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This talk is not an overview talk, 
but

aims to give an overview... 
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See M. Greif's talk for the other view...

...from a slightly different viewpoint 
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...for those who want to be the part of the 'Big Picture'

...from a slightly different viewpoint 
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● Motivation...
● Is there physics behind the parameters of FFs?
● How about the pT power of the tail?
● Can we understand an experimental parameter, T,  which 

we use to fit to low the pT spectra?

● For 'hard' guys: Derivation of the parameter q
● The phyiscal meaning of the 'mysterious q' by deriving 

Tsallis/Rényi-like entropies from the first principles  

● For 'soft' guys: What can be the parameter T?
● An application: a simple Bag model to get QGP 

temperature

O U T L I N E 
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M O T I V A T I O N

The power of the spectra 
changes at around 6 GeV/c 

 Power-law with p-6.08 

dependence

Tsallis spectra with p-13.7
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M O T I V A T I O N

The power of the spectra 
changes at around 6 GeV/c 

 Power-law with p-6.08 

dependence

Tsallis spectra with p-13.7
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The power of the spectra 
changes at around 6 GeV/c 

 Power-law with p-6.08 

dependence

Tsallis spectra with p-13.7

Handling soft/hard regime 
with a new approach, using 
not only the temperature, T 

M O T I V A T I O N
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● What is 'non-extensive'?
● We do not like to give up energy additivity: E1+E2 = Etot

● But e.g. in case of (strongly inteacting forces) entropy 
is not additive: S(E1)+S(E2)+S(E1E2)= S(E12)

● We would like to transform this to an additive one, with 
a generalized entropy: L(S(E1))+L(S(E2))= L(S(E12))

● Why to use 'Tsallis-like' entropies?
● Tsallis entropy is first order correction to Boltzmann.
● We use 'like' just because there are not only one kind. 

● Where to use?
● Certainly in high-energy collisions, but there are many 

other fields as well. See all in C. Tsallis' bibliography 
http://tsallis.cat.cbpf.br/biblio.htm 

What? Why? Where? 
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P. Lévai, GGB, G. Fai: JPG35, 104111 (2008)

Tsallis Entropy has Tsallis distribution
● Simplest and best fit to hadron spectra at low-pT & high-pT
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The Derivation of Tsallis/Rényi Entropy
and 

the Physical Meaning of the 'q'

Eur. Phys. J. A49 (2013) 110,  Physica A 392 (2013) 3132 
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The story is about...

– Two body thermodynamics:

1 subsystem (E1) +one  reservoir (E-E1)

– Finite system, finite energy → microcanonical description
– microcanonical

– canonical

– Maximize a monotonic function of the Boltzmann-Gibbs 
entropy, L(S) (0th law of thermodynamics)

– Taylor expansion of the L(S) = max, principle beyond -βE

General derivation as inproved canonical 

∑ j
 j=E

∑ j
 j =E
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● For generalized entropy function

● In order to exist β of the system
TS Biró P. Ván: Phys Rev. E84 19902 (2011)

● Thermal contact between system (E1) & reservoir (E-E1), 
requires to eliminate E1 : 

● This is usually handled in canonical limit, but now, we keep 
higher orders in the Taylor-expansion in E1/E

Description of a system & reservoir 
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● Assuming β1=β, the Lagrange multiplicator                                      
become familiar for us:

● To satisfy this, need simply to solve

● Universal Thermostat Independence (UTI)                                             
Principle: l.h.s. must be as anS-independent                                
constant for solving L(S), 

● Based on L(S) →S for small S, coming                                            
from 3rd law of the thermodynamics                                              
L'(0)=1 and L(0)=0 

● EoS derivatives do have physical meaning:

   

Description of a system & reservoir 
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Description of a system & reservoir 

● Assuming β1=β, the Lagrange multiplicator                                      
become familiar for us:

● To satisfy this, need simply to solve

● Universal Thermostat Independence (UTI)                                             
Principle: l.h.s. must be as anS-independent                                
constant for solving L(S), 

● Based on L(S) →S for small S, coming                                            
from 3rd law of the thermodynamics                                              
L'(0)=1 and L(0)=0 

● Simly the heat capacity of the reservoir:
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From two system to many... 
● Analogue to Gibbs ensamble generalize                                            

                                  → 

●

● The L-additive form of a generally non-additive entropy,             
given by:                                                                                             

● Introducing                           →                                                    

● we need to maximize:

which, results Tsallis:

and its inverse Rényi: 
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What is the meaning of T? 
a.k.a.

Application:
Quark Gluon Plasma temperature
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D e - M O T I V A T I O N 

How can we measure the temperature             ?

System 
of  ~10 in pp                                                ~1000 in PbPb  
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D e - M O T I V A T I O N 

How can we measure the temperature of what?

This is NOT a system of 1023 particles, but 1000.

System 
of  ~10 in pp                                                ~1000 in PbPb  
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Experimental data fits by T
slope

(E)

● Taking the Tslope(E) fit using 

● Fitted data 

– RHIC@200GeV AuAu:     T0= 48 MeV,  C=4.5
        T.S. Biró, K. Ürmössy, Zs. Schram: JPG36 064044 (2009)                                                      
        T.S. Biró, K. Ürmössy:                     JPG37, 0940027 (2010),                                                  
        K. Ürmössy, T.S. Bíró:                     PL B689 14 (2010)   

– ALICE@900GeV pp:        T0= 55 MeV,  C=8               
J. Cleymans, D. Worku:                  JPG39, 025006 (2012)

The obtained values are surprizingly low!!! Why????

● Findings: K=2 (mesons) and K=3 (baryons)

                                     and

mailto:RHIC@200GeV
mailto:ALICE@900GeV
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Thermal model to heavy-ion collisions

● Test of T0 in physical models, in a finite termostats, 

 small subsystem:                               and                        

● Taking Stefan-Boltzmann in a bag, with a fix volume, V and bag 
constant, B 

● The heat capacity is:
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Thermal model to heavy-ion collisions
● Let's discuss some specific cases:

           Heat capacity                  Subsystem's T       Note

CV 

Cp

CS                                                  

BH

● Taking the lattice QCD value T=167 MeV, Tslopes are:

for Tsallis distribution of valence quarks 
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The temperature slope for different models

C
S

C
V

C
p

BH

TS Biró, GGB, P. Ván, EPJ A49 (2013) 110
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C
S

C
V

C
p

BH
AuAu → M, RHIC

AuAu → B, RHIC

The temperature slope for different models

TS Biró, GGB, P. Ván, EPJ A49 (2013) 110
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C
S

C
V

C
p

BH pp → B, LHC

pp → M, LHC

AuAu → M, RHIC

AuAu → B, RHIC

The temperature slope for different models

TS Biró, GGB, P. Ván, EPJ A49 (2013) 110
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C
S

C
V

C
p

BH pp → B, LHC

pp → M, LHC

AuAu → M, RHIC

AuAu → B, RHIC

T
0
=

4
5

-5
5
 M

e
V

The temperature slope for different models

TS Biró, GGB, P. Ván, EPJ A49 (2013) 110
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If these parameters have physical meaning, 
then  

can Tsallis-Pareto-like distribution work as a 
Fragmentation Function?
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Fragmentation in Parton Model 

1- z1- z 1- z'1- z' 1- z''1- z''

zz

Z'Z'

In a pQCD based parton model, fragmentation functions (FF) gives  how 
parton (a) fragment into a hadron (h), Dh/a(z,Q2). 

DGLAP scale evolution: 
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Fits for jet spectra in pp  (left) and e+e- (right)

Ref: K Ürmössy, GGB, TS Biró, PLB 710 (2011) 111, PLB 718 (2012) 125. 
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Scale Evolution of the parameter q 
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Scale Evolution of the parameter T 
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Full calculation of fitted FFs with DGLAP 
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Test of the FF via NLO pQCD code (kTpQCDv20)
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● Derivation
● Obtained Tsallis/Rényi entropies from the first principles.
● Not only assumption, but rather a recipe.
● Providing phyiscal meaning of the 'mysterious q', 
● q=1-1/C=1-a
● Boltzmann Gibbs limit C → ,Ꝏ  a → 0 (q → 1),  L(S) → S
● and more see arXiv: 1405.3813,    

● Application
● Ideal gas                 TSB Physica A392 (2013) 3132 
● for Bag model the QGP temperature     

TSB, GGB, PV: EPJ A49 (2013) 110
● FFs based on Tsallis fits to ee, pp

● It seems we can the theory works, at least, we feel...

S U M M A R Y 
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… to have experimental 'things' in good hands! 
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  B A C K U P
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Related publications.. 

1. arXiv:1409.5975: Statistical Power Law due to Reservoir Fluctuations and the Universal 
Thermostat Independence Principle

2. arXiv:1405.3963 Disentangling Soft and Hard Hadron Yields in PbPb Collisions at 
$\sqrt{s_{NN}}$ = 2.76 ATeV

3. arXiv:1405.3813  New Entropy Formula with Fluctuating Reservoir,  Physica A (in Print) 
2014 

4. arXiv:Statistical Power-Law Spectra due to Reservoir Fluctuations 

5. arXiv:1209.5963 Nonadditive thermostatistics and thermodynamics, Journal of Physics, 
Conf. Ser. V394, 012002 (2012)

6. arXiv:1208.2533 Thermodynamic Derivation of the Tsallis and Rényi Entropy Formulas 
and the Temperature of Quark-Gluon Plasma,  EPJ A 49: 110 (2013)

7. arXiv:1204.1508  Microcanonical Jet-fragmentation in proton-proton collisions at LHC 
Energy, Phys. Lett. B, 28942 (2012)

8. arXiv:1101.3522  Pion Production Via Resonance Decay in a Non-extensive Quark-Gluon 
Medium with Non-additive Energy Composition Rule

9. arXiv:1101.3023  Generalised Tsallis Statistics in Electron-Positron Collisions, 
Phys.Lett.B701:111-116,2011

10. arXiv:0802.0381 Pion and Kaon Spectra from Distributed Mass Quark Matter, 
J.Phys.G35:044012,2008
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Experimental data fits by T
slope

(E)

● Findings: K=2 (mesons) and K=3 (baryons)

                                     and

This finding is coming from the scaling of the PID-spectra...

T.S.Biró, K.Ürmössy, JPhysG 36, 064044, 2009
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The temperature slope

● Taking Pi weights of system, Ei , results cut power law:

                                  → 

● Partition sum is related to Tsallis entropy, L(S1) and E1                  
                                                                             

● In C → Ꝏ limit, the inverse log slope of the energy distribution:  

                                                                                                       
                                                         with 
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Z

X

i

kj

Fragmentation via associative composition 
Program:Program:

1) Search and fit Tsallis-Pareto 1) Search and fit Tsallis-Pareto 
distribution to data.distribution to data.

2) Serach for physical meaning of 2) Serach for physical meaning of 
T and q parameters.T and q parameters.

3) Components of the sub-systems are 3) Components of the sub-systems are 
e.g. 'splitting functions' Pe.g. 'splitting functions' P

q gq g, P, P
g gg g  

4) Test: can a DGLAP-like evolution 4) Test: can a DGLAP-like evolution 
equation be obtained?equation be obtained?

D(x,QD(x,Q22) ~ f(E,T,q) * f(ln(Q) ~ f(E,T,q) * f(ln(Q22))))

D(x,QD(x,Q22) ~ f(E,T(ln(Q) ~ f(E,T(ln(Q22)),q(ln(Q)),q(ln(Q22))))))
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The 'Thermodynamics of Jets'

K. Ürmössy, G.G. Barnaföldi, T.S. Bíró: 

● Microcanonical Jet-Fragmentation in pp at LHC energies:

Phys. Lett. B701 (2011) 111 
● Generalized Tsallis distribution in e+e- collisons 

Phys. Lett. B718 (2012) 125
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New Directions to Investigate.. 

Formulated questions from the theory...

– What is responsible for the power law tail measured at 
high-pT?

– Can we assume thermodynamical equilibrium for 
high-pT particles?

– What is the origin of the ’collectivity’? Is it coming from 
’quark level’ or ’hadron level’?

– Is there difference between baryon and meson 
formation? What is the statistical origin of this (e.g 
coalescence, fragmentation, etc.)?

The VHMPID LoI  (2013) arXiv:1309.5880
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Why to use Tsallis/Rényi entropy formula? 

– It generalizes the Boltzmann-Gibbs-Shanon formula.

– It treats statistical entanglement between subsystem and 
reservoir (due to conservation).

– It claims to be universal: applicable for whatever material 
quantity of the reservoir.

– It leads to a cut power law energy distribution in the 
canonical treatment.
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Why NOT to use Tsallis/Rényi formulas? 

– They lack 300 years of classical thermo-dynamic foundation

– Tsallis is NOT additive, Rényi is NOT linear 

– There is an extra parameter: the mysterious q

– How do different q systems equilibrated?

– Why this and not other?

– It looks pretty formal....

So here is some input to get rid of bad feelings...
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What do we measure as temperature?
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pp

e+e-

The evolution of parameters q and T

Ref: K Ürmössy, GGB, TS Biró, PLB 710 (2011) 111, PLB 718 (2012) 125. 
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Ref: GGB, G Kalmár, K Ürmössy, TS 
Biró, Proc. of Gribov 80. (2011):

Tsallis based hadronization for p:Tsallis based hadronization for p:

Tsallis–Pareto parameters can be Tsallis–Pareto parameters can be 
extracted for hadronization:extracted for hadronization:

Including the evolution-asatz: Including the evolution-asatz: 

Hadronization with parameter Evolution
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60Co decay scheme
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