Fluctuations and the QCD phase diagram

Marlene Nahrgang

Duke University

Hot Quarks 2014, Las Negras, Spain

QCD phase diagram - Heavy-ion collisions

• One of the main goals of heavy-ion collisions is to understand the phase structure of hot and dense strongly interacting matter.

- Can we experimentally produce a deconfined phase with colored degrees of freedom?
- What are the properties of this phase?
- What is the nature of the phase transition between deconfined and hadronic phase?

QCD phase diagram - visionary plot

QCD phase diagram - current knowledge

QCD phase diagram - Lattice QCD

- Liberation of color degrees of freedom at high temperatures.
- Crossover at µ_B = 0 and T = [145, 165] MeV

Wuppertal-Budapest JHEP 1009 (2010), HotQCD PoS LATTICE2010 (2010)

• Fermionic sign problem at $\mu_B \neq 0 \rightarrow$ usual importance sampling fails

 Methods to extend to finite μ_B: Taylor expansion, imaginary μ_B, reweighting, (complex Langevin equation) → no critical point for small μ_B / T.

QCD phase diagram - Dyson-Schwinger equations

C. Fischer, J. Luecker, C. Welzbacher, 1405.4762

- T-dependent lattice data for the quenched gluon propagator + implement back reaction of the quark sector by adding loops to the gluon DSE.
- Sophisticated truncation schemes and approaches to the vertex strength are necessary!

QCD phase diagram - Effective models

- Crossover (CO), critical point (CP), first order phase transition (FO) in (P)QM models.
- Location (T_c , μ_c) of the CP is not universal: depends on model parameters and the approach to solve the model.

Fluctuations

- Mean values are only first-order information about observables.
- Distributions with the same mean can take very different forms.

- In some cases, the mean value of a distribution corresponds to a very rare event.
- Higher-order moments/cumulants: variance : $\sigma^2 = \langle \Delta N^2 \rangle$,

skewness : $S = \langle \Delta N^3 \rangle / \langle \Delta N^2 \rangle^{3/2}$, kurtosis : $\kappa = \langle \Delta N^4 \rangle / \langle \Delta N^2 \rangle^2 - 3$

Fluctuations - thermodynamically

Microcanonically System is isolated \rightarrow Energy is exactly conserved

Canonically System can exchange energy with heat bath \rightarrow Energy is only conserved on average Energy fluctuations: $\langle E^2 \rangle - \langle E \rangle^2 = kT^2 \partial \langle E \rangle / \partial T$.

Grandcanonically System can exchange energy and particles with heat bath \rightarrow Energy and particle number are only conserved on average Energy fluctuations: $\langle E^2 \rangle - \langle E \rangle^2 = kT^2 \frac{\partial \langle E \rangle}{\partial T} + kT \sum_i \mu_i \frac{\partial \langle E \rangle}{\partial u_i}$

Particle number fluctuations: $\langle N_i^2 \rangle - \langle N_i \rangle^2 = kT \frac{\partial \langle N_i \rangle}{\partial \mu_i}$.

NOTE: Averages in all ensembles are the same, fluctuations are not!

Fluctuations - what are they good for?

- Is the matter created a (locally) thermal QGP or hadronic system?
 Talk by Miki Sakaida, this session!
- Can we learn something about the chemical freeze-out properties of the system? Talk by Marcus Bluhm, this session!
- Phase transitions... This talk!

Fluctuations - at a critical point

In mean-field, Ginzburg-Landau theory of phase transitions, effective potential (free energy):

$$\Phi(T;\sigma) = \Phi_0(T) + a(T - T_c)\sigma^2 + b\sigma^4$$

- order parameter σ • $m_{\sigma}^2 = \frac{\partial^2 \Phi}{\partial \sigma^2} \rightarrow 0$ • correlation length diverges $\xi = \frac{1}{m_{\sigma}} \rightarrow \infty$ • universality classes for QCD: $\mathcal{O}(4)$ lsing model in 3d $\Rightarrow \langle \sigma^2 \rangle \propto \xi^2$ • beyond mean-field: renormalization group • critical opalescence
- \Rightarrow Large event-by-event fluctuations in thermal systems!

Fluctuations - at a first order phase transition

- two degenerate minima separated by a barrier
- latent heat
- phase coexistence
- supercooling effects in nonequilibrium situations
- nucleation
- spinodal decomposition
 I.N.Mishustin, PRL 82 (1999); Ph.Chomaz, M.Colonna,
 J.Randrup, Physics Reports 389 (2004))

 \Rightarrow (Large) fluctuations in single events in nonequilibrium situations!

Fluctuations - event-by-event

In experiment the measured number of particles varies from event to event \rightarrow event-by-event fluctuations

STAR collaboration, 2013/2014

Why net-charge? \Rightarrow Net-electric charge is a conserved quantity of QCD!

Why net-proton?

Net-baryon vs. net-proton (1)

 In lattice QCD and effective models one looks at net-baryon number fluctuations via susceptibilities, which relate to measured fluctuations:

$$\chi_n^{(i)} = \left. \frac{\partial^n (P/T^4)}{\partial (\mu_i/T)^n} \right|_T = \langle (\Delta N_i)^n \rangle_c \qquad n \ge 2$$

• In experiment neutrons are not detected \rightarrow isospin fluctuations $(p(n) + \pi \rightarrow \Delta \rightarrow n(p) + \pi)$ M. Kitazawa, M. Asakawa, PRC 85 and 86 (2012)

Net-baryon vs. net-proton (2)

Does it matter for detecting critical fluctuations in experiment? \rightarrow depends on what the critical mode is...

If the critical mode is the sigma field: via the coupling to two pions g_πσππ, kaons g_κσππ and protons g_pσp̄ ⇒ fluctuations in these multiplicity fluctuations directly:

 $\langle (\delta \textit{N})^2 \rangle \propto \langle (\Delta \sigma)^2 \rangle \propto \xi^2$

 ξ : correlation length, diverges at the CP

M. Stephanov, K. Rajagopal, E. Shuryak, PRL 81 (1998), PRD 60 (1999)

- Higher cumulants are more sensitive to the CP skewness (Sσ: ⟨(δN)³⟩/⟨(δN)²⟩ ∝ ξ^{4.5} kurtosis (κσ²): ⟨(δN)⁴⟩ − 3⟨(δN)²⟩² ∝ ξ⁷
- But sigma mode might only be a subdominant contribution to the critical mode: In real-time dynamics, criticality is manifested in a vanishing net-baryon diffusion rate. M. Stephanov, D. Son PRD 70 (2004)

Naive expectation

Non-monotonic behavior of an appropriate fluctuation observable Φ as a function of the beam energy \sqrt{s} :

Experimental results

- Deviations from Poisson-distribution, but consistent with independent production.
- Dip in the kurtosis around $\sqrt{s} = 19$ GeV.
- With the 14.5GeV point, new data with the TOF and BES phase II: fill in the gap, reduce errors and hopefully resolve some details!
- (Errors on net-charge fluctuations not limited by statistics will likely not reduce...)

Experimental results - centrality dependence

?

Fluctuations at the critical point - dynamically

- Long relaxation times near a critical point
 ⇒ the system is driven out of equilibrium (critical slowing down)!
- Phenomenological equation:

$$\frac{\mathrm{d}}{\mathrm{d}t}m_{\sigma}(t) = -\Gamma[m_{\sigma}(t)](m_{\sigma}(t) - \frac{1}{\xi_{\mathrm{eq}}(t)})$$

B. Berdnikov and K. Rajagopal, PRD 61 (2000)); D.T.Son, M.Stephanov, PRD 70 (2004); M.Asakawa, C.Nonaka, Nucl. Phys. A774 (2006))

Nonequilibrium chiral fluid dynamics (N χ FD)

• Langevin equation for the sigma field: damping and noise from the interaction with the quarks (QM model)

$$\partial_{\mu}\partial^{\mu}\sigma + \frac{\delta U}{\delta\sigma} + g\rho_{s} + \eta\partial_{t}\sigma = \xi$$

For PQM: phenomenological dynamics for the Polyakov-loop

$$\eta_{\ell}\partial_t\ell T^2 + \frac{\partial V_{\rm eff}}{\partial \ell} = \xi_{\ell}$$

 Fluid dynamical expansion of the quark fluid = heat bath, including energy-momentum exchange

$$\partial_{\mu} T^{\mu
u}_{\mathrm{q}} = \mathcal{S}^{
u} = -\partial_{\mu} T^{\mu
u}_{\sigma}, \quad \partial_{\mu} \mathcal{N}^{\mu}_{\mathrm{q}} = \mathbf{0}$$

 \Rightarrow includes a stochastic source term!

• Nonequilibrium equation of state $p = p(e, \sigma)$

Selfconsistent approach within the 2PI effective action!

MN, S. Leupold, I. Mishustin, C. Herold, M. Bleicher, PRC 84 (2011); PLB 711 (2012); JPG 40 (2013) C. Herold, MN, I. Mishustin, M. Bleicher PRC 87 (2013); NPA925 (2014)

N χ FD at finite μ_B

- Fluid dynamical trajectories differ from the isentropes due to interaction with the fields.
- No significant features in the trajectories left of the critical point.
- Right of the critical point: system spends significant time in the spinodal region!
 possibility of spinodal decomposition!

$N\chi$ FD - bubble formation

C. Herold, MN, I. Mishustin, M. Bleicher, NPA925 (2014)

3.5

3.5

2.5 < 2 > 1.5

0.5

 0.5

2.5 < 2 /u 1.5

N χ FD - bubble formation

Can we expect experimental evidences for the first-order phase transition from bubble formation?

- Do the irregularities survive when a realistic hadronic phase is assumed?
- While several eos lead to similar pressures at μ_B ≈ 0, they differ at large μ_B.
- A strong pressure could transform the coordinate-space irregularities into momentum-space Fourier-coefficients of baryon-correlations ⇒ enhanced higher flow harmonics at a first-order phase transition? Very eos dependent!

J. Steinheimer, J. Randrup, V. Koch PRC89 (2014)

Fluid dynamical fluctuations

Conventional fluid dynamics propagates thermal averages of the energy density, pressure, velocities, charge densities, etc.

However, ...

- ... already in equilibrium there are thermal fluctuations
- ... the fast processes, which lead to local equilibration also lead to noise!

Stochastic viscous fluid dynamics:

$$T^{\mu\nu} = T^{\mu\nu}_{eq} + \Delta T^{\mu\nu}_{visc} + \Xi^{\mu\nu}$$
$$N^{\mu} = N^{\mu}_{eq} + \Delta N^{\mu}_{visc} + I^{\mu}$$

P. Kovtun, J.Phys. A45 (2012); C. Chafin and T. Schäfer, PRA87 (2013); P. Romatschke and R. E. Young, PRA87 (2013); K. Murase, T. Hirano, arXiv:1304.3243; C. Young et al. arXiv:1407.1077

Fluid dynamical fluctuations

The noise terms are such that averaged quantities exactly equal the conventional quantities:

The two formulations will, however, differ when one calculates correlation functions!

In linear response theory the retarded correlator

- $\langle T^{\mu\nu}(x) T^{\mu\nu}(x') \rangle$ gives the viscosities and
- $\langle N^{\mu}(x)N^{\mu}(x')\rangle$ the charge conductivities

via the dissipation-fluctuation theorem (Kubo-formula)!

It means that when dissipation is included also fluctuations need to be included!

Example: Bjorken expansion

On the flyby near the CP the thermal conductivity is enhanced \Rightarrow enhancement of the rapidity correlator of protons.

J. Kapusta, J. Torres-Rincon PRC86 (2012)

Summary

- Many theoretical approaches to the QCD phase diagram conjecture a critical point.
- Fluctuation observables are promising tools to understand the phase structure of QCD.
- Need to combine purely theoretical approaches with the dynamics of heavy-ion collisions.
- Nonequilibrium effects can become strong enough to develop signals of the first order phase transition (N_χFD).
- Fluid dynamical fluctuations play an important role at the critical point!
- ? Many unresolved questions at finite μ_B : equation of state, transport coefficients, initial conditions..., hadronic interactions..., efficiency corrections...

