

Transverse Momentum Distributions of Identified Particles in p-Pb collisions at $\sqrt{s_{_{NN}}} = 5.02$ TeV measured with ALICE

Jonas Anielski for the ALICE Collaboration j.anielski@wwu.de

What Can We Learn From p-Pb?

A Large Ion Collider Experiment

Original purpose: control experiment to access cold nuclear matter effects in heavy-ion collisions

Search for collective effects:

Since the observation of the "double-ridge", p-Pb collisions are not solely a control experiment anymore

→ exciting physics!

Jonas Anielski - Hot Quarks - September 2014

Transverse momentum distributions of identified particles in p-Pb:

- → mass dependent effects (flow?)
- → particle production mechanisms
- → strangeness
- → evolution with multiplicity
- → particle ratios
- → bridge between pp and HI collisions (in terms of multiplicity)

- ALICE detector
- π^{\pm} , K[±], p, \overline{p} , K⁰_s, Λ , $\overline{\Lambda}$ light flavor particles
- Light nuclei (d and \overline{d})
- Summary

For particle production in pp and Pb-Pb: see Babara's talk Wednesday 18:50

The ALICE Experiment

PID over wide p_{T} range with several techniques:

- Energy loss (d*E*/d*x*)
- Time-of-flight
- Decay topology
- Cherenkov radiation

Subdetectors (among others):

ITS	tracking + vertexing + PID (d <i>E</i> /d <i>x</i>)
ТРС	tracking + vertexing + PID (d <i>E</i> /d <i>x</i>)
TOF (T0)	PID (time-of-flight)
HMPID	PID (RICH)
VZERO	trigger, beam-BKG rejection multiplicity/centrality classes

Data Sample

Data sample: **p-Pb collisions** collected in 2013 at the LHC $\sqrt{s_{NN}}$ = 5.02 TeV

Asymmetric energy/nucleon in the two beams

- CMS moves with rapidity $y_{CMS} = 0.465 *$
- Acceptance of TPC and TOF $|\eta_{LAB}| < 0.9$

Definition of multiplicity classes:

- Slices in VZERO-A (V0A) amplitude
- Central
 Peripheral

correlation between impact parameter and multiplicity is not as straightforward as in Pb-Pb

*Note: positive rapidity is the direction of the proton

Jonas Anielski - Hot Quarks - September 2014

ALI-PERF-51387

π^{\pm} , K[±], p and p Spectra

ALICE

- At LHC energies the particle and antiparticle production are consistent within errors
 - Shown is the sum of particle and anti-particle

- Hardening with multiplicity and particle mass
 - Indication for collective effects in p-Pb
 - Reminiscent of observed effects in Pb-Pb
 - \rightarrow Attributed to radial flow
- In hydrodynamic picture particle velocities are pushed by the expanding hot medium
 - Sensitive to pressure gradient and particle mass

Strange Particle Spectra

- Dotted lines are individual Blast-Wave fits for extrapolation to low and high $p_{\rm T}$
- A and \overline{A} are in agreement, shown is the sum
- Hardening of spectra with particle mass and multiplicity is seen

Nuclear Modification Factor

Jonas Anielski - Hot Quarks - September 2014

R_{pPb} of All Charged Particles

- Small Cronin peak at intermediate p_{τ}
- Re-scattering

 → is there a mass dependence?
- How does it look for identified particles?

R_{pPb} for π , K, p

pp reference at $\sqrt{s_{NN}} = 5.02$ TeV is interpolated with available data (2.76 TeV and 7 TeV)

- Power-law fit: (√s)^α
- \rightarrow Protons show peak at intermediate p_{τ}
- → R_{pPb} of π and K is flat over measured p_{T} range
- → Consistent with mass dependence

Jonas Anielski - Hot Quarks - September 2014

- Moderate peak for Φ , systematically lower than protons
 - \rightarrow Makes the mass dependence picture more complicated
- R_{dAu} at RHIC \rightarrow no Cronin peak for Φ observed \rightarrow valence quark dependence?

PhysRevC.88.024906

Particle Ratios

Jonas Anielski - Hot Quarks - September 2014

Integrated Yields Ratios

A Large Ion Collider Experiment

PHENIX, PRC 69, 03409 (2004) BRAHMS, PRC 72, 014908 (2005) ALICE, PLB 728 (2014) 25–38 STAR, PRC 79, 034909 (2009) STAR, PRL 108, 072301 (2012)

 \rightarrow Small increase in the integrated Λ/π ratio with multiplicity

Particle Ratios

A Large Ion Collider Experiment

Phys. Rev. C 88, 044910 (2013) Phys.Lett. B728 (2014) 25–38 Phys.Rev.Lett. 111 (2013) 22, 222301

Note: systematic errors are largely correlated for different multiplicity bins \rightarrow multiplicity uncorrelated errors are drawn as a band for p-Pb

- Increase at intermediate p_{τ} with increasing multiplicity
- <u>Corresponding depletion</u> at low p_{τ}
- Since integrated ratio is flat this indicates a shift in the shape of the spectra with multiplicity
- Reminiscent of radial flow in Pb-Pb

Multiplicity Scaling of A/K⁰_s Ratio

A Large Ion Collider Experiment

- Plotted each p_{τ} bin as a function of charged multiplicity
- Fitted with power-law (y=Ax^B) for each system (pA and HI)

- Plot power-law exponent B as function of $p_{\rm T}$

- → Similar increase of Λ/K_{s}^{0} for same increase of $dN_{ch}/d\eta$ in p-Pb and Pb-Pb
- \rightarrow Same power-law scaling exponent (B) in p-Pb and Pb-Pb
- $\rightarrow\,$ Scaling also holds for p/ $\!\pi$

Adding pp to the Picture

A Large Ion Collider Experiment

Power-law scaling exponent B from pp is also compatible with p-Pb and Pb-Pb collisions

Caveat: Λ/K_{s}^{0} ratio in pp collisions is sensitive to bias by multiplicity selection at mid-rapidity (p-Pb multiplicity selection with V0A (2.8 < $|\eta_{LAB}| < 5.1$))

Blast-Wave Analysis

Jonas Anielski - Hot Quarks - September 2014

Global Blast-Wave Fit

ALICE

A Large Ion Collider Experiment

Hydrodynamic-inspired model, that assumes

- hard sphere uniform density particle source with temperature T
- collective transverse radial flow velocity β
- <u>Simultaneous fit of all particles</u> with 3 free parameters:

 $\begin{array}{ll} <\!\beta_{\scriptscriptstyle T}\!\!> & \mbox{radial flow (2\beta_{\scriptscriptstyle S}/(2\!+\!n))} \\ T_{_{fo}} & \mbox{freeze-out temperature} \\ n & \mbox{velocity profile} \end{array}$

• Global fit performed in the following $p_{\rm T}$ ranges:

K 0.2 – 1.5 GeV/c p 0.3 – 3.0 GeV/c

Blast-Wave Parameters

A Large Ion Collider Experiment

0.1

0.08

10

- Similar trend for p-Pb and Pb-Pb
- T_{fo} is similar in Pb-Pb and p-Pb for same multiplicities
- $<\beta_T>$ is larger in p-Pb for similar multiplicities
- → stronger collective flow for smaller system size? Shuryak, Phys.Rev. C 88, 044915

Jonas Anielski - Hot Quarks - September 2014

 10^{3}

 $\mathrm{d}N_{\mathrm{ch}}/\mathrm{d}\eta$

10²

Blast-Wave Parameters – Adding pp

A Large Ion Collider Experiment

1.5

- pp data:
 - Shows similar behavior as p-Pb and Pb-Pb
 - Note: slightly different fit ranges for pp
- **PYTHIA 8**:
 - Blast-Wave fit results from PYTHIA (with Color Reconnection) show similar trend, but this is not hydrodynamic flow

5

 p_{τ} (GeV/c)

4

3

Caveat: potential bias by selecting

2

multiplicity at mid-rapidity

Deuteron Production

Jonas Anielski - Hot Quarks - September 2014

Deuteron spectra for several multiplicity classes:

- Individual Blast-Wave fits to extrapolate to high and low p_{τ} (21-32% of yield for high to low multiplicity)
- Hardening of spectra with multiplicity visible
- \overline{d} and d are in agreement
 - because of big absorption uncertainty of \overline{d} , d are used for the following plots

10²

10

d/p Ratio as a Function of Charged Multiplicity

8<u>×1</u>0⁻³

ALI-PREL-69341

- The d/p ratio rises with multiplicity in p-Pb collisions
- Consistent with pp at low multiplicities

A Large Ion Collider Experiment

- Consistent with Pb-Pb at high multiplicities
- The rise in **p-Pb** is consistent with an increased deuteron production for higher nucleon densities, predicted by the **coalescence model**
 - models, that use nucleon density (not multiplicity) are clearly favored

10³

 $\left< \mathrm{dN}_{\mathrm{ch}} \, / \, \mathrm{d\eta}_{\mathrm{lab}} \right>_{|\eta_{\mathrm{lab}}| \, < \, 0.5}$

Coalescence Parameter B2

Summary

Several observations that point to collectivity driven by mass of particles and multiplicity

- Hardening of spectra with mass and multiplicity
- Blast-Wave analysis
 - Note: similar trend for pp and PYTHIA 8 (with color reconnection)
- Particle Ratios
 - p/π and $\Lambda/K_{0_s}^{\circ}$ enhancement at intermediate p_{T} (depletion at low p_{T}) in high multiplicity compared to low multiplicity p-Pb events
 - Ratios scale with multiplicity for pp, p-Pb and Pb-Pb
- Model comparison
 - Models that incorporate hydro seem to be more successful in describing the spectra, but color reconnection can mimic flow like patterns

Deuteron production in p-Pb: coalescence models with nucleon densities are favored

THANK YOU

for the attention!

Jonas Anielski - Hot Quarks - September 2014

BACKUP

Jonas Anielski - Hot Quarks - September 2014

Comparison With Models π , K, p, Λ

EPOS LHC: Pierog et al., arXiv:1306.0121 [hep-ph]

- Initial hard and soft scattering create "flux tubes", which either escape the medium and hadronize as jets, or contribute to the bulk matter, described in terms of hydrodynamics
- Can reproduce the pion and proton spectra within 20%
- Stronger deviations for kaons and lambdas

Kraków: Bozek, PRC85, 014911 (2012)

- Hydrodynamical model
- Reproduces spectra reasonably well for protons
- Pion and kaon shape deviates for $p_{\rm T}$ >1 GeV/c
- Possible onset of non-hydro effect above 1 GeV/c

DPMJET: Roesler et al., arXiV:hep-ph/0012252

- QCD- inspired based on the Gribov-Glauber approach and treats soft and hard scattering processes in an unified way
- Can reproduce $dN_{ch}/d\eta$
- Fails to describe $p_{\rm T}$ distributions of identified particles

Blast-Wave Model

Hydrodynamic-inspired model, that assumes

- hard sphere uniform density particle source with temperature T
- collective transverse radial flow velocity β

Schnedermann, PRC 48, 2462 (1993)

Transverse velocity distribution $\beta_r(r)$ for 0 < r < R parametrized with

- surface velocity β_s
- velocity profile n

$$\beta_r(r) = \beta_s \left(\frac{r}{R}\right)^n$$

Resulting spectrum is superposition of the individual thermal components, each boosted with the boost angle ρ

$$\rho = \tanh^{-1} \beta_r$$

$$\frac{dn}{m_T dm_T} \propto \int_0^R r \ dr \ m_T I_0 \left(\frac{p_T \sinh \rho}{T}\right) K_1 \left(\frac{m_T \cosh \rho}{T}\right)$$

Jonas Anielski - Hot Quarks - September 2014

 I_0 and K_1 modified Bessel functions

Particle Production – The Big Picture

A Large Ion Collider Experiment

ALI-PREL-74423

Particle Production – The Big Picture

A Large Ion Collider Experiment

Deuteron enhancement

Baryon suppression?

Jonas Anielski - Hot Quarks - September 2014

ITS Standalone Method

A Large Ion Collider Experiment

Particle	$p_{_{T}}$ range (GeV/c)
π^{\pm}	0.1 - 0.7
Κ±	0.2 - 0.6
p (p)	0.3 – 0.65

Four of the six ITS layers give dE/dx signal (energy loss in silicon)

- Independent ITS tracking
 - low p_{T} reach: 100 MeV/c

TPC/TOF Method

Particle	$p_{_{\rm T}}$ range (GeV/c)
π^{\pm}	0.2 - 1.5
Κ [±]	0.3 – 1.3
p (<u>p</u>)	0.5 – 2.0

- PID with d*E*/dx in gas and time-of-flight
- Global ALICE tracking
- ± 3σ cut on expected energy loss in TPC signal
- Additional $\pm 3\sigma$ cut on expected TOF for $p_T > 0.6$ (0.55, 1.0) GeV/c

TOF Fits Method

Particle	$p_{_{T}}$ range (GeV/c)
π^{\pm}	0.5 – 3.0
Κ±	0.5 – 2.5
p (p)	0.5 - 4.0

- PID with time-of-flight
- Global ALICE tracking
- Fit to the TOF time distribution with expected shapes
- Based on knowledge of TOF response function

Efficiency and Correction for Secondaries

A Large Ion Collider Experiment

Tracking efficiency:

- All particles reach 80-90%
- No multiplicity dependence observed _____
- Difference for p and \overline{p} visible due to absorption

Correction for secondaries:

- Contribution is underestimated in MC
- Data-driven approach fit distribution of "Distance of Closest Approach" to vertex with Monte Carlo templates for secondary and primary particles
 - Weak decays, protons from material and primaries are distinguishable
 - \rightarrow can be separated

Relativistic Rise TPC

Particle	$p_{_{\rm T}}$ range (GeV/c)
π^{\pm}	2.0 – 15
Κ±	2.6 – 15
p (p)	2.6 – 15

- PID with d*E*/dx in gas (TPC) .
- **Global ALICE tracking** •
- Fit to the TPC dE/dx distribution with • multiple Gaussians to get fractions
- Requires careful tuning and knowledge • of Bethe-Bloch parametrization in relativistic rise region

Strange Particle Identification

A Large Ion Collider Experiment

Topological reconstruction:

- PID over large p_{T} range
- TPC d*E*/dx PID for daughters
- In case of multi-strange: association of Λ with bachelor track \rightarrow cascade

(B.R. 69%)

(B.R. 64%)

 $\Xi^{-} \rightarrow \Lambda \pi^{-} \rightarrow p \pi^{-} \pi^{-}$ (B.R. 64%) $\Omega^{-} \rightarrow \Lambda K^{-} \rightarrow p \pi^{-} K^{-}$ (B.R. 43%)

analogue for anti-particles

 $K_{s}^{0} \rightarrow \pi^{+}\pi^{-}$

Λ

→ p π⁻

 $\pi^{-}(K^{-})$

 $\Xi^{-}(\Omega^{-})$

Π

p

Strange Particle Identification

- Once we have the daughter tracks:
 - Invariant mass peaks integrated for each $p_{\rm T}$ bin
- Background is sampled in shaded areas (assumed linear)
- Λ are feed-down corrected

Deuteron Reconstruction

counts

Deuteron identification:

- PID with dE/dx from TPC and time-offlight with TOF
- TPC 3σ cut around expected signal
- Above 1 GeV/c fit to the squared mass measured with TOF

(Anti-)deuteron efficiencies:

- The \overline{d} tracking efficiency is significantly lower than the d efficiency
- This is due to absorption
- Very little data for hadronic cross-section of \overline{d}
- Introduces large error on the absorption

*p*_{_} (GeV/*c*)

Particle Ratios at Higher p_{τ}

- p/π shows a peak, which is more pronounced for higher multiplicities
- Drops to 0.1 in both systems
- K/ π saturates to 0.5 for high p_{τ} in both systems
- No strong multiplicity dependence in p-Pb

Anti-particle/Particle Ratios

 $R_{\rm pPb}$ CMS and ALTAS

ALICE

Selection Bias in pp

A Large Ion Collider Experiment

PYTHIA study: selecting multiplicity in different pseudorapidity ranges

selection in $|\eta|$ <0.5

selection in $2.8 < \eta < 5.1$ (V0A)

Blast-Wave Fit to Pb-Pb

Blast-Wave Fit Parameters p-Pb and Pb-Pb

Φ/π in Pb-Pb

System Size Dependence of K^{*0} and Φ

A Large Ion Collider Experiment

 Φ/K is flat for all systems and consistent with thermal model prediction

- K*⁰/K suppressed for higher multiplicities / system size
 - consistent with hypothesis of dominating re-scattering
- Collisions systems are in agreement

Reduced Canonical Suppression

Thermal Model Pb-Pb

A Large Ion Collider Experiment

Fit quality reasonable

Better when excluding protons or pions

ALI-PREL-74463

Thermal Model for p-Pb

A Large Ion Collider Experiment

Fit quality not so good but reasonable

However Grand Canonical probably not best ensemble for small system like p-Pb

ALI-PREL-74510

Jonas Anielski - Hot Quarks - September 2014