phi_1 \phi_3 \right) + T_2^2 \left(\phi_3^2 - \phi_1 \phi_2 \right) \right\} + \\ &+ y_u \frac{1}{3} \left\{ \left(2\phi_1' \phi_3' + \phi_2'^2 \right) \left(i T_1^2 \phi_1' + (1-i) T_1 T_2 \phi_2' + T_2^2 \phi_3' \right) \right\} + \text{h.c.} , \end{aligned}$$

$$CP[TT\phi^2] = -\frac{4+3i}{5}(TT\phi^2)^* \qquad CP[TT{\phi'}^3] = -i(TT{\phi'}^3)^*.$$

$$\operatorname{arg}(y_c) = -\frac{1}{2}\operatorname{arg}(-4 - \frac{1}{2}\operatorname{arctan}\frac{3}{4})$$

 $arg(y_u) = \pi/4$

- even if you phase rotate T you can only make one of the couplings real, therefore explicit breaking of CP
- agrees with recent finding of [Chen et al. 14]

Conclusions

- Consistency Conditions should be kept in mind when constructing models that contain CP and Flavour Symmetries
- generalized CP transformations may be interpreted as furnishing a representation of the automorphism group
 - physical CP depends on field content
- geometrical CP violation seems to be a consequence of (accidental) generalized CP symmetries of the potential
- maybe automorphisms may be used in model building more generally

