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Hot QCD

T≪ΛQCD

T≫ΛQCDT∼ΛQCD

A gas of hadrons

Confined color d. o. f
color is liberated

Plasma of quarks and gluons

An almost free gas

T∼106 GeV

Wuppertal-Budapest Col.  arXiv: 1007.2580
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Hot QCD
T∼ΛQCD

Wuppertal-Budapest Col.  arXiv: 1007.2580

• From (lattice) QCD we know:
➤ equation of state
➤ screening masses
➤ euclidean correlators
➤  ...

static properties

• Dynamical properties: hard for lattice
➤ η/s
➤ thermalization
➤ opacity
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not too sensitive to the 
degrees of freedom
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A picture of the plasma
T∼ΛQCD

Wuppertal-Budapest Col.  arXiv: 1007.2580
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A gas of quarks and gluons?
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A picture of the plasma
T∼ΛQCD

Wuppertal-Budapest Col.  arXiv: 1007.2580

A gas of quarks and gluons?

αs=0.3⟹g=2
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A picture of the plasma
T∼ΛQCD

Wuppertal-Budapest Col.  arXiv: 1007.2580

A gas of quarks and gluons?

αs=0.3⟹g=2
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A picture of the plasma
T∼ΛQCD

Wuppertal-Budapest Col.  arXiv: 1007.2580

A strongly coupled goo?

αs=0.3⟹g=2

4

T~g2T~g4T
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Quasi Particles
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• Fishing for quasi-particles: conserved current correlator

narrow structures?
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Quasi Particles
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• Fishing for quasi-particles: conserved current correlator

narrow structures?

• Lattice results (hard)
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[“Thermal dilepton rate and electrical conductivity…”,  
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Quasi Particles vs no-Quasi Particles
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FIG. 7. Data for the continuum extrapolation of T 2GV (�T )/(⇥qG
free
V (�T )) and the fit result for fixed

cBW /�� and k(T ) (left). The three curves show the result from a fit in the interval �T � [0.2 : 0.5] (central)

and results obtained by varying �� within its error band. In the right hand figure we show the spectral
function obtained from the fit and compare with the free spectral function.

correlated. Nonetheless, the fit provides an excellent description of the data. To illustrate the

sensitivity of our fit to the low energy Breit-Wigner contribution and its dependence on Euclidean

time, we show the fit to the data for GV (⇧T ) normalized to the free vector correlation function

and the quark number susceptibility in Fig. 7. The error band shown in this figure corresponds to

the width of the Breit-Wigner peak. The spectral function obtained from this fit is shown in the

right hand part of the figure. Here also the error band arising from a variation of the width � is

shown.

It is clear from Fig. 7, that the vector correlation function is sensitive to the low energy, Breit-

Wigner contribution only for distances ⇧T>�0.25. Taking into account also the value of the second

thermal moment, the fits to the large distance regime return fit parameters which are well con-

strained. As a consequence we obtain a significant result for the electrical conductivity, which is

directly proportional to the fit parameter cBW /��,

⌅

T
=

Cem

6
lim
��0

⇤ii(⌥)

⌥T
=

2Cem

3

cBW �⌃q

��
= (0.37± 0.01)Cem , (V.9)

which (accidentally) is close to the result found in [20] using staggered fermions with unrenormal-

ized currents. It is more than an order of magnitude larger than the electrical conductivity in a

pion gas [40].

It should be obvious that this determination of the electrical conductivity is sensitive to the

ansatz made for the spectral function in our analysis of the correlation functions. With this simple

ansatz we obtain good fits of the vector correlation function with a very small chi-square per degree

of freedom. However other ansätze may provide an equally good description of the current set of

data. We will explore this in the next subsection by generalizing the current ansatz.

We also note that the value determined for the correction to the free field behavior at large

energies k ⇥ 0.05 at T ⇥ 1.45Tc is quite reasonable. Using the relation to the perturbative result,

k = �s/⇥ yields for the temperature dependent running coupling g2(T ) = 4⇥�s ⇥ 2 which is in

good agreement with other determinations of temperature dependent running couplings at high

Weak View

close enough
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correlated. Nonetheless, the fit provides an excellent description of the data. To illustrate the
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which (accidentally) is close to the result found in [20] using staggered fermions with unrenormal-
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➤ no clear quasi-particle peak (unlike pQCD)

➤ some broad structure remains
comparable to Nc g2→∞ for SYM via AdS/CFT Teaney 06
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What to do?

• Give up and move to something else

• Keep on doing/improving perturbation theory. Hope for the 
best

• Change the problem: look for a simpler example. Hope for the 
best

• Look at both extremes and try to understand the physics in 
both. 
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Holography
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QFT

• Gauge-gravity duality λ=g2Nc→∞
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Holography
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• Gauge-gravity duality λ=g2Nc→∞
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Holography

8

holographic 
direction

1/Q

J J

QFT

Gravity

Horizon

Dictionary

Jμ↔ Aμ

Tμν↔ gμν

• Gauge-gravity duality

T↔ black hole

λ=g2Nc→∞
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Holography

8

holographic 
direction

1/Q

J J

QFT

Gravity

Horizon

Dictionary

Jμ↔ Aμ

Tμν↔ gμν

heavy quark↔ string

• Gauge-gravity duality

M

T↔ black hole

λ=g2Nc→∞
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What holography is not

• It is not a controlled approximation to QCD

➤ conformal (most models)

➤ no asymptotic freedom

➤ supersymmetric

➤ broken at finite temperature
➤ different number of degrees of freedom
➤ presence of scalars

➤ Large number of colors

• It is hard to be quantitative

9
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What holography can do

• Provide complete answers to complicated problems

• Correct (naive) expectations from pertubation theory

• Teach us new phenomena

• Even some quantitative predictions
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η/s =1/4 π  (universal for all gravity duals)
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What holography can do

• Provide complete answers to complicated problems

• Correct (naive) expectations from pertubation theory

• Teach us new phenomena

• Even some quantitative predictions

But connecting these computations to 
observables is a bit of an art

10

η/s =1/4 π  (universal for all gravity duals)
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Collisions of Shocks
THE COLOR GLASS CONDENSATE [MCLERRAN, VENUGOPALAN (1993)]

Theoretical framework (Weakly coupled but strongly interacting)

x

+
x

�

CGC
J

�
J

+

E ,B

LO: ✏ =
1
2

⇣
~E

2
+ ~B

2⌘

| {z }
Classical
color fields

DµF
µ⌫ = J

⌫

|{z}
Color sources

on the light cone

[KRASNITZ, VENUGOPALAN (1998)]

THOMAS EPELBAUM The onset of hydrodynamical flow in high energy heavy ion collisions 3 / 15

• Classic set-up for studying thermalization at weak coupling

(nucleus modeled as strong classical current)

• Strong coupling “equivalent”: collide energy lumps
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Holography Shocks
ε∕ρ4

ρt

ρz

How well hydro works?

When does it start working?
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Holography Shocks
3ΔPL/ε
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➤ Gaussian rapidity profile

➤ Low energies: expected from Landau hydrodynamics

➤ High energies: relatively mild increase of width

εloc(τ,η)∕ εloc(τ,η=0)

ρτ

ρηst ρηst

ρτ

εloc(τ,η)∕ εloc(τ,η=0)

(subsequent time evolution well described by Bjorken like flow)
Chesler & Yaffe 13
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➤ Good hydrodynamic behavior from very early on

➤ Energetic shocks: Plasma develops after thyd=1/πThyd 

➤ Very large viscous corrections! Hydrodynamization

➤ Early behavior of pressures due to vanishing initial ε
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• No jets at strong in N=4 at strong coupling!
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• No asymptotic freedom.
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• No jets at strong in N=4 at strong coupling!

weak coupling e+e- decay strong coupling e+e- decay

Hofman and Maldacena 08
Iancu, Mueller, Hatta 08

• No asymptotic freedom.

• A serious problem for hard probes
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Model III: Heavy Quark Loss
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• Based on the HQ drag string formula

Herzog et al 06

Gubser 06
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• Not valid for ultra-relativistic quarks 
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• Motivates a third (control model) 

fitting
 paramter

ts =
Cp
T

(

E√
λT

)1/3

(0.1)

Cq ≈ 0.5 (0.2)

Cg ≈
1

21/3
Cq ≈

(

CF

CA

)1/3

Cq (0.3)

dE

dt
∼

1√
t− ts

(0.4)

dE

dt
= −

(

CR

CF

)1/3

αL
E5/3

i T 4/3

E(t)
(0.5)

dE

dt
= −

CR

CF
αC T 2 (0.6)

QLHC
s ∼ 3− 4GeV (0.7)

dE

dt
= CRπα

2
sT

2

(

1 +
nf

6

)

log

(

4ET

µD

)

(0.8)

dp

dt
= −µD p (0.9)

γ <

(

M√
λ

)2

(0.10)

dE

dt
= −

CR

CF
αHE(t)T (0.11)

dE

dt
= −

CR

CF
αHE(t)T (0.12)

1

holographic 
direction

horizon

➤ Drag-like formula even for relativistic heavy quarks

➤ Sensitive to all scales
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FIG. 3: (a) A classical particle in the AdS5-Schwarzschild space-time, moving in the x3 direction

as it falls from the boundary to the black brane in the fifth dimension u. (b) The presence of the
particle (the large dot) perturbs the boundary theory in a manner that spreads out diffusively as

the particle approaches the horizon for x0 → ∞.

where the stopping distance x3
stop(q

2) is given by (1.7). We will verify that this formula
precisely reproduces the x3 # E1/3 case (1.1a) of our previous result.

We can now see where the (EL)1/4 scale comes from. It is only time-like source momenta
q2 < 0 that produce jets. The typical value of time-like q2 for the source of Fig. 2a is
q2 ∼ −E/L, corresponding to ε ∼ L−1. Putting this into (1.7), the typical stopping distance
in this case is therefore

x3

typical ∼ (EL)1/4 . (1.9)

Note that it is the q2 of the source that determines the stopping distance, and that the
typical value of q2 is determined by L in the case of Fig. 2a.

The estimate (1.9) of the stopping distance ceases to make sense if the size L of the source
becomes as large as the stopping distance itself. This happens when

L ∼ x3

stop ∼ (EL)1/4, (1.10)

which gives
x3

stop ∼ E1/3. (1.11)

We will see later that this is precisely the case where the wave packet in AdS5-Schwarzschild
can no longer be approximated as a particle. The moral is that the simple particle picture
gives us not only the (EL)1/4 scale but also, simply by estimating where it breaks down, the
E1/3 scale as well.

In the next section, we will briefly review the trajectories of massless particles in AdS5-
Schwarzschild and derive the corresponding stopping distance (1.7). In section III, we discuss
the conditions for being able to approximate the 5-dimensional wave problem with particle
trajectories and verify that they apply in the case of interest. Then we use the particle
picture in section IV to simply reproduce our original result (1.1a) for charge deposition for
x3 # E1/3. In section V, we generalize our results to jets created by other types of source
operators than those originally considered in Ref. [4]. We will see that Fig. 1 is modified to
Fig. 4. Finally, we offer our conclusions in section VI.

5
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Wave

6

FIG. 4: A typical falling string studied in this paper, plotted in blue at four di↵erent instants in time. The string is created
at a point and, as time passes, evolves into an increasingly extended object. Well after the creation event, but long before the
plunge into the horizon, the string profile approaches a universal null string configuration which is largely insensitive to the
initial conditions. Consequently, the string endpoint trajectories, shown in green and yellow, approach null geodesics.

the black hole. Our strategy in this subsection is to con-
struct an approximate solution to the string equations of
motion which will provide a good description for times
su�ciently long after the initial creation event but well
before the string endpoints reach the horizon. This will
be possible because, as we will discuss, at times well after
the creation event but long before the final “plunge”, typ-
ical string configurations approach near-universal forms
which are characterized by only a few parameters. This
observation will allow us to prepare states illustrating
universal features and understand the resulting physics
of quark energy loss, without requiring a detailed de-
scription of the early-time dynamics responsible for the
production of the quark-antiquark pair.

For reasonable falling string solutions, we will see that
the endpoint motion is well-approximated by the trajec-
tory of a light-like geodesic. Equations for null geodesics
in the AdS-BH geometry are easy work out. For motion
in the x-u plane, one finds

✓
dx

geo

dt

◆
2

=
f2

⇠2

, (4.5a)
✓

du
geo

dt

◆
2

=
f2

�
⇠2 � f

�

⇠2

, (4.5b)

where ⇠ is a constant which determines the initial incli-
nation of the geodesic in the x-u plane and, more funda-
mentally, specifies the conserved spatial momentum asso-
ciated with the geodesic, f(u)�1dx

geo

/dt = ⇠�1. More-
over, we have

✓
dx

geo

du

◆
2

=
1

⇠2 � f
. (4.6)

From this equation, one sees that geodesics which start
close to the boundary, at u = u

⇤

! 0, can travel very far
in the x̂ direction provided ⇠2 ⇡ f(u

⇤

) ! 1. In particu-
lar, the total spatial distance such geodesics travel before
falling into the horizon scales like u2

h/u
⇤

.

We will be interested in string configurations where the
spatial velocity of the string endpoint is close to the local
speed of light for an arbitrarily long period of time (since
this will maximize the penetration distance). Because
open string endpoints must always travel at the speed of
light, the velocity in the radial direction must be small
and correspondingly, the radial coordinate of the string
endpoints will be approximately constant for an arbitrar-
ily long period of time. As the string endpoints become
more and more widely separated, the string must stretch
and expand. For reasonable string profiles, this implies
that short wavelength perturbations in the initial struc-
ture of the string will stretched to progressively longer
wavelengths, resulting in a smooth string profile at late
times.4 Moreover, as the string endpoints separate, the
middle of the string must fall toward the event horizon.
This occurs on a time scale �t of order uh. (This scale
sets the infall time of a particle released at rest at the
boundary, or of a null geodesic with ⇠ > 1.)

The origin of this behavior can also be understood as
follows. Consider the string at some time t shortly after
the creation event. It will have expanded to a size ⇠ t.
By construction, one half of the string will have a posi-
tive large momentum in the spatial x̂ direction, while the
other half has negative x̂ momentum. The spatial mo-
mentum density must be highly inhomogeneous so that
the two endpoints move o↵ in opposite directions. As
time progresses, the parts of the string with the highest
momentum density will remain close to a string endpoint.
Portions of the string with low spatial momentum den-

4 “Unreasonable” string profiles can have structure on arbitrarily
short wavelengths. While the initial structure will be inflated
as time progresses, because the string endpoints can only travel
a distance of order u

2

h/u

c

before reaching the horizon, one can
always cook up initial conditions such that fluctuations in the
string profile never become small during this time interval. We
will avoid such unreasonable initial conditions in this paper.

Q-Qbar pair: string Boosted virtual photon

strongly coupled matter within the plasma [24, 25, 39, 41, 42]; and those in which single
energetic excitations are described as a string moving in the dual gravitational spacetime
whose endpoint is attached to a space-filling D7-brane and can therefore fall into the hori-
zon [22, 23, 45]. The former has the advantage that the set-up is fully determined within
the strongly coupled theory, while in the latter the initial conditions that characterize the
hard creation of these excitations need to be specified. The latter has the advantage that
the string describes an isolated excitation whose energy can be tracked, emerging from the
initial configuration. These two approaches lead to qualitatively similar results for certain
observables, such as the parametric dependence of the maximal stopping distance of en-
ergetic partons, but differ quantitatively. While both computations are valid within the
context of strongly coupled gauge theories, it is unclear which is a better proxy for QCD
hard processes in strongly coupled medium. Since the string-based computations provide
the energy loss rate explicitly [45], we will adopt this second approach to construct our
hybrid model.

In Refs. [22, 45], a pair of high energy ‘quark jets’ in the fundamental representation
of the gauge group are produced moving in opposite directions. In Ref. [45] the setup is
such that one of the ‘quark jets’ is incident upon a ‘slab’ of strongly coupled plasma with
temperature T , that is finite in extent with thickness x. The dual gravitational description
of the ‘quark jet’ is provided via a string whose endpoint falls downward into the bulk,
as in the left portion of the sketch in Fig. 1. After propagating for a distance x through
the plasma the string, which is to say the quark, emerges into vacuum. The energy E of
the ‘quark jet’ that emerges from the slab of plasma, as well as its other properties, can be
compared to the initial energy E

in

of the parton incident upon the slab and to the properties
of the ‘jet’ that would have been obtained had their been no slab of plasma present [45].
For our purposes, we are interested in how the energy of the ‘quark jet’ depends on x,
which is to say the rate of energy loss dE/dx. If the high energy ‘quark’ is produced next
to the slab, meaning that it enters it immediately without first propagating in vacuum,
and if the thickness of the slab is large enough that initial transients can be neglected,
meaning x � 1/(⇡T ), the rate of energy loss is independent of many details of the string
configuration and takes the form [45]

1

E

in

dE

dx

= � 4

⇡

x

2

x

2

stop

1q
x

2

stop

� x

2

(3.1)

where E

in

is the initial energy of the ‘quark’, as it is produced and as it is incident upon
the slab of plasma and where x

stop

is the stopping distance of the ‘quark’. Since E ! 0

as x ! x

stop

, the expression (3.1) is only valid for 1/(⇡T ) ⌧ x < x

stop

. The parametric
dependence of x

stop

on E

in

and T was obtained previously in Refs. [22, 23]. For a string
whose initial state is prepared in such a way as to yield the maximal stopping distance for
a ‘quark’ produced with a given E

in

propagating through the strongly coupled N = 4 SYM
plasma with temperature T , it is given by

x

stop

=

1

2

sc

E

1/3
in

T

4/3
, (3.2)

– 9 –

where we have introduced a dimensionless constant 

sc

, the subscript signifying “Strong
Coupling”, that in the calculation of Ref. [22] is given by 

sc

= 1.05�

1/6, with � the
´t Hooft coupling. In the case of a slab of plasma in which T , and therefore x

stop

is
constant, the energy loss rate (3.1) can easily be integrated to obtain E(x) [45]. We shall
be describing the energy loss of partons in a shower that are propagating through a medium
whose temperature is changing as a function of space and time as in a heavy ion collision;
in this context what we need from Ref. [45] is dE/dx, namely (3.1).

The energy loss rate Eq. (3.1) has two characteristic features that distinguish it para-
metrically from analogous perturbative expressions that describe the energy loss of a single
hard parton propagating through (a slab of) weakly coupled plasma with temperature T ,
expressions that we shall provide in the following subsection. First, while x is not yet
comparable to x

stop

the rate of energy loss dE/dx is independent of E
in

and grows rapidly
with x, with a characteristic x

2 dependence. Later, though, once x has become comparable
to x

stop

we see that dE/dx depends in a nontrivial (i.e. non-power-law) way on both E

in

and x and grows rapidly, diverging as x ! x

stop

and E ! 0. We note that in spite of the
simple relation between E

in

and the stopping distance x

stop

, the parametric dependence of
the energy loss rate on the path length x is intricate, deviating from a simple power of the
length very substantially at late times.

The energy lost by the energetic parton propagating through the strongly coupled
plasma is quickly converted into hydrodynamic excitations with wave vectors q ⇠ ⇡T and
smaller. This happens over a very short time 1/�

1

, with �

1

= 2⇡T ⇠ T/0.16 the width of
the lowest non-hydrodynamical quasinormal mode of the strongly coupled plasma, deter-
mined in the dual gravitational theory in Ref. [46]. The hydrodynamic excitations are, in
turn, dissipated as heat after a damping time 3Ts/(4q

2

⌘) (for sound waves) or Ts/(q

2

⌘)

(for diffusive modes) [47]. If we take the shear viscosity to entropy density ratio to be
⌘/s ⇠ 2/(4⇡), hydrodynamic modes with q ⇠ ⇡T dissipate over a time ⇠ (0.5 � 0.6)/T .
Longer wavelength modes live longer. This means that most of the ‘lost’ energy rapidly
becomes part of the plasma, thermalizing and resulting in a little more, or a little hotter,
plasma. From an experimental point of view, the lost energy becomes extra, soft, hadrons
with momenta ⇠ ⇡T moving in random directions. These extra hadrons will be uniformly
distributed in angle, on average, if the passage of the jet does not induce any substantial
collective motion of the plasma.

Because we shall focus on reconstructed jet data, which is to say measurements of the
components of the jet that emerge from the plasma, we shall make no attempt to track the
lost energy in our hybrid model. Of course, since the ‘lost’ energy ends up as soft hadrons
going in all directions, some of it will end up in the jet cone. We will make no attempt to
add soft hadrons corresponding to some of the lost energy to the jets in our model. The
reason that we make no such addition to our jets is that when experimentalists reconstruct
jets from data, they use some background subtraction procedure designed to remove soft
hadrons that are uncorrelated with the jet direction, for example subtracting an ⌘ $ �⌘

reflection of the event from the real event. This means that if the ‘lost’ energy ends up
perfectly uniformly distributed in angle, it will be subtracted during the jet reconstruction
procedure. If this assumption is correct, the ‘lost’ energy does not appear in the jets as

– 10 –
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(Chesler, Jensen, Karch, Yaffe 08)
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3

case of a geometric path average over a static, finite, uni-
form plasma of thickness L; then

RQ
AA(pT ) =

1� enQµQL

nQµQL
⇡ 1

nQµQL
, (2)

where the pT dependence is carried entirely by the spec-
tral index nQ(pT ). RAA can be interpreted for L� `Q ⌘
1/(nQµQ) as the fraction `Q/L of the Q jets that escape
unstopped from the strongly coupled plasma within the
AdS/CFT approximation.

FIG. 2: The double ratio of Rc
AA(pT ) to Rb

AA(pT ) predictions
for LHC using Eq. (1) for AdS/CFT and WHDG [25] for
pQCD with a wide range of input parameters. The generic
di↵erence between the pQCD results tending to unity con-
trasted to the much smaller and nearly pT -independent results
from AdS/CFT can be easily distinguished at LHC.

Two implementations of pQCD energy loss are used in
this paper. The first is the full WHDG model convolving
fluctuating elastic and inelastic loss with fluctuating path
geometry [25]. The second restricts WHDG to include
only radiative loss in order to facilitate comparison to
[30]. Note that when realistic nuclear geometries with
Bjorken expansion are used, the “fragility” of RAA for
large q̂ reported in [36] is absent in both implementations
of WHDG.

Unlike the AdS/CFT dynamics, pQCD predicts
[23, 24, 25] that the average energy loss fraction
in a static uniform plasma is approximately ✏̄ ⇡
L2q̂ log(pT /MQ)/pT , with  a proportionality constant
and q̂ = µ2

D/�g. The most important feature in pQCD
relative to AdS/CFT is that ✏̄pQCD ! 0 asymptotically
at high-pT while ✏̄AdS remains constant. nQ(pT ) is a
slowly increasing function of momentum; thus RpQCD

AA
increases with pT whereas RAdS

AA decreases. This generic
di↵erence can be observed in Fig. 1, which shows repre-
sentative predictions from the full numerical calculations
of charm and bottom RAA(pT ) at LHC.

Double Ratio of charm to bottom RQ
AA A disadvantage

of the RQ
AA(pT ) observable alone is that its normaliza-

tion and slow pT dependence can be fit with di↵erent
model assumptions compensated by using very di↵erent

medium parameters. In particular, high value extrapola-
tions of the q̂ parameter proposed in [26] could simulate
the flat pT independent prediction from AdS/CFT.

We propose to use the double ratio of charm to bot-
tom RAA to amplify the observable di↵erence between
the mass and pT dependencies of the AdS/CFT drag
and pQCD-inspired energy loss models. One can see in
Fig. 2 that not only are most overall normalization dif-
ferences canceled, but also that the curves remarkably
bunch to either AdS/CFT-like or pQCD-like generic re-
sults regardless of the input parameters used.

The numerical value of Rcb shown in Fig. 2 for
AdS/CFT can be roughly understood analytically from
Eq. (2) as,

Rcb
AdS ⇡

Mc

Mb

nb(pT )
nc(pT )

⇡ Mc

Mb
⇡ 0.26, (3)

where in this approximation all �, T ⇤, L, and nc(pT ) ⇡
nb(pT ) dependences drop out.

The pQCD trend in Fig. 2 can be understood qualita-
tively from the expected behavior of ✏̄pQCD noted above
giving (with nc ⇡ nb = n)

Rcb
pQCD ⇡ 1� pcb

pT
, (4)

where pcb = n(pT )L2 log(Mb/Mc)q̂ sets the relevant mo-
mentum scale. Thus Rcb ! 1 more slowly for higher
opacity. One can see this behavior reflected in the full
numerical results shown in Fig. 2 for moderate suppres-
sion, but that the extreme opacity q̂ = 100 case deviates
from Eq. (4).

The maximum momentum for which string theoretic
predictions for Rcb can be trusted is not well understood.
Eq. (1) was derived assuming a constant heavy quark
velocity. Supposing this is maintained by the presence
of an electromagnetic field, the Born-Infeld action gives
a “speed limit” of �c = M2/�(T ⇤)2 [37]. The work of
[19] relaxed the assumptions of infinite quark mass and
constant velocity; nevertheless Eq. (1) well approximates
the full results. Requiring a time-like endpoint on the
probe brane for a constant velocity string representing a
finite mass quark leads to [21] a parametrically similar
cuto↵,

�c =
✓

1 +
2Mp
�T ⇤

◆
2

⇡ 4M2

�(T ⇤)2
. (5)

There is no known limit yet for the dynamic velocity
case. To get a sense of the pT scale where the AdS/CFT
approximation may break down, we plot the momentum
cuto↵s from Eq. (5) for the given SYM input parameters
corresponding to T ⇤(⌧

0

) and T ⇤
c . These are depicted by

“O” and “|” in the figures, respectively.
Conclusions Possible strong coupling deviations from

pQCD in nuclear collisions were studied based on a recent
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FIG. 1. Model calculations of the nuclear suppression factor
R

AA

of pions in central collisions at the LHC, compared to the
CMS data [7]. Dashed lines are the calculations from [6], done
using the energy loss inferred from the falling strings, and the
solid line represents the R

AA

computed in the framework of
the finite endpoint momentum strings, which we describe in
this Letter. All three curves were computed with the higher
derivative Gauss-Bonnet corrections to AdS5.

represent are less quenched and hence o↵er a potentially
better match with the experimental data. In this article,
we aim to explore the phenomenological features of this
proposal, some of which are summarized in Fig. 1, show-
ing a good match with the data for � = 1 (solid black
curve).

Our overall goal is to use the ideas of [8] to provide
a simultaneous fit to RAA from RHIC and LHC, with
attention also to v

2

of hard probes. We focus on a par-
ticular type of classical string motion, where the string
endpoint starts near the horizon and then moves upward
toward the boundary, carrying some amount of energy
and momentum which is gradually bled o↵ into the rest
of the string during its rise. These motions are termed
finite-endpoint-momentum shooting strings, or “F.E.M.
shooting strings” for short.

Modulo some assumptions, F.E.M. shooting strings
lead to a concise and phenomenologically interesting for-
mula for instantaneous energy loss, presented as equa-
tion (2.4). The energy loss depends explicitly on the ’t
Hooft coupling �, and it receives corrections when higher
derivative terms are included in the gravitational action.
We restrict attention to Gauss-Bonnet corrections, with
parameter �GB .

In the following sections, we consider several di↵er-
ent regimes of parameters, driven mostly by phenomeno-
logical considerations, but also by a desire to avoid
small values of � which take us decisively outside the
regime of validity of the supergravity approximation in
AdS/CFT. Other phenomenological parameters control-
ling the plasma equilibration time and the local evolu-
tion of temperature and radial velocity enter significantly
into the discussion. While it is challenging to simultane-

ously fit LHC and RHIC data, the choice � = 4 and
�GB = �0.2 puts our predictions in the ballpark of data
provided we include a 10% reduction of temperature at
the LHC relative to straightforward expectations based
on multiplicities.

II. ENERGY LOSS

In this section we will develop a phenomenologically
usable form of the instantaneous energy loss dE/dx based
on the finite endpoint momentum framework. As shown
in [8], a direct consequence of having finite endpoint
momentum is that the trajectories of the endpoints are
piecewise null geodesics in AdS

5

along which the end-
point momentum evolves according to equations that do
not depend on the bulk shape of the string:

dE

dx

= �
p
�

2⇡

p
f(z⇤)

z

2

, (2.1)

where
p
� = L

2

/↵

0 is the ’t Hooft coupling, f(z) =
1 � z

4

/z

4

H (in this coordinate system the boundary is
at z = 0), zH = 1/(⇡T ) and z⇤ is the minimal (in-
verse) radial coordinate the geodesic reaches and which
hence completely determines the motion of the endpoint.
As mentioned before, considering endpoints as energetic
quarks themselves and the string as the color field they
generate, we will identify the rate at which the energy
gets drained from the endpoint with the energy loss of
an energetic quark. It is worth pointing out that (2.1) is
a unique answer, independent of the initial conditions: it
does not depend on the energy stored in the endpoint[9]
and it is a function of only the radial coordinate z at
which the endpoint is located and weakly dependent on
the z⇤ of the geodesic along which the endpoint is mov-
ing.
To express dE/dx as a function of x, we need to solve

the null geodesic equation. Assuming that initially, at
x = 0, the endpoint is at z = z

0

going towards the bound-
ary, we have:

x

geo

(z) =
z

2

H

z

2

F

1

✓
1

4
,

1

2
,

5

4
,

z

4

⇤
z

4

◆
� z

2

H

z

0

2

F

1

✓
1

4
,

1

2
,

5

4
,

z

4

⇤
z

4

0

◆
,

(2.2)
where

2

F

1

is the ordinary hypergeometric function. One
could now numerically invert this relation (for given z⇤
and z

0

) to obtain z(x) and plug it in (2.1) to obtain
dE/dx as a function of x which would result in a char-
acteristic bell-shaped curve for energy loss [8]. However,
(2.2) has a particularly simple and universal form for
small z⇤:

x

geo

(z) = z

2

H

✓
1

z

� 1

z

0

◆
+O

✓
z

4

⇤
10z5

,

z

4

⇤
10z5

0

◆�
. (2.3)

The reason we are interested in this expansion is phe-
nomenological: from (2.1) we see that if we start at
z close to the boundary, the energy loss will be large,

(Ficnar, Gubser & Gyulassy 13)

➤ Strong mass dependence of quenching (recently disproved by cms)

➤ Direct fits demand small values of λ (string computations)
fixed by more complicated construction

➤ Contaminated from not asymptotic freedom at high scales
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• Not the only hybrid prescription:

➤    Modify medium induced radiation L2→L3 (ASW-AdS/CFT)
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Energy Loss

6

FIG. 3: As in Fig. 2, except here the slab has thickness L = 8/(⇡T ) and the quark is produced next to the slab at x
0

= �10�3

with u
0

= 0 and �⇤ = 0.025. It emerges from the slab at ⇡Tx = 8 with u
out

= 0.267 and �̃⇤ = 0.0769. As in Fig. 2, after
exiting the slab of plasma the string rapidly approaches a semicircular arc configuration. Using (35), E

out

/E
in

= 0.757. The
approximation (46) yields E

out

/E
in

= 0.780. So, as in Fig. 2 the string has lost a substantial fraction of its energy in the plasma
and yet emerges looking just like a string produced in vacuum with energy E

out

. We shall see in Section II.C that, under certain
assumptions, this string describes a “jet” with an incident energy E

in

= 87.0
p
�⇡T and, consequently, an outgoing “jet” that

emerges from the slab with energy E
out

= 65.9
p
�⇡T .

geometry. Restricting our attention to strings created
near the boundary, we also set u

0

! 0. This is not nec-
essary. As we discuss in Section IV, it will be interesting
in future to systematically explore how our results vary
as a function of u

0

and �⇤.
We now return to the case of interest in this paper,

namely a slab of plasma whose thickness L is less than
x

stop

meaning that, as in Figs. 2 and 3, the endpoint of
the string and some of the (blue) null geodesics describing
a segment of the string near its endpoint emerge from
the slab of plasma. Let us define the function �

h

(x), for
0 < x < L, by the condition that x

geo

(t,�
h

) = x and
u

geo

(t,�
h

) = u
h

. That is, �
h

(x) labels the null geodesic
that falls into the horizon at x. From (16) we see that
�
h

(x) is the solution to

x = �u
h 2

F
1

�
1

4

, 1

2

; 5

4

; 1

⇣(�)

�
(30)

+ u

2

h
u

in

(�)

2

F
1

�
1

4

, 1

2

; 5

4

; u

4

h
⇣(�)u

in

(�)

4

�
,

meaning that �
h

(x
stop

) = �⇤. The energy of the string
segment that exits the slab can then be written as

E
out

= �
Z

�h(L)

�⇤

d� ⇡0

0

. (31)

E
out

is clearly less than the energy of the string segment
that enters the slab, which we shall take to be

E
in

= �
Z

�h(0)

�⇤

d� ⇡0

0

, (32)

because some null geodesics and therefore some energy
has fallen into the horizon between x = 0 and x = L.

To go further, we henceforth assume u
0

! 0 and �⇤ ⌧
1. In the �⇤ ⌧ 1 limit we see from (28) that ⇡0

0

(�)
becomes highly concentrated in a region �� ⇠ �⇤ near
� = �⇤. Expanding

 (�) =  0(�⇤)(� � �⇤) +O �
(� � �⇤)

2

�
, (33)

we obtain from (28) the leading order expression for ⇡0

0

,

⇡0

0

=
�T

0

�2

p
2✏  0(�⇤)(� � �⇤)

. (34)

This expression, together with Eqs. (30), (31) and (32),
allows us to compute E

out

/E
in

, which is to say the frac-
tional energy lost by the high energy parton as it tra-
verses the slab of plasma. We obtain

E
out

E
in

=
�̂
h

(0)
⇣p

�̂
h

(L)� 1 + �̂
h

(L) cos�1

q
1

�̂h(L)

⌘

�̂
h

(L)
⇣p

�̂
h

(0)� 1 + �̂
h

(0) cos�1

q
1

�̂h(0)

⌘ ,

(35)
where �̂

h

(x) ⌘ �
h

(x)/�⇤. Although it does not look par-
ticularly simple, this expression is fully explicit. For ex-
ample, as noted in the captions of both Figs. 2 and 3,
we can use it to compute E

out

/E
in

for the “jets” in both
these figures.
We shall next describe two contexts in which the ex-

pressions (29) and (35) simplify considerably.

1. A parton incident from x
0

= �1

The first simplifying limit that we shall consider is the
limit in which we take x

0

! �1 while fixing u
in

small
compared to u

h

. As is evident from (36) below, this is
equivalent to keeping x

stop

finite (but large compared to
u
h

) as x
0

! �1. This limit, which is not realistic from
the point of view of heavy ion collisions, corresponds to
considering an incident parton that has propagated for
a long distance before it reaches the slab of plasma, but
that was prepared with such a small initial opening angle
that when it reaches the slab of plasma the size of the
cloud of energy density that it describes is still small. In
this limit, �⇤ = arctan(u

in

/|x
0

|) vanishes as |x
0

| ! 1 at
fixed, small, u

in

. In the x
0

! �1 limit, ⇠
in

! 1 and

energetic excitations are described as a string moving in the dual gravitational spacetime
whose endpoint is attached to a space-filling D7-brane and can therefore fall into the hori-
zon [22, 23, 41]. The former has the advantage that the set-up is fully determined within
the strongly coupled theory, while in the latter the initial conditions that characterize the
hard creation of these excitations need to be specified. The latter has the advantage that
the string describes an isolated excitation whose energy can be tracked, emerging from the
initial configuration. These two approaches lead to qualitatively similar results for certain
observables, such as the parametric dependence of the maximal stopping distance of en-
ergetic partons, but differ quantitatively. While both computations are valid within the
context of strongly coupled gauge theories, it is unclear which is a better proxy for QCD
hard processes in strongly coupled medium. Since the string-based computations provide
the energy loss rate explicitly [41], we will adopt this second approach to construct our
hybrid model.

In Refs. [22, 41], a pair of high energy ‘quark jets’ in the fundamental representation
of the gauge group are produced moving in opposite directions. In Ref. [41] the setup is
such that one of the ‘quark jets’ is incident upon a ‘slab’ of strongly coupled plasma with
temperature T , that is finite in extent with thickness x. The dual gravitational description
of the ‘quark jet’ is provided via a string whose endpoint falls downward into the bulk,
as in the left portion of the sketch in Fig. 1. After propagating for a distance x through
the plasma the string, which is to say the quark, emerges into vacuum. The energy E of
the ‘quark jet’ that emerges from the slab of plasma, as well as its other properties, can be
compared to the initial energy E

in

of the parton incident upon the slab and to the properties
of the ‘jet’ that would have been obtained had their been no slab of plasma present [41].
For our purposes, we are interested in how the energy of the ‘quark jet’ depends on x,
which is to say the rate of energy loss dE/dx. If the high energy ‘quark’ is produced next
to the slab, meaning that it enters it immediately without first propagating in vacuum,
and if the thickness of the slab is large enough that initial transients can be neglected,
meaning x � 1/(⇡T ), the rate of energy loss is independent of many details of the string
configuration and takes the form [41]

1

E

in

dE

dx

= � 4

⇡

x

2

x

2

stop

1q
x

2

stop

� x

2

(3.1)

where E

in

is the initial energy of the ‘quark’, as it is produced and as it is incident upon
the slab of plasma and where x

stop

is the stopping distance of the ‘quark’. Since E ! 0

as x ! x

stop

, the expression (3.1) is only valid for 1/(⇡T ) ⌧ x < x

stop

. The parametric
dependence of x

stop

on E

in

and T was obtained previously in Refs. [22, 23]. For a string
whose initial state is prepared in such a way as to yield the maximal stopping distance for
a ‘quark’ produced with a given E

in

propagating through the strongly coupled N = 4 SYM
plasma with temperature T , it is given by

x

stop

=

1

2 

sc

E

1/3

in

T

4/3

, (3.2)
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Chesler and Rajagopal ArXiv:14026746

• Energy loss of light quarks crossing a slab of plasma

• We use κSC as a fitting parameter

• κSC is not robust

➤  κSC~λ1/6   (λ~g2 Nc) in string computations

➤  κSC~λ0   (λ~g2 Nc) in U(1) field decays
} order one

(λ ~ 10) 
Gubser et al 08, Chesler et al. 08, Ficnar and Gubser 13, Chesler & Rajagopal 14

Hatta, Iancu and Mueller 08, Arnold & Vaman 10
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• Gauge/gravity duality provides a theoretical laboratory

How does a plasma with no quasiparticles behave?

• It gives us information of physics at scale T 

➤ Transport coefficients

➤ Hydrodynamization

• Connection with hard probes is complicated

➤ Some promising results

➤ We need to search direct signals of quasi-particle (absence)
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Towards p-A: Longitudinal Coherence
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Towards p-A: Longitudinal Coherence

➤ Midd rapidity region independent of collision system
➤ Maximum at y=0 and symmetric w.r.t center of mass
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The Weak Coupling Picture

b

Q2s(A) Q2s(B)

πR2 Q2s(A)
dN
dy ∝
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The Weak Coupling Picture

b

Q2s(A) Q2s(B)

πR2 Q2s(B)
dN
dy ∝
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The Weak Coupling Picture

b

Q2s(A)= Q2s(B)

Q2s(A)= Q20 A eλ(Ya-y)

Q2s(B)= Q20 B eλ(Yb-y)

Choosing ylab=(Yb-Ya)/2

ymax=
yc.o.m

λ λ≈0.5
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The Weak Coupling Picture

b

Q2s(A)= Q2s(B)

Q2s(A)= Q20 A eλ(Ya-y)

Q2s(B)= Q20 B eλ(Yb-y)

Choosing ylab=(Yb-Ya)/2

ymax=
yc.o.m

λ λ≈0.5

LHC most central pPB yc.o.m=1.7
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