Final source eccentricity measured by HBT interferometry with the event shape selection

Takafumi Niida
for the PHENIX Collaboration University of Tsukuba

Hot Quarks 2014
Las Negras，Spain

* Event shape engineering with HBT at the PHENIX experiment

Contents

B Event twist selection with HBT with AMPT model

Event shape engineering

J.Schukraft et al., arXiv:1208.4563

Event shape engineering (ESE)
o J. Schukraft et al., arXiv:1208.4563
o Selecting e-b-e v2 by the magnitude of flow vector

$$
\begin{aligned}
Q_{2, x} & =\Sigma w_{i} \cos (2 \phi) \\
Q_{2, y} & =\Sigma w_{i} \sin (2 \phi) \\
Q_{2} & =\sqrt{Q_{2, x}^{2}+Q_{2, y}^{2}} / \sqrt{M} \\
\Psi_{2} & =\tan ^{-1}\left(\frac{Q_{2, y}}{Q_{2, x}}\right)
\end{aligned}
$$

o Possibly control the initial geometry

* More accurate connection between initial and final source eccentricity ?
O Azimuthally sensitive HBT w.r.t Ψ_{2}

Hanbury Brown and Twiss interferometry

PHENIX experiment

* Centrality, zvertex
o Beam Beam Counter (3<| $\eta \mid<3.9$)
* Event plane \& flow vector determination
- Reaction Plane Detectors (RxNP) ($1<|\eta|<2.8$)
- Res $\left(\Psi_{2}\right) \sim 75 \%$
- Tracking
o Drift Chamber + Pad Chambers ($|\eta|<0.35$)
- Charged pion identification
o Electromagnetic calorimeter (EMCal) ($|\eta|<0.35$)
O using time-of-flight at EMCal

How to apply the ESE

1. Q2 distribution measured by RxNP

2. Fitted with the Bessel-Gaussian function

$$
f_{\text {BesselGaus }}=\frac{x}{\sigma} I_{0}\left(\frac{x_{0} x}{\sigma^{2}}\right) \exp \left(-\frac{\left(x_{0}^{2}+x^{2}\right)}{2 \sigma^{2}}\right)
$$

3. Select higher or lower Q2 events

Resolutions of event planes were estimated by 3-sub method using RxNP($1<|\eta|<2.8$) and $\mathrm{BBC}(3<|\eta|<3.9)$ applying Q2 selection.

Charged hadron v2 with ESE

- Test of the event shape engineering for v_{2} in $\mathrm{Au}+\mathrm{Au} 200 \mathrm{GeV}$ collisions

○ v2 measured at mid-rapidity ($|\eta|<0.35$)
$\circ \mathrm{Q}_{2}$ and EP determined at $1<|\eta|<2.8$

- Confirmed that higher(lower) Q2 selects larger(smaller) v2

HBT radii w.r.t Ψ_{2} with ESE

$$
R_{\mu}^{2}=R_{\mu, 0}^{2}+2 R_{\mu, 2}^{2} \cos (2 \Delta \phi)
$$

o charged $\pi \pi$-correlation measured at mid-rapidity ($|\eta|<0.35$) ○ Q2 and EP determined at $1<|\eta|<2.8$

- Oscillations of R_{s} and R_{o} become larger when selecting higher Q2 except Ro in 0-10\%

Freeze-out eccentricity vs $\mathrm{N}_{\text {part }}$ with ESE

$\Rightarrow \varepsilon_{\text {final }} \sim 2 R_{\mathrm{s}, 2^{2}} / \mathrm{R}_{\mathrm{s}, 0^{2}}$
o F. Retiere and M. A. Lisa, PRC70.044907
O at the limit of $\mathrm{k}_{\mathrm{T}}=0$

* Higher Qz selection increases the measured $\varepsilon_{\text {final }}$

O Selected more elliptical source at freeze-out?
o might be originated from $\varepsilon_{\text {init }}$
O Or just v2 effect?

Event twist selection with HBT with AMPT model

Twisted source?

* Twisted fireball due the density fluctuation of wounded nucleons going to forward and backward directions
o P. Bozek et al., PRC83.034911
O J. Jia et al., arXiv: 1403.6077
* Also known as "event plane decorrelation"
o K. Xiao et al., PRC87.01 1901
o decorrelation increases with increasing n-gap
* V_{n} may be underestimated, which means overestimating η / s

$$
\begin{gathered}
N_{\text {part }}^{B} \neq N_{\text {part }}^{F} \\
\varepsilon_{n}^{B} \neq \varepsilon_{n}^{F} \\
\Psi_{\text {part }, n}^{B} \neq \Psi_{\text {part }, n}^{F}
\end{gathered}
$$

Event twist selection

J.Jia et al., arXiv:1402.6680

$$
C(\Delta \phi, \Delta \eta) \propto 1+2 \Sigma v_{n}^{a} v_{n}^{b} \cos \left(n \Delta \phi-n \Delta \phi_{n}^{r o t}\right)
$$

* Twist effect on anisotropic flow\&2PC studied with AMPT

ORequiring finite difference b/w forward and backward EPs ($\Psi_{2}{ }^{\mathrm{B}}-\Psi_{2}{ }^{\mathrm{F}}$)

* Twist effect appears as a phase shift in $\Delta \phi-\Delta \eta$ correlation

O initial twist survives as a final state flow in momentum space

* How about in spatial coordinate space?

HBT study in AMPT

- AMPT model

O ver.2.25 (string melting)
OPb+Pb 2.76 TeV collisions, $b=8 f m$
O initial fluctuation based on Glauber model and final state interaction via transport model

* EP determination at $4<|\eta|<6$

- HBT analysis

O Add HBT correlation between two pion pairs

* $(1+\cos (\Delta r \Delta q))$ was weighted when making q-distribution of real pairs

O Allowing to take $\pi+\pi$ - pairs to increase statistics

- confirmed a good agreement between $\pi^{+} \pi^{+}$and $\pi^{-} \pi^{-}$

O No EP resolution correction
o Bertsch-Pratt parameterization

$$
C_{2}=1+\exp \left(-R_{s}^{2} q_{s}^{2}-R_{o}^{2} q_{o}^{2}-R_{l}^{2} q_{l}^{2}-2 R_{o s}^{2} q_{o} q_{s}-2 R_{o l}^{2} q_{o} q_{l}-2 R_{s l}^{2} q_{s} q_{l}\right)
$$

HBT radii w.r.t backward Ψ_{2}

- Selected events with $\left(\Psi_{2}{ }^{\mathrm{B}}-\Psi_{2}{ }^{\mathrm{F}}\right)>0.6$
- Phase shift can be seen, and data are fitted with cosine(sine) function including a phase shift parameter α

$$
R_{\mu}^{2}=R_{\mu, 0}^{2}+2 R_{\mu, 2}^{2} \cos (2 \Delta \phi+\alpha)
$$

HBT radii w.r.t forward Ψ_{2}

- Selected events with $\left(\Psi_{2}{ }^{\mathrm{B}}-\Psi_{2}{ }^{\mathrm{F}}\right)>0.6$
- Phase shift can be seen, and data are fitted with cosine(sine) function including a phase shift parameter α

$$
R_{\mu}^{2}=R_{\mu, 0}^{2}+2 R_{\mu, 2}^{2} \cos (2 \Delta \phi+\alpha)
$$

$\boldsymbol{\eta}$-dependence of phase shift

$$
\begin{aligned}
R_{\mu}^{2} & =R_{\mu, 0}^{2}+2 R_{\mu, 2}^{2} \cos (2 \Delta \phi+\alpha) \\
R_{o s}^{2} & =2 R_{o s, 2}^{2} \sin (2 \Delta \phi+\alpha)
\end{aligned}
$$

* Phase shifts become larger with going far from n of a reference EP (-6<n<-4 or $4<n<6$)
- Source at freeze-out might be also twisted as well as EP angles O It may include the effect from twisted flow
* This twist effect could be measured experimentally

Summary

* Event shape engineering at PHENIX

OAzimuthal HBT measurement with the event shape engineering have been performed in Au+Au 200GeV collisions
oHigher Q2 selection enhances the measured $\varepsilon_{\text {final }}$ as well as v2
oMore accurate relation between initial and final eccentricity
o Applicable for detailed study like a path-length dependence in 2PC?

* Event twist selection with AMPT model

O A possible twisted source have been studied via HBT measurement with AMPT $\mathrm{Pb}+\mathrm{Pb} 2.76 \mathrm{TeV}$ collisions
O Phase shifts of HBT oscillations are seen as a function of n, possibly indicating the twisted source at final state
O This effect might be measured in RHIC and the LHC, especially in ATLAS or CMS

- These technique might be useful for $\mathrm{Cu}+\mathrm{Au}$ and $\mathrm{U}+\mathrm{U}$

Thank you for your attention

Space-momentum correlation

- Emission points of pions in the Blast-wave model (PRC70, 044907)

HBT radii = "length of homogeneity"
o known as k_{T} dependence of HBT radii by radial flow

HBT radii w.r.t Ψ_{2} with ESE (R_{1} and $R_{o s}$)

* Oscillation of Rı doesn't change, while Ros increases when selecting higher Q2 events as well as Rs and Ro

Event-by-event v_{n} at ATLAS

Oscillation amplitudes as a function of $N_{\text {part }}$ with ESE

HBT radii w.r.t $\Psi_{2^{B}}$

[GeV/c]

- Selected events with $\left(\Psi_{2}{ }^{\mathrm{B}}-\Psi_{2}{ }^{\mathrm{F}}\right)>0.6$
- Phase shift can be seen, and become larger with going far from n of EP for a reference angle ($-6<n<-4$)

HBT radii w.r.t $\Psi_{2}{ }^{B(F)}(\boldsymbol{n}\langle 0)$

$$
R_{\mu}^{2}=R_{\mu, 0}^{2}+2 R_{\mu, 2}^{2} \cos (2 \Delta \phi+\alpha)
$$

- Selected events with $\left(\Psi_{2}{ }^{\mathrm{B}}-\Psi_{2}{ }^{\mathrm{F}}\right)>0.6$

$$
R_{o s}^{2}=2 R_{o s, 2}^{2} \sin (2 \Delta \phi+\alpha)
$$

- Phase difference between $\Psi_{2}{ }^{\mathrm{B}}$ and $\Psi_{2}{ }^{\mathrm{F}}$ can be seen in R_{s}, Ro, and Ros

HBT radii w.r.t $\Psi_{2}{ }^{\mathrm{B}(F)}(n>0)$

$<1[\mathrm{GeV} / \mathrm{c}]$

- Selected events with $\left(\Psi_{2}{ }^{\mathrm{B}}-\Psi_{2}{ }^{\mathrm{F}}\right)>0.6$
- Phase difference between $\Psi_{2}{ }^{B}$ and $\Psi_{2}{ }^{\mathrm{F}}$ can be seen in R_{s}, Ro, and Ros

HBT Interferometry

- 1956, H. Brown and R. Twiss, measured angular diameter of Sirius
- 1960, Goldhaber et al., correlation among identical pions in $\overline{p+p}$
- By quantum interference between two identical particles

$$
\begin{aligned}
& \text { wave function for } \\
& \text { 2 bosons(fermions): } \quad \Psi_{12}=\frac{1}{\sqrt{2}}\left[\Psi\left(x_{1}, p_{1}\right) \Psi\left(x_{2}, p_{2}\right) \pm \Psi\left(x_{2}, p_{1}\right) \Psi\left(x_{1}, p_{2}\right)\right] \\
& \qquad C_{2}=\frac{P\left(p_{1}, p_{2}\right)}{P\left(p_{1}\right) P\left(p_{2}\right)} \approx 1+|\tilde{\rho}(q)|^{2}=1+\exp \left(-R^{2} q^{2}\right)
\end{aligned}
$$

Correlation Function

■ Experimental Correlation Function $\mathbf{C}_{\mathbf{2}}$ is defined as:
$\diamond R(q)$: Real pairs at the same event.
$\diamond M(q)$: Mixed pairs selected from different events.
Event mixing was performed using events with similar z-vertex, centrality, E.P.

$$
\begin{gathered}
C_{2}=\frac{R(\mathbf{q})}{M(\mathbf{q})} \\
\mathbf{q}=\mathbf{p}_{\mathbf{1}}-\mathbf{p}_{\mathbf{2}}
\end{gathered}
$$

\triangleleft Real pairs include HBT effects, Coulomb interaction and detector inefficient effect. Mixed pairs doesn't include HBT and Coulomb effects.
relative momentum dist.

3D-HBT Analysis

■ Core-Halo picture with "Out-Side-Long" frame
\diamond Longitudinal center of mass system $\left(p_{z 1}=p_{z 2}\right)$

$$
\begin{aligned}
& \vec{k}_{T}=\frac{1}{2}\left(\vec{p}_{T 1}+\vec{p}_{T 2}\right) \\
& \vec{q}_{o} \| \vec{k}_{T}, \vec{q}_{s} \perp \vec{k}_{T}
\end{aligned}
$$

\diamond taking into account long lived decay particles

$$
\begin{aligned}
C_{2} & =C_{2}^{\text {core }}+C_{2}^{\text {halo }} \\
& =\left[\lambda(1+G) F_{\text {coul }}\right]+[1-\lambda] \\
G & =\exp \left(-R_{s}^{2} q_{s}^{2}-R_{o}^{2} q_{o}^{2}-R_{l}^{2} q_{l}^{2}-2 R_{o s}^{2} q_{s} q_{o}\right) \\
\mathbf{F}_{\text {coul }} & : \text { Coulomb correction factor } \\
\lambda & : \text { fraction of pairs in the core } \\
\mathbf{R}_{\mathbf{1}} & =\text { Longitudinal Gaussian source size } \\
\mathbf{R}_{\mathrm{s}} & =\text { Transverse Gaussian source size } \\
\mathbf{R}_{\mathrm{o}} & =\text { Transverse Gaussian source size }+\Delta \tau \\
\mathbf{R}_{\mathrm{os}} & =\text { Cross term b/w side- and outward drections }
\end{aligned}
$$

Correction of Event Plane Resolution

■ Smearing effect by finite resolution of the event plane

■ Correction for q-distribution $A_{\text {crr }}\left(q, \Phi_{j}\right)=A_{\text {uncrr }}\left(q, \Phi_{j}\right)$
\diamond PRC.66, 044903(2002)

$$
+2 \Sigma \zeta_{n, m}\left[A_{c} \cos \left(n \Phi_{j}\right)+A_{s} \sin \left(n \Phi_{j}\right)\right]
$$

\checkmark model-independent correction
\diamond Checked by MC-simulation

$$
\zeta_{n, m}=\frac{n \Delta / 2}{\sin (n \Delta / 2)\left\langle\cos \left(n\left(\Psi_{m}-\Psi_{\text {real }}\right)\right)\right\rangle} \begin{gathered}
\text { event plane resolution }
\end{gathered}
$$

V w.r.t RP

V Uncorrected w.r.t EP

V Corrected w.r.t EP

Azimuthal sensitive HBT w.r.t $\mathbf{2}^{\text {nd }}$-order event plane

Reaction plane $\boldsymbol{\approx} \mathbf{2}^{\text {nd }}$-order event plane $\left(\mathbf{v}_{2}\right.$ plane)
PRC70, 044907 (2004), Blast-wave model

$$
\begin{aligned}
& R_{s, n}^{2}=\left\langle R_{s, n}^{2}(\Delta \phi) \cos (n \Delta \phi)\right\rangle \\
& \varepsilon_{\text {final }}=2 \frac{R_{s, 2}^{2}}{R_{s, 0}^{2}}
\end{aligned}
$$

- $R_{s, 2}$ is sensitive to final eccentricity

২Oscillation indicates elliptical shape extended to out-of-plane direction.

Results of HBT w.r.t $\mathbf{2}^{\text {nd }}-$ and $3^{\text {rd }}-$ order event planes are presented today!

Event Plane Determination

Event Plane Resolution

24 scintillator segments

beam axis

- Determined by anisotropic flow itself using Reaction Plane Detector

$$
\Psi_{n}=\frac{1}{n} \tan ^{-1}\left(\frac{\Sigma w_{i} \cos \left(n \phi_{i}\right)}{\Sigma w_{i} \sin \left(n \phi_{i}\right)}\right)
$$

- EP resolutions $\left\langle\cos \left[\mathrm{n}\left(\Psi_{\mathrm{n}}-\Psi_{\text {real }}\right)\right]>\right.$
$\diamond \operatorname{Res}\left\{\Psi_{2}\right\} \sim 0.75, \operatorname{Res}\left\{\Psi_{3}\right\} \sim 0.34$

